





I, Inﬁroduction

" Maxwell eleotrodynamios provides a general soheme for all classi- .
- cal and quantum electromagnetic phenomena. In spite of its tremendous
success it still suffers from some unresolved defects. Among them the
most important one is the 1ong-Standing‘problem of a point oharge for
which the standard theory predicts an infinite amount of energy. At o
first glance it might seem that this is only a particular and an ele- .
mentary problem but we agree with the statements: "that elementary -
" problems should be solved before attacking sophistioated pfbblems'
and that "we cannot expect that new geometries and topologles will
) reveél'deeper insights into the physical world if we persist in 1gno--"
. ring the more elementary and relevant down-to—earth problems®
T Our paper is based on a very careful analysis of the foundation
. .of Maxwell electrodynamics with the special attention to the role of
-distribution-valued sources and oonstitutive relations used to close
- the basic field equations. As a result, we arrive as a new formula-
_tion of classical electrodynamics whioh has many advantages over all
_previous ones, In particular, our reformulation of electrodynamios ,
"is free from all troubles of the Maxwell theory. It 1s also more gene-
ral than the Maxwell theory and includes the latter as a particular
case.

2, Maxwell eleotrodynamics with
distribution-valued sources

Maxwell theory desoribes general 1ams of eleotromagnetism in
terms of four eleotromagnetio field E (x,4), DX 8), B (X L)
and }i(&t) oonneoted by a particular system of differential rela-

".tions oalled the Maxwell equations. In the rationalized system of
units these equations have the fomm r2/ H

not E = :;:5 (2.1)

divB = O (2.2)
= D , - |

wot H =57 +4 (2.3)




-
divD =g (2.4)
where 9()7,-&) and £ (X,2) are the scalar density of charge and the

vector density of current, respeotively. To apply the Maxwell equa-
tions to the description of any particular electromagnetic situation,
we must close the system of differential relations (2.1)-(2.4) using
some additional information about the electromagnetic fields. Custo-
marily, this information is supplied by the so-called constitutive
relations which are vallid only for a particular medium. The constitu-
tive relations describe the response of the medium to the electro-
magnetic field and they contain all the relevant eleotromagnetic
characterization of the medium. In the simplest case of a vacuum the

constitutive relations have the form
-

D=¢E
g
—
3B ;‘210}4
where £, and Mo are the electromagnetic constants of the va-
cuum, and substituting these relations into (2. 3) and (2. 4) we get
the equations

(2.5)

2ot B = 5L'3!E Fuod
crpe tie] (2.6)
. "._ 4 :
CLﬂ'E.- % 9
where the relation.
€ o po = (2.7)

has been used. (c - velocity of light in vaoﬁum). Equations (2.1),
(2.2) ana (2.6) form a closed MaxWell-Lorentz system of equations
for the fields E and i and are the basis of the Lorentz micro-
scoplc electrodynamics 3 .

The above-presented scheme works perfectly for oharges and
currents for whioh the oorresponding densities 9 and j, are
represented by smooth functions of space-time coordinates. Unfortuna-
tely, it crashes when we try to apply it to problems for which both

and Z. are represented by generalized funptiohs called distri-

- butions. In fact, from the Maxwell - Lorentz equations (2.6) it follows

that for distribution—valued sources ¢ and the electromagne tio
flelds E and :B also must be represented by generalized vector-
-valued functions and the whole Maxwell — Lorentz electrodynamios
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must be treated in the mathematical language of distributionstﬁ suffi-
ciently comprehensive treatment of the Maxwell —Lorentz field equa-
tions in the framework of the theory of generalized functions has
been given, for example, in Ref. 4 . But the discussion of Ref. 4
is physically incomplete because field equations deal only with the
linear part of electrodymamics. As it is well-known, in addition to
this linear part, electrodynamics contains a lot of important non-
linear expressions, such as, for example, the Lorentz force

Fo = (d% [oZnEGy + 7Go-BGH], (2.8)
the Poyinting vector /
Sw= (dx EGo-HEY, (2.8)
the Joule heat
Q)= [dx 77 E (%,1) (2.10)
or the energy balance equation
(2.11)

B
dw(a jd (Em)"):o(xfu”(x){) b )

From the mathematical point of view all these quantities are meaning-
less for distribution-valued fields and sources because generalized
functions cannot be multiplied 2 .

Tha lack of a multiplication law for generalized functions is
the primary source of all troubles of the conventional treatment of
the problems with point charges in the framework of Maxwell electro-
dynamics. For instance, the point charge moving along a tra-

is described by the following densitiles

(2.12)

eGt) =99 (X-% (1),
JGt=g % © 3P (Z-%(D).

For such sources the Lorentz foroe (2,8) and the Joule heat (2.10)
are meaningful quantites only provided the electromagnetic fields £
and :B » as funotions of the variable x s have the properties of
the test functions used in the theory of generalized functions /5 .
However, from the field equétions (2.6) 1t follows that along a
trajectory of the point charge these fields are singular functions

of the variable i and an apparent contradiotion arises. Moreover,



the field quantities at infinity behave quite differently from the
test functions. The fact that the fields for point charges turn out
to be ordinary singular functions should not confuse us because
mathematics of the field equations with distridbution-valued sources
unliquely requires that all these singular functions must be treated
in the framework of generallzed functions. Therefore, we cannot cal-
culate the energy of the field with the usual formula

=1 (dx (8 E'Gt) ¢ poB 1)

because it is meaningless for distribution-valued fields. The whole
discussion of the problem of infinite energy of the electromagnetic
field of a point charge, contained in all text-books on electrodynamics,
is based. on an inadequate mathematics and has therefore no physical
meaning because physics cannot be based on a wrong mathematics.

To see what is really going on, let us observe first _1_;hat the_‘,
conclusion about the distribution character of the fields £ and B
follows not from the original system of Maxwell equations (2.1)-(2.4)
but from the Maxwell - Lorentz equations (2.6). The original Maxwell
equations require that for distribution-valued cources only the fields
:B and T—{’ must be distributions while they-leav_e open tlx.e,ques-
tion of the mathematical properties of the fields £ and B . Ve
may therefore use this freedom to assign meaning to all non-linear
electromagnetic quantities listed above. For this purpose 1t is suffi-
cient to assume that the fields E and _‘B always serve as vector-
~valued test functions for the vector-valued generalized functions
fs ’ l-T ’ 7 and the scalar generalized function Q because
all physically interesting non-linear electromagnetic quﬁntities_gy
definition are always linear funotiornals of the fields £ and fB_’
The widely spread non-linear dependences on the fields E and B
are always introduced by constitutive relations the meaning of which
will be discussed at a moment. Using the notation of the theory of
distributions we may rewrite formulas (2.8)-(2.11) in the form:

(2.13)

. 3 .
Fj(f): <9¢,Ej¢>+%l SJ»;L<JK¢,BL¢>, (2.14)
Sj(é)-th;gK,_<HK¢)E“>’ (2.15)

Q G)-‘-Z <jké, Ewed ,‘ (2.16)
k=1

T Ly e T

dW(é) Z ( ’D)Ki-) E, >+ <H“)%B:e >) -

52: (<Hkt ’33Ki> Dt r)txé>)

k=1

(2.17)

where & ke is the three~dimensional Levi — Civita symbol and the
bracket <4Fe,lPe> denotes the value of the generalized function

£2 (D)= (%,4) on the test function ¢, (%)= (X2 where
the time variable is treated as a parameter of both the generalized
and test functions. It is now clear that all these formulas are per-
fectly well-defined for all distribution-~valued sources provided the
fields E and '3 will be treated as test funotions of the- theory.
Obviously, our assumption on the role of the fields E and jB is
just opposite to that usually made on these fields in electrodynamics
with singular sources. The advantage of our assumption over the usual
ones consists in the fact that 1t assigns meaning to all non-linear
quantities which are notorliously ill-defined in other approaches.

The difference in the mathematical properties of the electromag-
netic fields, neoessary for further development of the theory, i1s
possible only in the framework of the original Maxwell equations and
not in the widely used Maxwell- Lorentz vacuum electrodynamics. Since
the latter arises from the former after using constltutive relations
(2.5) we come to the conclusion that the troubles with distribution-
-valued sources are not inherent in eleotrodynamics itself but their
source lies in the constitutive relations. In faot, having decided,
that the fields E and :73' belong to the class of test functions’
for the distributions D and H - (and for 7 and s as well)
we have lost all possibilities to write relations of the type (2.5)
because all relations like that are now meaningless. The efforts to
express non-trivial generalized funstions in terms, of text functions
either fail completely or lead to such complicated construotioné/5/~
that they are deprived of any physical interest. Therefore, in electro-
dynamics with distribution-valued sources we must rejeot all consti-
tutive relations which will relate the fields fﬁ and ;—i’ to the
fields -E. and i . This oonclusion excludes however the usual way
of closing Maxwell equations. We shall show in the next section how
to reformulate the original Maxwell .theory so that all constitutive

- relations between fields may be omitted.



3. Reformulation of Maxwell electrodynamics

In the previous section we have shown that the mathematics of
Maxwell electrodynamics with distribution-valued sources is well-de-
fined only if the fields £ and B  are mathematically quite
different from the fields ® and H . Combining this with the
fact that also physically the fields E' and i; ~are quite diffe-—-
rent from the fields J) and r1 y we arrive at the fundamental
question: is it really necessary to have that asymmetry at the funda-—
mental level of the theory?

Trying to give an answer to this question we start with the ob-
servation that the usual Maxwell macroscopic electrodymamics is not
a theory of a single medium but it 1s a theory of two quite different
media. In fact, the fields ff and ji are operationally defined
only in a vacuum while the fields i5 and ;7 describe electromag-
netism 1n a given medium which may be quite different from the clas- }
sical vacuum. In the usual formulation of classical electrodynamics
the classical vacuum, with some hypothetical properties, always serves
as a reference medium for all other media. The comparison of fields ]
in a medium with the fields in a vacuum 1s implemented by the consti-
tutive relations. But the experimental verification of these relati-
ons involves many assumptions which often cannot be really verified.
Obviously, all that introduces into the theory unnecessary uncertain-
ties and undeterminable iestrictions which cannot be even explicitly
stated. This clrcumstance is always neglected in the formulation of
Maxwell electrodynamics and it is assumed that this theory is appli-
cable to all electromagnetic phenomena with an absclute accuracy!

The experience from solid state physics, however, unambiguously
shows that in many, if not in all, cases it is not reasonable to
compare a given medium with the vacuum. On the contrary, it is much
more convenlent to describe each medium in its own language which ‘
reflects the properties of the medium in the most economical way. We %
should also take into account the fact that our present-day under- i
standing of the notion of a vacuum is quite different from the old-
fashioned point of view according to which the vacuum is merely an N
empty space. The properties of the vacuum depend on the required ﬁ
accuracy of the theory and are quite different at the classical and
quantun levels. It is one of the tasks of the theory to predict these
properties and therefore at any early stage of the theory we have no
right to make any assumption concerning the possible complicated
structure of the vacuum. The vacuum by no means may be simpler than o
any other medium and therefore there is no gain to use it as a N
reference medium.

The above-presented observation leads us to the following brave
idea: the best way of removing the aforementioned asymmetry_in the -
foundation of electrodynamics is to resign from the fields E and B
at all. But, we know that the fields i and ﬁ themselves are not.
sufficient to describe all electromagnetic phenomena because working
only with these fields we cannot extract from the theory all the in-
formation on the behaviour of the medium itself.‘To resolve this prob-
lem, let us recall that in Maxwell theory the most general constituti-
ve relations are of the form '

izsog‘r’-—P’ (3.1)

H &‘B M (3.2)
where the two vector fields ;§(§,f) and M(x,t) aescrive the polari-
zation and magnetization properties c¢f the medium. In the standard
approach to macroscoplic electrodynamics these vectors fields are
considered as given quantities and the relations (3.1) ana (3. 2) are
used to eliminate the fields ]) and }i from the theory. For the
remaining fields E and :3 we then get the following complete
system of field equations:

iE +,b-;—o (3.3)
divB =0 (3.)
-a‘_—fbg— - —
wtB - G5T =po(ft'er +mt M) (3.5)
o = 4 —-dﬁfi;
div E % (g-d ). (3.6)

It is however not difficult to see that in this way we arrive at a
theory which uses electromagnetic fields in a vacuum but describes
electromagnetism in a given medium which has nothing to do with the
vacuum. The presence of the matter is taken into account solely as
some corrections to the source terms. For sitribution-valued sources
such an approach suffers however from the difficulty mentioned in the
previous section and therefore we cannot follow it. To find the way
of resolving this trouble, let us observe that it is possible to holad
the opposite point of view. Since we already know that the fields E
and i should be eliminated from the theory, let us treat the



fields ’—ﬁ and F*T not as given quantities but as fields to be
determined from thelr own set of field equations. To obtain these
field equations, we may Just use the general constitutlve relations
(3.1) anad (3.2) not as a tool for elimination from the theory of the
fields D and Fi’ but as a tool for elimination from the theory of
the now unwanted filelds E and 53. . Proceeding in this way we
arrive at a reformulation of the Maxwell electrodynamics in which the
whole electromagnetism in a given medium will be described in terms
of two pairs of vector fields (D,H) anda (P,M) both of which
refer solely to the same oonsidered medium without any reference to
the vacuum. Ve shall see below that for distribution-valued sources
also the fields iS and Fﬁ are generalized functions and therefore
the above—dilscussed asymmetry in the foundation of electrodynamics
wll disappear.

To arrive at the wanted reformulatlion of Maxwell electrodynamics,
let us remind that in an arbltrary medlum the charges and currents
described by the densities 9(?,&) and j'(;’r‘,{) 'y respectively, may,
in general, induce two other kinds of charges and currents: the po-
larization charges and ourrents descrlibed by the densities 91, (x,f)
and j‘P(7 d) sy respectively, and the magnetization charges and
ourrents described by the densities Qpm (¥,¢) and 7, (X4
tively. Note, however, that 9,,,_ does not describe magnetic mono-
poles because the induced magnetic charge density 1s present in a
medium also in the absence of magnetic monopole. The presence of mag-—
netic monopoles will require one more charge and current density but
we shall not oonsider this case here. All the charge and current den-
sities obey their own conservation laws in the usual form:

) - .7
5{? +¢*1ﬁj = C),
’ag,,, 7 (3.8)
Rt + dl‘lfd—r = 0)

(3.9)

IRL'NLdH)'JM -

but only the densities Q and may be regulated by external
sources. The induced densitles (9?, 3'7 ) and (9..\,3:. ) depend on
the properties of the medium and may depend on the extermal sources

9 and 4 « The functional dependenoe of the lnduced densities
on the external densities may be desoribed by a new type of constitu-~
tive relations, we shall discuss at a moment.
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The complete sets of field equations for the fields fD and H
as well as for the fields ’P and M wlll be established from
the usual Maxwell equatilons (2.1)-(2.4), from the constitutive rela-
tions (3.1) and (3.2), and from the generalized Helmholtz theorem’. 7/
which says that the most economical way of characterizing any two

vector flelds V{ (¥¢) and V.z %, é) is glven by the following set
of fleld equations:
div Vy = 54 (3.10)
- .
divVy =5, (3.11)
YR
i —
not Vi 4055 =D Cy (3.12)
(3.13)

mot Vi 9o < i

where §;(¥;¢) and ¢i(X,#) for 1=1,2 are the sources of the fields
and 124 and '2,’ are, in general dimensional, constants which
determine the character of propagation of the fields V; (x,t) and
V,, (x,e) in space~time. In particular, the hyperbolic propagation
law requires that

- -4 (3.14).
24 ?1- CJ, 3 )
where C(C is the velocity of propagation. It 18 easy to see that

equations (3,10)-(3.13) imply that each pair of souroes (s‘-) c:)
satlisfies 1ts own oonservation law

s
=Ly dive; = (3.15)
@{_ + dl CL O
= T .
Now, let us take V4 =D and V,=H . From the Maxwell equations

(2.3) and (2,4) we get then

5= Q (3.16)
21 =3’ (3.17)
(3.18)

From the relation (3.14) we get immediately that




N2 = 543 (3.19)
Moreover, by definition we have

div H = om (3.20)
and therefore

5= Om - (3.21)

The continuity equations (3.9) and (3.15) lead then to the iden—
tification

= j.m : (3.22)

and we arrive at the following complete set of Maxwell equations for
the fields D and H :

Jiv'f =0, (3.23)
div H = Om | (3.24)

T, 4 Qﬂ, -
/lot']) 4 -C_L—E- - - éLl- m , (3- 25)
(3.26)

-
-

ot H —%)—]tz = j .

To obtain the corresponding complete set of Maxwell equations

. for the fields P and M , let us now take V=P and V=M.,

From the constitutive relations (3.1) and (3.2) and Maxwell equations
(2.2) and (2.3) we get the equalities

dil)'M = -dI.VH (3.27)
and i
= G)ﬁ 5 . LM (3.28)
’?Of:D+ z1 'D{: = ndP EAHE .

Comparing these equalities with equations (3.24) and (3.25) we come
now to the identification

$2= = O, (3.29)
o=~ fm, (3.30)

10

- 1
2‘7' == Z;' . (3-31)

From the relation (3.14) it follows now that

gi=1 (3.32)
This time, by definition we have the relation

divP = - Op (3.33)
and therefore

SL= - 9p. (3.34)
The continuity equations (3.8) and (3.15) give then

‘Z, = _3’7, (3.35)

and we arrize at the following set of Maxwell equations for the fields
P and M :

divP = -9, (3.36)
div M = ~Om (3.37)
»rotf—g—ng =% T, (3.38)
mot M +(b'P = “j”’ . (3.39)

We have already argued that for distribution~valued sources
and 4 the fields D and ﬁ must be distributions. From the
field equations (3. 24) and (3.25) it follows now that also the induoced
densities Ym and 4"‘ must be distributions. But for distribution-~
-valued sources @, and Jm the field equations (3.37) and (3.38)
predict that the fields “P  and rq are distributions as well,
Then, finally, from the field equations (3.36) and (3.39) it follows
that the induced sources op and 37 also must be distributions.
Therefore, we -see that for distribution-valued souroes 9 and
all eleotromagnetic quantities must be represented by distridbutions.
In our reformulation of the Maxwell theory by eliminating from it the
fields E and 33 and introduoing into it as primary fields the
fields ’P and ~r4- we have not only removed the physical asymme try

11



between basic filelds but also the asymmetry in their mathematical
character. All basic eleotromagnetic fields refer now only to a single
"given medium and all they are distributions for distribution-valued
sources. For ordinary sources represented by ordinary smooth functions
we may 1mmed3ate1y go‘back to the standard Maxwell theory by defining

the fields E and B as secondary fields given by the relations
- ,L -7 e
E = & (:D _‘P); (3.40)
B‘é“"(HfM)' T (3.42)

In our approach, all basic flelds are Maxwellian, 1l.e., the
unique fields determined by the Maxwell equations supplemented by the-
corresponding boundary or initial conditions. We may treat the sources
elther as given quantities or relate the induced densities to the ex-
ternal ones by some kind of constitutive relations. As all sources
are distributions, for non-linear media, these constlitutlve relations
may be written only as convolutions of distributions and not as simple
products at the same space-~time point because such products are mea-’
ningless for distributions. All that belongs to the range of applicabi-
1lity of our formalism, we do not consider in the present paper.

4, Test functions for distribution-valued electromagnetic fields

Ve have arrived at the reformulation of Maxwell electrodynamics
in whioh all basic electromagnetic quantities are distributions for
disctribution-valued sources. To make thils theory complete, we must
now find the space of test functlions for all these distributions and
egtablish the physical meaning of the test functions.

It is well-known that classical electrodynamics has, 1in general,
two interrelated aspects: the first one connects the flelds with
their souroes and the second one describes the action of the eleotro-
magnetic field on matter. In our approach the first aspeots 18 con-
tained in the sets of Maxwell equations (3.23)-(3.26) and (3.36)-
~(3.38) and we pass now to the discussion of the second aspect of
electrodynamics. ’

In classical electrodynamics it is oustomary to consider the ac-
tion of the electromagnetic fileld solely in the framework of classical

physics in which a crucial role 1s played by the Lorentz force (2.8)
and the Joule heat (2 10), This approach necessitates the introduc-
tion of the fields £ and jB which in our scheme are defined by
the relations (3,40) and (3.41). However, we have seen that the

12
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fields E and ig should possess different mathematical proper—
ties than the fields D ’ H ’ 1’ and rd have and we arrive at
an important restriction on these fields which consists in the follow—
ing: The difference of the distribution-valued flelds ZD and ’P

and the sum of the distribution-valued filelds I4 and h1 must be
smooth test function. This condition obviously introduce a strong
correlation betwgen the singularities of the flelds which up to now
were quite independent. For example, for non-polarizable media we

may put :

o, (4.1)

"

0P = 9m

jr =4~ =0
and we obtain homogeneous field equations for the fields 55 and F; .
It might seem that we may take o

P=M=0 “.2)
as solutlons to these equations but in view of the above-~formulated
restriction on the distribution-valued fields this is impossible for
distribution-~valued sources because the resulting filelds D and H
will be distributions and unier the assumption (4.2) there is nothing
to compensate the singularities of these fields. The relations (3. 40)
and (3.41) will not therefore lead to smooth filelds E and B and
an apparent contradiction will arise. This shows that the Maxwell
electrodynamics possesses the following very Important mechanism: the
theory does not allow us to make unphysioal assumptlons. In faot, the
physically meaningful electrodynamics with distribution-valued sources
must admit that we always may achieve such an accuracy of measuring
the properties of the sowrces that allows us to establish their distri-
butional character. In particular, this means that for S -~type sources
of the kind (2.12) we may really locate the charge at a single point
with absolute accuracy and we really may negleot all effects connected
with a poss1b1e spatial spread of the charge. Consequently, we must
accept that we may also measure all polarization effects with absolute
accuracys The 4mpossibility of the solution (4.2) means that in the
presence of distribution-valued sources all media exhibit polarization
effects, This is in sharp contradiction with the usual assumption on
the classical vacuum as an empty space. Our disocussion shows that the
classical vacuum may be approximated by on empty space only for smooth
external sources, In the presence of distribution~valued sources 1t
must exhibit some polarization phenomena which one oontrolled by the
singularities of the electromagnetic fields. The classical vacuum

13



gains therefore the properties of a complicated medium what is
usually appreciated only at the quantum level. This slightly unexpec-
ted result was one of our arguments for rejecting the standard clas-—
sical vacuum as a reference medium for all other media. The detailed
discussion of this problem 1is however out of the scope of the present
paper.

As it 1s well-known, the classical electromagnetic field acts on
matter also in quantum physics where 1its action is implemented through
the principle of local gauge invariance of all material wave equations.
-In this approach, the electromagnetic interaction is implemented by
a four-vector R, (x,¢) ( F o =0,1,2,3 and from now on we shall use
relativistic notation) that undergoes the gauge transformations

AGD > ALGH = A G A G (4.

where /\(?,f) is an arbitrary smooth function of space~time coordina-
tes. In the standard approach to electrodynamics, the four-vector

A (Ft) 1is treated as a potential for the fields £  and B
through the relations

E=-VA -A" | | (4.4)
Bz i A

but it 1is also possible to treat just the fields F%~ as primary
physical fields /8 . To arrive at a unified point of view, we assume
that the action of the classical electromagnetio field on matter 1is
always implemented by some four-vector field A[~G§£) that_Taz’yi
relatgg to the distribution-valued electromagnetic vectors D,H,P
and M by some kind of constitutive relations. In the standard
electrodynamics, this relations is given by (3.40), (3.41) ana (4.4)
but in general we may admit other relations as well. The important
point is the assumption that the fields 'Au (X,4) have all the pro-
perties of the test functions for all electromagnetic distributions.
This assumption follows- not only from the particular relations (3.40),
(3.41) anmd (4.4) but also from the fact that the four-vectors A (5,8
always multiply the matter wave functions which are distributions
themselves, and distridutions may be multiplied only by smooth funct—
ions. Only then the wave equations with the covariant derivatives

Dpe =0 =i ALG)

will be well-defined for distribution-valued wave functions.

(a.5)
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Ep the relativistic notation, the electromagnetic fields 55
and H are organizedfas_gomponents of an antisymmetrio tensor
PibV(;}D and the vectors P and fa enter into another antisym-
metric polarization and magnetization tensor P&Y (¥, ¢) « The Max-
well equations for these tensor fields are of the form

L Hb\':jv (4.6)
Q. HE = 4¥.

and & A J
D PEY j'" 4.7

where J"=(9,j), J.: :(9""3"\) and 4p = (¢p, 3:) are the
corresponding four—currents and the star denotes the Hodge dual of
the corresponding tensor. The overall plcture of our approach to
electrodynamios in the relativistic notation is therefore the follow-
ing.

We start with some distribution-valued four-current {%(x,2)
that satisfies the continuity equation. In terms of jf' we express
the induced four-—currents j,f and '; by using various constitu-
tive relations which describe the properties of the medium. From
Maxwell equations (4.6) ana (4.7) supplemented by the corresponding
boundary conditions we find the distribution-valued electromagnetic
fields }ibv and ’Pl‘v defined over the space of four-vector-valued
test functions ﬁb&(ini) . The test functions carry the gauge
symmetry of electrodynamics given by (4.3) and are related to the
distribution-valued fields H&Y and -P&¥ by

HEY—pev £ 8&93\& ('DQA), 2, AQ) (4.8)

where &y is the Minkowskl metric tensor., Note, however, that

the relation (4.8) is typical only of the Maxwell electrodynamics

and may be replaoced by other relations, which will lead to non-Max-
wellian theories. The electromagnetic four-vector A expresse s the
action of the electromagnetic field on matter either through the
Lorentz force or through wave equations. The observables of the theory
are obtained as values of the corresponding electromagnetic distribu--
tions on a particular test function calculates from (4.8). The usual
gauge 1nvariance of electrodynamics requires now invariance of all
these observables under the transformations (4.3). Since in our
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approach ;h“ is a physical field and not an artificially introduced‘;
potential, the gauge invariance of electromagnetism is now more natu-,
ral than in the standard approach.

5. Conclusions

We have presented a general scheme for classical electrodynamics -
that is free from any troubles with distribution-valued sources en-
countered by the usual approach. The sige of the paper does not allow:9
us expound all advantages of our approach; this will be done in a se-~
ries of subsequent papers started by the present paper. In particu-
lar, we shall show that our approach perfectly works for point char-
gesy it gives a new insight into the long-standing problem of the '
energy-momentum tensor of the electromagnetic field in a medium and
‘has a nice extension to the theory of gravity.
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