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The problem of finding all gauge invariants is considered in connection 

with confinement. It is shown that any gauge invariant may be built of the expo­

nential line integrals (strings) and local gauge group tensors. The Coulomb field 

structure is analyzed from this point of view. In the pure SU (n) gauge theory 

(no matter), a potential of interacting static sources is found to be linearly rising 

with distance. 
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1. The main peculiarity of gauge theories is the existence constraints, 
i.e. some relations between canonical variables [1]. The constraints do 
not cont~in the time derivatives, only the spa~e ones, so they presuppos<:!, 
some static nonlocal structures to exist. These structures, appearing due· 
to constraints, are preserved during the time evolution and manifests of 
a gauge invariance. · 

The well-known example of the nonlocal excitation.is a physical elec­
tron, i.e. ~ charged fermion with its Coulomb field. If-1 describe~ an­
elec_tron field then the nonlocal field W = exp(-ie.6..-1 (v', A) )1,. where A 
is an electromagnetic vector potential, corresponds. to the physical ele~­
tron [2]. The exponential describes the Coulomb field [2]. The field W is 
gauge-invariant. 

The static fields surrounding a "gauge charge'.' and appearing due 
to constr~ints give rise to· a static interaction of the charges ( or static 
sources). For example, · in electrody-namics the static interaction of 
charges described by· the gauge-invariant field W is the Coulomb one 
[2] .. The example of electrodynamics teaches us that physical objects ., 
are described by some nonlocal gauge~invariant field configurations, and . 
real dynamics should appear as motion and interaction of these objects 
(including, of course, local fields too if they are, like the field strength 
in electrodynamics, gauge-invariant). It suggests that before turning to 
dynamics, one should first "solve" constraints, i.e. one has to find all 
gauge invariant objects. · _ 

To find the static forces between charges in gauge theories, one should 
know all gauge-invariant structures. It is known, on the other harid, that 
gauge fields can be considered as connections in the principal fiber [3],[4]/ 
and the problem of finding gauge invariants becomes the pure geometri-· 
cal one. In the present letter based on the geometrical approach we argue 
that the exponential line integrals are the only fundamental "gauge co­
variant" objects in gauge theories. All gauge-invariant configurations of 
fields, though complex, are rriade of them. 

This observation is tightly connected with the problem of confine-' 
ment. By itself this problem is very complex and has many different 
aspects. But one. its feature - the existence of a linearly rising with 
distance potential - can be established for some models in a relatively 
simple way. Moreover, one can show that in gluodynamics for static 
quarks there could be no other forces. This comes from the fact that the 

I Sbl.CJllitle'l.ilihft\ KHCTI:n'Y1 l 

®~;n1;11 ~r:c;ienonausfi. l 
5t,1sm·10TEH~ l 



only proper gauge-invariant ~bject consists of the P-exponent · (i.e. of the 
"string") connecting two opposite charges. However, in QCD the strings 
can branch. For this reason the interaction between real quarks is not so 
simple. 

We demonstrate. also how ·the Coulomb field rriay be built of the 
strings. 

2'. ,Let P(M, G) be the principal fiber bundle with base M (the 
Minkowski space) and a compact group G [3]. The group G acts on 
pas a groupof right translations: ug' = (x,g)g' = (x,gg'), u E P, XE 
M,_ g,g' E G, i.e. M = P/G. In P one defines a local cross section u 
which may represented by the pair u(x) = (x,g(x)); i.e. u(x) is a surface 
in P isomorphic to an open neighbourhood in M. 

A gauge transformation in P is defined as a change of local cross 
s~ctions u(x)-+ ug{x) = u(x)g(x) where g(x) is a G-valued function on 
Mi_ -

Consider tensors ¢( u) 1n P realizing a representation of G and hav­
ing the following property ¢( ug) = T9 -1 ¢( u), T9 is an element g E G 
in the corresponding representation; analogously for a conjugated rep~ 
resentation: -ip*(ug) = -ip*(u)T9 • Matter fields on M are defined as 
"Pu(x) = -ip(u(x)), ¢;(x) = -ip*(u(x)) for a certain cross section u. So 
their gauge transformation law is 

'Ip: = 1P('!9) = T9 -1 'lpu , ¢ 1
; = ¢*(ug) = ¢;T9 • (1) 

A construction of local invariants of "Pu, ¢; does not meet difficulties. 
Note also that in spite of the dependence of matter fields on u, invariants 
built of them are independent of° it because a change of u is equivalent 
to. a gauge transformc1:tion. _ 

It is important, however, to know "nonlocal invariants" made of the 
fields "Pu(x), ¢;(x') taken at different points. To construct them one has 
to define a parallel translation of tensors from x' to x, i.e. to introduce a 
connection and a connection form w [3],[4]. Consider a projection Wu of 
w on a cross section u 

Wu= Aµdxµ (2) 

1To define a gauge transformation globally, functions g( x), each of which is defined 
on a certain neighbourhood in M, should satisfy supplementary conditions at points 
common for different neighbourhoods [3],[4]. However, it is not essential for what 
follows. . 
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where coefficients Aµ are elements of the Lie algebra of G. This projection 
may be determined in a local coordinate system as a formal replace of du 
by du(x) in wand u by u in its coefficients. Under gauge transformations 
the form Wu changes that induces gauge transformations of Aw One may 
show [3],[4] that 

w -+ w = g-1w g + g-1dg = A9 dxµ u ug u - µ 

A -+ A9 = g-1 A g +·g-18 g µ , µ ' µ µ . 

(3) 

(4) 

For this reasori the coefficients Aµ are identified with the Yang-Mills 
potentials. · · 

By definition translation of "Pu from x' to the neighbour point x = 
x' + dx is given by 

'efJu(x) = (1 + Aµdxµ)"Pu(x') = Pxx'"Pu(x'). (5)· 

According to Eq.(5) parallel translation of "Pu from x' to x along a curve 
C(x,x')isgivenby · · 

'efJu(x) = P[C(x, ;,~"Pu(x'), (6) 

where the operator of translation along the curve C ( x, x') 

P[C(x,x')] = Pexp( J. Aµdxµ) = Pxx' (7) 
C(x,x') 

is the familiar P-exponent transforming as follows P;x, = Ty-1 ( x) Pxx' X 

x Tg{x'), i.e. Pxx' is a "bilocal" tensor. Eqs.(6),(7) tell us: ~rom geomet­
rical point of view P-exponent, matter fields ¢, and invariant tensors (like 
the unit antisymmetric one tap .. .) are the only constituents of invariant 
structures, the simplest ~f them being -

¢;( X )Pxx•"Pu( x'). (8) 

It is the bilocal tensor Pxx' in (8) that represents the external field as­
sociated with a charge (color). The significance of this circumstance is 
studied in the next sections. 

Remark 1. One may construct a local tensor .depending on Aw · 
Obviously, any local tensor containing Aµ can be built of the covari­
ant derivative Dµ = a:+ Aµ -+ g-1.Dµg; it is linear in Aµ therefore 
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any local tensor .is polynomial of D,.., for example, the strength tensor 
F,..,, = [D,..,D,,]"etc. So, D,.. may be considered as a matter tensor when 
constructing invariants. It turns out also that any local tensor nonlocally 
depending on A,.. ( a functional of A,..) is expressed via the exponential 
line integral for a closed contour; it is an element of the holonomy group 
[5]. 

Remark 2. There are invariants containing the nonlocal operators 
(,kDk)-1 and D"j;2 where k = 1, 2, 3 and ,,.. are the Dirac matrices. 
However, it is known that the kernels of these integral operators may 
be expressed via the exponential line integral considering Dl and ,kDk 
as some Hamiltonians for quantum mechanical systems [6]. 

Remark 3. Note that our consideration is applicable to an Abelian 
theory too.· It means, in particular, that the above mentioned tensor 
exp(-ie,6.-1('v, A)) should be expressed via the exponential line integrals 
("strings"). Let us show that this is really the case [7],[5]. Let us take a 
set of straight lines outgoing from a point x, attached to each line solid 
angle 41r / N; the spherical angles 'Pi, ()i determine its direction so that 
41r / N = sin() i,6.() j,6.cp; where ,6.() i, ,6.c.pi are angles between neighbouring 
lines. Consider the following product 

P(x,N) = ]J exp (-ig [~ A,..(yii) dy0); 
3,, 

(9) 

here we introduce explicitly the coupling constant g. The product is 
taken over the set of lines. Let the angles ,6.()j, ,6.c.p; tend to zero when 
N-+ oo. Defining a new constant e = gN and ·taking e fixed we obtain 
for (9) 

lim P(x,N) = lim exp[!!:._ "'sinOj,6.()j,6.c.p;J

00 

drAr(r,c.pi,Oj)] 
N-+oo · N-+oo 47r ~ 

i,j 0 

[ 

2,r . ,r oo ] 

= exp ~: J dc.p J d() sin() J dr Ar =:= exp( iel). ( 10) 
0 0 0 , 

where A,..dyf; = Ar(r,c.p;,Oj)dr. ·The integral in the exponent can be 
rewritten in the form 

1 J 3 -2 · . 1 J 3 -1 I = - d Yr Ar= -- d y(8rr ) Ar= 
41r 41r 
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= 417r J d3y.r-1 [r-28r(r2 Ar)] = -,6.-l('v, A). (11) 

The last equality in Eq.(11) is due to the identity (-1/41r)lx- y1-1· = 
,6.-1 (x, y) and the formula for the divergence in the spherical coordinates 
('v,A) = r-2ar(r2Ar) + (rsinOt1[80(sin0 Ao)+ 8c,,Ac,,], assuming th~t' 
Ao= Ac,,= 0. Thus, the factor exp(ieJ) (see (10)) coincid~s with the one 
in W = exp( ~ie,6.::-1 ('v, A) )tJ, describing the Coulomb field of a fermion, 
It completes an anatomy of the Coulomb field. .. 

We see that according to the first principles a particle surrounded by 
the Coulomb field is not the simplest charged object. Rather, it i~ a very 
complex object, .the simplest one being a particle with on~ line. · The 
experimental consequeI1ces _of the hypothesis that N ill; Eq.(9) is large 
but finite haye been studied in [8],[9]. ... .. · .· .. , .. 

3. We have already mentioned above that external fields surrounding 
charged objects appear due to .the first-class constraints and are respon­
sible for the static interparticle forces. Here we study this aspect of the 
problem in detail. 

Suppose that: the theory is given by the standard Lagrangian density 
• • , ~ l 

1 - A 

C = - 4Tr F;,, +tfa(iD - mq)tf, , (12) 

where F,..,, = i(D,..D,, - D,,D,..), D,.. = a,.. - iA~,\a = a,.. - iA,.., D = . 
,,..D,..; >.a, ,,.. are the Gell-Mann and Dirac matrices, respectively, 
Tr>.a,\b = Dab, a,b = 1,2, ... ,N = dimG = n2 - 1 ( G = SU(n) ) 
and mq is a mass of the matter field tJ, which may realize any non­
trivial representation of G; we assume for certainty that 'If,• transforms 
according to the. elementary one. The coupling constant g is put equal 
to unity in Eq.(12). If necessary, it can be introduced by ,substitution 
A,..-+ gA,.., tJ,-+ gtJ,, C-+ C' = C/g2

• -

We are interested only in the field configuration of the lowest rank 
and energy. Of tJ,, i/J, Pxx' and the invariant tensors f.c,fJT··, f.0t/J7 ···, ( the unit 
totally antisymmetric ones of rank n), one can construct the following 
non-trivial invariants 

g~ 
0(x, x') 

'[r Pxx = (Pxx)~, 
Ot/3"'(••· ( )Ot' (P' )/3' (P" )-r' 

f. Pxx' c, xx' f3 xx' "'( · · • f.c,'{3'7'•··, 
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Mxx' = 'efJ(x) Pxx' 15 'lj;(x') , (15) 
{3 . ' {3' ' Bx1x2x3•·· = f.

0 -Y···(Pxx1)~ (PxxJ13 (Pxxa)~ • · · X 

X1Po•(x1)1P131(x2)1P7
1(x3) · · · , (16) 

etc.; P, P' , P" in Eq.(14) differ by"contours. The fields (13) and (14) 
represent the simplest local and bilocal physical configurations of a pure 
gluonic field. The configuration (15) is usually referred to as a mesonic, 
while (16) - as a barionic field: Existence of the antisymmetric invariant 
tensors f.0 137 ... , f.o/3-r··· implies· that there are infinitely many topologically· 
nonequivalent bilinear in 'lj;, ijj invariants because strings in this case 
may branch with these tensors at vertices. 

In contrast with the case n > 2 including chromodynamics, 'in the 
SU(2)-gauge theory the complex conjugate representation of the 2 x 2 U- ·· 
matrices (UU+ = 1, det U = 1) is unitary equivalent to the original one. 
The invariant aritisyi:nmetric tensors €013 ; €013 transform spinors with the 
lower indices into those with the upper ·ones arid. vice versa. As a result, 
strings are not directed here. Contrary to the case n > 2 where with 
the string (Pxx' )~ in (15) one may associate a directed line coimecting 
points x, x'; an: arrow being directed from the upper index to the lower 
one. Furthermore, the tensors f.0 /3; f.o/3 have rank two , so the strings 
cannot branch. We conclude that a non-Ahelian SU(2) gauge theory 
differs drastically from any other theories with group SU(n), n > 2. 
Rather, it is closer to electrodynamic:s, because strings there also do not 
branch 2• 

For elementary representations a single string (possibly branched) is 
the only allowed field configuration; structures analogous. to the Coulomb 
field are forbidden. 

Question: can a string change its topology with time? The string 
topo\ogy changes if and only if strings can break or branch. Consider for 
simplicity the case n = 3. It is easily seen that in pure gluodynamics (no 
matter fields) strings in the fundamental representation preserve their 
topology. Indeed, strings in the: elementary representation cannot break 
because' in this theory there are no quarks, and open strings are forbidden 
by the gauge invariance [11]. Strings cannot branch either because, for 

2 Note that the gauge invariance does not forbid the existence of strings in the 
Abelian theory. The problem of the existence of objects of that sort in Nature remains 
open. Dirac [10] seriously considered this possibility. 
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example, the loop appearance on the string in (15) assumes the existence 
of a ve~tex trilinear in gluonic fields (to ensure transition A -t A A) m~de 
with the use of the product of the tensors f.0137 €0,13,7,. Such a combination· 
is -~bsent in the gl{ionic Lagrangian and inay appear only in the effective 
action as a trilinear vertex containing the invariant symmetrical tensor 
dabc ~ Tr(,\a{Ab,,\c}) (the sign~ means: equal up to a constant). This 
is easily seen from the equalities 

f.0137 A~' Ag' A~' lo'/3'-r' ~ Tr(A{A,A}) ~ dabc Aa Ab Ac (17) 

(A is a certain matrix,A = Aa,\a, TrA = O; in the first equality we used 
the identity f.0137 f.0•f3'-r' = c5~,c5g,~, + permutations with proper signs). 
But effective vertices of this type never appear in pure gluodynamics. The 
latter from the very beginning contains only the structures constants f°bc, 
and from these constants one cannot construct the invariant symmetrical 
tensor aabc [12] because Tr(Fa{Fb,Fc}) = 0, where (Fahc = rbc, i.e. in 
gluodynamics (dabc A~(x)At(y)A~(z)}o = 0. Hence, in pure gluodynamics 
strings in the fundamental representation cannot branch. We' may expect 
app~arance of effective cl-vertices only after the introduction of quarks. It 
turns out however that even in QCD they are absent, at least· in lowest 
orders of perturbation theory. Indeed, the simplest triangle Feynman 
graph a in Fig. 

' 

Fig. 

does not give them b~cause it is accompanied by a graph with opposite 
directions of arrows, so that thei_r sum is proportional to Tr(,\ a [ ,\ b, ,\ c]) ~ 
rbc. This is the case for more complex graphs too ( e.g. for graphs of or­
der g1 with six ,-vertices). In local limit such vertices vanish identically 
in all orders of perturbation theory simply because dabc F;vFiPF%µ = 0. 
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They appear only in the presence of some other vector fields ( 1 ; Z0 ) in­
teracting with qua~ks. For example, effective d~vertices arise from graph 
b in Fig., as it has an even number of 1- vertices in the fermion loop; 
the extra line there represents a photon. Due to this circumstance 'tne' · 
string branching is accompanied by emission of a photon, and each string· 
vertex enters with the factor g3l 2e1l 2 rJ as(a/a.,)114, where a is the QED 
fine structure constant. Note that a certain function of momenta also 
enters there (square root of the corresponding vertex function). 

'Let us turn now directly to finding static forces between charges in 
the simplest case of gauge-invariant excitation born by the op~rator 

Mxx' = ~(x) Pxx'1S efJ(;') = 

= J(x)Pexp [i lA~(z(u))A,(~)i"(u)du] ,,,/,(x') (18) 

where zll(u) · ~ dzµ /du, and z(0) = x', zO) = x; we introduced 
parameter-dependent ..\-matrices [13] and instead of classical c_anonical 
variables took operators with the following equal time commutation re-

. lations (x = (x0 ,x)) 

[ A;(x) , Et(Y)] 

[ efl!(x) , efl13(y)] + 

it5jt5'tt5(x-: y), 

t5,;13t5(x - y); 

(19) 

(20) 

indices a, 13· stand both for spinor and color indices. Using these commu­
tation relations we find 

[E!(Y) , P,.,,] = P [ P.,1 ,\0 ( r Ji'( r)6 (z( r) - y) dr] 

= P [Pxx1I1(x,x';y)]. (21) 

With the help of (21) 'Ye may now calculate the average of the gluonic 
field energy ~p'erator iig = J d3x[E~ + H~]/2 in the state Mxx'IO} where 
I0} is the physical vacuum state. To simplify formulae, we neglect irrel­
evant to the problem factors 2n[t5<3>(o)]2 appearing when mq - oo. But 
one has to take into consideration one detail of this relation, appearance 

8 

,1., 

I 

of the Kronecker symbol 80 13, which allows us to represent the final ~x­
pression for the gluonic average energy as a trace. We have in the limit 
of large quark masses m 9 - oo: 

A + A A A 

{0I Mxx' Hg Mx~' I0} ~ {H8}o + . 

+ 2~(Tr{ P [! d3 yl\~,I1(x,x';y)] P [1\x,I1(x,x';y)]}}o{22) 

where {H&}o is the gluonic field vacuum energy. Here the equality ~ · 
means: equal up to the normalization factor 2n[t5(3)(0)]2. · In Eq.{22) ,..;e 

A ~(+) - A ) ~(+) • 
used the limits tt,<+>10) - 0, tf, I0) - 0, mq - oo, where tt,<+ {tf, ) 
contains the quark (antiquark) annihilation operators, and oJJ).itted the 
self-energy term. The symb~l P m~ans an antiordering (relative to P). 
Due to this circumstance the last term in Eq.(22) (i.e. the interaction 
energy of charges) takes the extremely simple form 

Vxx' - 2~ Tr..\~ 11 

d7.,]o
1 

dr'zi(1Jzi(r')6(z(r)- z(r')) = 

- -
2

1 
Tr..\~t5.1(0)lx 7"° x'I, n , ,(23) 

the last equality being valid for the straight line contour; We conclude 
that the string-like external gluonic field given by the P-exponent (18) 
leads to the linearly rising potential. 

The interaction energy for every bilocal multistring configuration with 
loops is given by the sum of functions of distance. with proper weights. 
The· general form of the potential V in this case is 

V(r) = L wvEv(r) , (24) 
V 

where 

Ev(r) = L Cvili .(25) · 

is the energy of a multiloop string configuration with v vertices, li being 
the lengths of strings connecting vertices. The weights Wv are positive 
and normalized; 2::v Wv = 1, while some coefficients Cvi in (25) may be 
negative. This complicates the problem of evaluation or estimation of 
the quark potential. 
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4. We have shown that the exponential line integral ( string) is the 
only furi'damental structure of the gauge theories (i.e. all the gauge­
invariant structures are built of strings and local tensors), and that 
in pure gluodynamics, the interaction of static external sources (heavy 
quarks) is given by the linear potential. All the investigation is based 
on the following (trivial) assumptions: in classical theory only gauge­
invaria~t configurations of fields are physical; in quantum theory physi­
cal operators and state vectors are gauge-invariant. The gauge invariance 
manifests itself in constraints. The existence of the first-class constraints 
is the very feature of gauge theories that makes th~m so different from 
th~ sta~dard non-gauge ones. Constraints do not contain time derivatives 
of canonical variables (in contrast with the equations of motion ); they 
are conditions on instantaneous configurations of fields. As a result, the 
gauge field excitations may appear only in the form of some I-dimensional. 
structures with a more or less complex topology - dep'ending on the rank 
of the gauge group; every "charge" is accompanied by a static external 
field. It is due to these external fields that the instantaneous interaction 
of static charged objects takes place; the Coulomb interaction in electro­
dynamics is a well-known example of such forces. In pure gluodynamics, 
this immediately leads to linearly rising potentials, i.e. to confinement. 
It implies that confinement is a pure kinematical effect appearing as a 

- consequence of the gauge invariance of a theory, i.e. following from the 
existence of the (secondary) first-class constraints. 

Unfortunately, the above analysis says little about the real interquai-k 
potential. We learned that in QCD it cannot be a simple linear function 
of distances To find the potential, one has to sum contributions of all the 
multistring graphs (see (24)). This aspect of the string physics is usually 
omitted in the hadron model construction. 

A standard tool in the study of confinement is the Wilson P-exponent 
. (Pw, the Wilson loop [14]). There is a principal difference between Pw 
and the P-exponents Pxx' used in the text. The Wilson gauge-invariant 
-P~exponent emerges from the QCD Lagrangian for massive quarks, and 
its integration contour has time-like sectors, while here the path-ordered 
exponents Pxx' are fundamental objects of gauge field theories irrespective 
of the masses of quarks and the orientation of the integration contour. 

The point of view that strings in QCD are built of chromoelectric 
lines of force squeezed into a tube due to the special structure of vacuum 
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("the monopole - antimonopole vacuum" [15]) is rather popular among 
physicists (16]. We see that gauge theories do not need this hypothesis· 
for getting string-like objects. They are inborn entities of the gauge field, 
theories. We have seen that the existence of st~ings follows from the first 
principles. Nevertheless, the vacuum structure plays an important' role 
in QCD, partly because the theory is not closed, and some its physical_ 
parameters specifying the hadron physics (like quark masses) depend on 
the ground state of the dynamical system; 
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