





1. The main peculiarity of gauge theories is the existence constraints,
i.e. some relations between canonical varlables [1]. The constralnts do
not contaln the time derlvatlves only the space ones, so they presuppose,
some static nonlocal structures to exist. These structures, appearing due.
to constraints, are preserved during the time evolutlon and manifests of
a gauge invariance.’ ,

The well-known example of the nonloca.l exc1tat10n .is a.physical elec—
tron, i.e. a charged fermion with its Coulomb field. If .1 describes an-
electron field then the nonlocal field ¥ = e\cp(——zeA YV, A))d}, where A
is an electromagnetic vector potential, corresponds-to the physma.l elec-
tron [2]. The exponential describes the Coulomb field [2). The ﬁeld T is
gaugelnvanant

. The static fields surroundmg a ga.uge charge a.nd a.ppea.rlng due
to constraints give rise to a static interaction of the charges (or static
sources) For example, in electrody-namics the static interaction of -
charges described by the gauge-invariant field ¥ is the Coulomb one
[2]. . The example of electrodynamics teaches us that physma.l ob_]ects g
are described by some nonlocal gauge-invariant field configurations, and-
real dynamics should appear as motion and interaction of these objects
(lncludlng, of course, local fields too if they are, like the field strength
in electrodyna.mlcs ga.uge-lnvarlant) It suggests that before turning to
dynamics, one should first ”solve” constralnts i.e. one has to find all
gauge invariant objects.

To find the static forces between charges in gauge theorles one should
know all gauge-invariant structures. It is known, on the other hand, that
gauge fields can be considered as connections in'the pr1nc1pa.1 fiber [3],[4],
and the problem of finding gauge invariants becomes the pure geometri-
cal one. In the present letter based on the geometrical approach we argue
that the exponential line integrals are the only fundamental ”gauge co-
variant” objects in gauge theories. All ga.uge-mva,rlant configurations of
fields, though complex, are made of them.

This observation is tightly connected with the problem of confine-
ment. By itself this problem is very complex and has many different -
aspects. But one its feature — the existence of a linearly rising with
distance potential — can be established for some models in a relatively
simple way. Moreover, one can show that in gluodynamics for static
quarks there could be no other forces. This comes from the fact that the
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only proper gauge-invariant object consists of theP-exponent'(ile. of the
"string”) connecting two opposite charges. However, in QCD the strings

‘can branch: For this reason the interaction between real quarks is not SO

~ simple.

We demonstrate also how the Coulomb field may be built of the
strings.

2. Let P(M,G) be the principal fiber bundle ‘with base M- (the
M1nkowsk1 space) and a compact group G [3]. The group G acts on
Pasa group of right translations: ug’ = (z,9)¢' = (z,99'), v € P, z €
M, g,9' € G,i.e. M = P[G. In P one defines a local cross section o
which may'represented by the pair o(z) = (z, g(z)); i.e. a(:c) is a surface
in P 1somorph1c to an open neighbourhood in M.

-A gauge transformation in P is defined as a change of local cross

“sections’ a(:c) - ag(:c) = a(:c)g(:c) where g(z) is a G-valued functlon on" ‘

M 1

wCon‘sider tensors.
* ing the following property ¥(ug) =-
in the corresponding representation; analogously for a conjugated rep-
resentation: ¥*(ug) = ¥*(u)T,. Matter fields on M are defined as
bo(z) = P(o(2)), ¥(z) =

Y= dlen) =T, V=¥ (o) =0T, (1)

A constructlon of local invariants of Yo, P} does not meet difficulties.
" Note also that in spite of the dependence of matter fields on o, invariants
built of them are independent of it because a change of ¢ is equivalent
to a gauge transformation. .

It is important, however, to know "nonlocal 1nvar1ants made of the

fields 1, (z), ¥2(z') taken at different points. To construct them one has. .

to define a parallel translation of tensors from z’ to z, i.e. to introduce a
~connection and a connection form w [3],[4]. Consider a projection w, of
w on a cross section o

w, = Aydzh @

ITo deﬁne a gauge transformation globally, functions g(z), each of which is defined
on a certain neighbourhood in M, should satisfy supplementary conditions at points:
common for different nexghbourhoods (3], [4] However, it is not essential for what

follows.

P(u) in P realizing a representation of G' and hav-‘ ,
Ty-11p(u), Ty is an element g € G

¥*(o(z)) for a ‘certain cross section o. So-
- their gauge transformatlon law is v '

e it e e

where coefficients A, are elements of the Lie algebra of G. This projection
may be determined in a local coordinate system as a formal replace of du

by do(z) in w and u by o in its coefficients. Under gauge transformations
the form w, changes that induces gauge transformations of A,. One may

show [3],[4] that

We = Wpg = g 'w,g +g'1dg = Ajdz" ' 3)

Ay — A =?"Auy + 9709 - @)
For this reason the coeﬂiaents A are 1dent1ﬁed w1th the Yang Mlllsj
potentials.

'By definition translatlon of ¢, from z’ to the nelghbour pomt T =
z’ + dz is given by

o) = (14 AudetYho(e) = P (). rf; '(53‘«*

According to Eq. (5) parallel translatlon of 1, from :v toz along a curve«’
C(z,z') is given by :

) = PO ), e

where the operator of translation along the curve C(z, ')

P[C(:c T )] = P exp( / Audz") = Py | () ;

C(z,z")

is the familiar P-exponent transformlng as follows Pg )= T —1(z) Popr X
x Ty('), i.e. P,y is a "bilocal” tensor. Egs.(6),(7) tell us: f_rom geomet-
rical point of view P-exponent, matter fields 1, and invariant tensors (like
the unit antisymmetric one €,...) are the only constituents of 1nvar1ant
structures, the simplest of them being

P Pabola). e

It is the bilocal tensor P, in (8) that represents the external field as-
sociated with a charge (color). The 51gn1ﬁca.nce of this c1rcumstance is

" studied in the next sections.

Remark 1. One may construct a local tensor dependmg on A
Obviously, any local tensor containing A, can be built of the covari-
ant derivative D, = 9,4+ A4, — g’l.D,,g; it is linear in" A, therefore
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any local tensor is polynomial of D,, for example, the strength tensor
F,, =[D,,D,] etc. So, D, may be considered as a matter tensor when
constructing invariants. It turns out also that any local tensor nonlocally
depending on A, (a functional of A,) is expressed via the exponential
line integral for a closed contour; it is an element of the holonomy group

[5). | - | |

Remark 2. There are invariants containing the nonlocal operators
(7xDk)™! and D;? where'k = 1,2,3 and 7, are the Dirac matrices.
However, it is known that the kernels of these integral operators may

be expressed via the exponential line integral considering D} and v Dy k

as some Hamiltonians for quantum mechanical systems [6].

Remark 8. Note that our consideration is applicable to an Abelian
theory too. It means, in particular, that the above mentioned tensor
exp(—ieA™!(V, A)) should be expressed via the exponential line integrals
- (”strings”). Let us show that this is really the case [7],[5]. Let us take a
set of straight lines outgoing from a point z, attached to each line solid
angle 47 /N; the spherical angles ¢;, 6; determine its direction so that

4w [N = sin0;A0;Ap; where Af;, Ay; are angles between neighbouring

lines. Consider the following product
P(z,N) = ] exp (—iy / Au(yis) dyé‘,-); 9)
. i —oo v

here we introduce explicitly the coupling constant g. The product is
taken over the set of lines. Let the angles Aﬁ_,, Ayp; tend to zero when
N — oo. Deﬁmng a new constant e = gN and taklng e fixed we obtain

for (9) -

' e\~ . ¢ r
dim P(z,N) = lim exp Ezj:smo,-Ao,-Aga; / drA,(r, ¢:,0;)
b 0
. 2w oo
. = exp g/dgo dfsinf fdrA,| = exp(iel), (10)
0o 0 ' :

i

where A dyu A (7 i, 0; )dr
rewritten in the form

:—/di’ r2A, ='——/d3y(a 1) A, =

4

‘The 1ntegra.1 in the exponent can be

—/dsyr

The last equality in Eq.(11) is due to the identity (—1/47)|x — y|™'' =
A~1(x,y) and the formula for the divergence in the spherical coordinates
(V,A) = r728,(r?A,) + (rsin0) ! [Bp(sin @ Ag) + 8,A,], assuming that’
Ag = A, = 0. Thus, the factor exp(zel) (see (10)) coincides with the one
in¥ = exp(—-zeA 1(V A))® describing the Coulomb field of a fermlon _
It complétes an anatomy of the Coulomb field.

We see that according to the first principles a particle surrounded by \
the Coulomb field is not the simplest charged object. Rather, it is a very
complex object, the 51mplest one being a particle with one line. The
experlmental consequences of the hypothes1s that N i in Eq (9) is large_z"
but finite have been studied in [8],[9]. - B

3. We have already mentioned above that external ﬁelds surroundmg<
charged objects appear due to the first- class constraints and are respon-

26 (rzA,)] :L-YA"‘(V,A)Y. (11)

sible for the static interparticle forces. Here we study this aspect of the" o

problem in detail. - ‘
Suppose that: the theory is glven by the sta.nda.rd Lagra.nglan densrty

£=—ZTr FL49GD—m)y , (1)

where F,, = i(D,D, — D,D,), D, = 8, —iA%\, = 8, —iA,, D=
YuDyu;  Asy 7. are the Gell-Mann and Dirac matrices, respectively,
Trdh = 8a, a,b= 1,2, .. ,N = dimG = n?—-1 (G = SU(n))
and m, is a mass of the matter field » which may realize any non-
trivial representation of G; we assume for certainty that ¢ transforms
according to the elementary one. The coupling constant g is put equal
to unity in- Eq. (12) If necessary, it can' be introduced by .substitution
A, = gA, Y—ogy, L—L=L[g.

We are interested only in the field configuration of the 1owest rank
and energy. Of , %, P,,s-and the invariant tensors €g...., €7, (the unit -
totally antisymmetric ones of rank n), one can construct the following
non-trivial invariants ' ‘

gz = TT‘ PI.‘L‘ = (Pz::)gy ' | (13)
O(z,2) = € (Prar)s (Plot) (Pac)y -+ Carprny (14)



V M:r:.‘r:’ = ’J)(III) P:r:.‘r:’ Ts 11["(:1:/) ’ ) - i (15)
B-r‘x-rz-rs"; = Camm(PIrx )zl(Pr-‘rz")ﬁ (Prc, )1' o
b)) () (16)

etc; P,"P' , P" in Eq.(14) differ by contours. The fields (13) and (14)
represent the simplest local and bilocal physical configurations of a pure
gluonic field. The configuration (15) is usually referred to as a mesonic,

while (16) =

~nonequivalent bilinear in 1, P 1nva.r1a.nts because strmgs in th1s case
may branch with these tensors at vertices.’ i

‘In contrast with the case n* > 2 1nclud1ng chromodynamics, “in the’
SU(2)-gauge theory the complex conjugate representation of the 2x2 U-~
matrices (UU* = 1,detU = 1) is unitary equivalent to the original one. -

The invariant a.ntlsymmetrlc tensors €*#, 'y €ap tra.nsform spinors with-the
lower indices into those with the upper ones and vice versa. ‘As a result,
strings are not directed here. Contrary to the case n > 2 where’ w1th

the string (Pu:)a in (15) one may associate a directed line connecting

points z, z'; an arrow being directed from the upper index to the lower
one. Furthermore, the tensors €*#; ¢,5 have rank two , so the strings
cannot branch. We conclude that a non-Abelian SU(2) gauge theory
differs drastically from any other theories with group SU(n), n > 2.
Rather; it is closer to electrodyna.mlcs beca.use strmgs there also do not
branch Z. e

For elementary representa.tlons a single strlng (pos51bly branched) is
the only allowed field configuratlon structures analogous to the Coulomb

field ‘are forbidden.

“Question: can a string change its topology with time? The string

topology changes if and only if strings can:break or branch. Consider for
simplicity the case n = 3. It is easily seen that in pure gluodynamics (no
matter fields) strings in the fundamental representation preserve their
topology. Indeed, strings in the elementary representation cannot break
because in this theory there are no quarks, and open strings are forbidden
by the gauge invariance [11]. Strings cannot branch either because, for

ZNote that the gauge invariance does not forbid the existence of strings in the
Abelian theory. The problem of the existence of objects of that sort in Nature remains
open. Dirac [10] seriously considered this possibility.
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as a barionic field:” Existence of the antisymmetric invariant -
tensors €g...., €7 implies that there are ‘infinitely many topologically

(R US—

example, the loop appearance on the string in (15) assumes the existence
of a vertex trilinear in gluonic fields (to ensure transition A — A A) made
W1th the use of the product of the tensors ¢*#”¢,ip:,r. Such a combination -
is a.bsent in the gluonic Lagrangian and may appear only in the effective
action as a trilinear vertex contalnlng the invariant symmetrical tensor
debe ~ Tr()\“{)\b X°}) (the sign ~ means: equal up to a constant). This

" is easily seen from the equalities

,e°ﬁ7Ag'Aﬁ'A"'ea:ﬁ:.,: ~ Tr(A{A,A}) ~ d*A°A°A°  (17)

(A is a certain matrix, A = A%A°, TrA = 0; in the first equality we used

~ the identity € eqipiy = 6a,6ﬁ,6” + permutations with proper signs).

But effective vertices of this type never appear in pure gluodynamics. The

: la.tter from the very beginning contains only the structures constants f2¢,

and from these constants one cannot construct the invariant symmetrical
tensor d®* [12] because Tr(Fe{F®, F¢}) = 0, where (F%)s. = f*%, i.e. in
gluodynamics (d**° A% (x) AL (y) AS(2))o = 0. Hence, in pure gluodynamics
strmgs in the fundamental representation cannot branch. We may expect
appearance of effective d-vertices only after the introduction of qua.rks It
turns out however that even in QCD they are absent, at least in lowest
orders of perturbation theory. Indeed, the simplest trlangle Feynman
graph a in Fig.

does not give them because it is accompanied by a graph with opposite
directions of arrows, so that their sum is proportional to Tr(A%[A*, X°]) ~
febe. ThlS is the case for more complex graphs too (e.g. for graphs of or-
der g7 with six 7—vert1ces) In local limit such vertices vanish identically

in all orders of perturbation theory simply because d“ch:VF,pr o = 0.



They appear only in the presence of some other vector fields (7, Zg) in-

teracting with quarks For example, eﬂ'ectlve d-vertices arise from graph

b in Fig., as it has an éven number of 4- vertices in the fermion loop,;_
the extra line there represents a photon. Due to this c1rcumstance the
string branching is accompanied by emission of a photon, and each string’

vertex enters with the factor g3/%e'/? ~ a,(a/a,)'/4, where « is the QED
fine structure constant. Note that a certain function of momenta also
enters there (square root of the corresponding vertex function).

Let us turn now directly to finding static forces between charges in
the simplest case of gauge-invariant excitation born by the operator

| M:z’ '= 17}(:1:)?1'1"75 1&(:};’): : :
: . : 1 oA o L Lt
~ do)Pew |i AN )de| whle) (18
: 0 EE : :
where 2“(0) = dé“/da, and zﬂ(O) ' z(l) T, we introduced‘ '

parameter dependent A-matrices [13] and instead of class1cal canonical

variables took operators with the followmg equal time cornmutatlon re-

- lations (z = (z0,%)) |
| A;(x) By | = iggex-y),  (9)
[320), Bo(v) |, = Banblx—y); (20)

indices «, # stand both for spinor and color indices. Using these commu-
tation relations we find h

1

[0, 2] = P | P [ A8 )| =

= P [AII:IJ.(:I} a:';y)] » - (21)

With the help of (21) we may now calculate the average of the gluonic
field energy operator H = [ d?':z:[E2 A2 /2 in the state Myxs|0) where
|0) is the physical vacuum state. To simplify. formulae, we neglect irrel-

evant to the problem factors 2n[6((0)]? appearing when m, — co. But -
one has to take into consideration one detail of this relation, appearance -
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of the Kronecker symbol 50,3, which allows us to represent the final ex-
pression for the gluonic average energy as a trace. We have in the limit .
of large quark masses my — oo:

(0] Mo HY Maoe |0) = (HS)o + o
- _m{ | / & p;;,p(x,x;y)] [eati(a, -'v,y)]}) @lf

where (H8)o is the gluonic field vacuum energy. Here the equahty —7"
means: equal up to the normahzatlon factor 271[6(3)(0)]2 In Eq. (22) we

used the limits $HH)0) — 0, 1/) IO) — 0, m, — oo, where ) (1/) )) '
contains the quark (anthuark) annihilation operators, and omitted the
self-energy term. The symbol P means an antiordering (relative to P).
Due to this circumstance the last term in Eq.(22) (i.e. the interaction
energy of charges) takes the extremely simple form

' sz' ;;=.:k‘~-2—Tr/\2/ dT/ dr' zJ(T)zJ(T')5(Z(T)—Z(T )) =
= é—Tr/\zél(O)|x <, (23)-

the last equahty belng valid for the stralght 11ne contour: We conclude
that the string-like external gluonic field given by the P-exponent (18).
leads to the linearly rising potential. .

. The interaction energy for every bilocal multlstrlng conﬁguratlon with
loops is given by the sum of functions of distance with proper. welghts
The' general form of the potential V in this case is

Vir)=3] B} @
where | |

Ey(r) = Zc,,,, @)

is the energy of a multiloop strmg conﬁguratlon with v vertices, I; belng
the lengths of strings- connecting vertices. The weights w, are positive
and normalized; ), w, = 1, while some coefficients ¢,; in (25) may be
negative. ‘This complicates the problem of evaluation or estimation of
the quark potential. ‘ '



4. We have shown that the exponential line integral (string) is the
only fundamental structure of the gauge theories (i.e. all the gauge-
invariant structures are built of strings and local tensors), and that
in pure gluodynamics, the interaction of static external sources (heavy
qua.rks) is given by the linear potential. All the investigation is based
. on the following (trivial) assumptions: in classical theory only gauge-
invariant configurations of fields are physical; in quantum theory physi-
cal operators and state vectors are gauge-invariant. The gauge invariance

manifests itself in constraints. The existence of the first-class constraints .

is. the very fea.ture of gauge theories that makes them so different from
the standard non-gauge ones. Constraints do not contain time derivatives
‘of canonical variables (in contrast with the equations of motion ); they
are conditions on instantaneous configurations of fields. As a result, the

gauge field excitations may appear only in the form of some 1-dimensional ':
structures with a more or less complex topology - dependlng on therank

_ of the gauge group; every "charge” is accompanied by a static external
field. It is due to these external fields that the instantaneous interaction
of static charged objects takes place; the Coulomb interaction in electro-
dynamics is a well-known example of such forces. In pure gluodynamics,
this 1mmed1ately leads to linearly rising- potentials, i.e. to confinement.
" It implies that confinement is a pure kinematical effect appearing as a

- consequence of the gauge invariance of a theory, i.e. followmg from the

existence of the (secondary) first-class constraints.
, Unfortunately, the above analysis says little about the real interquark
potential. We learned that in QCD it cannot be a simple linear function

of distance. To find the potential, one has to sum contributions of all the -

multistring graphs (see (24)). This aspect of the string physics is usually
omitted in the hadron model construction. ‘

A standard tool in the study of confinement is the Wilson P-exponent
. (Pw, the Wilson loop [14]). There is a principal difference between Pw
and the P-exponents P, used in the text. The Wilson gauge-invariant
-P-exponent emerges from the QCD Lagrangian for massive quarks, and
its integration contour has time-like sectors, while here the path-ordered
exponents P+ are fundamental objects of gauge field theories irrespective
of the masses of quarks and the orientation of the integration contour.

The point of view that strings in QCD are built of chromoelectric
lines of force squeezed into a tube due to the special structure of vacuum
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(”the monopole - antimonopole vacuum” [15]) is rather popular a,mong"

physicists [16]. We see that gauge theories do not need this hypothesis-

for getting string-like objects. They are inborn entities of the gauge field:
theories. We have seen that the existence of strings follows from the first
principles. Nevertheless, the vacuum structure plays an important role -
in QCD, partly because the theory is not closed, and some its physical

~ parameters specifying the hadron physics (like quark masses) depend on.

the ground state of the dynamlcal system
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