





1 Introductlon

One of the main problems of QCD is the constructne descnptron of low enetgy me-

* son physxcs There are two approaches to the solution of this problem the relat1v1st1c'

T ,local approximation of gluon interaction of the type of the Numbu- Jona-Lazinio model H
- [1,2,3] (for the light quarkoma physics and chiral Lagranglans) and nonrelativistic in- -
. stantaneous, but nonlocal, approximation of ‘gluon mteracllons like the potentlal in’ "

S QED (for descnptlon of heavy and light quar'koma spectroscopy [4- 12])

* Recently, it ‘has been supposed 13, 13 14,15]. that for unificalion-of these oppos1te'}[

s approaches it is enough to choose the tlme-axxs of the nonrelatnnstlc potential parallel .’

" model (N R P M ) wrth the relathstrc mvarra.nt actxon B Gl

"and the movmg potentlal kernel L E ,,‘ R

Lt
vt

, 19X,

[ ’i‘ ‘symmetry breakmg by the gap (Schwmger-Dyson) equatron and the meson spectrum
: by the Salpeter’ equation in satisfactory agreement with expenmental data /

and it gives a possibility to ﬁnd connectlon between the fundamental parameters of
- the quark potential (which are determmated from heavy. quarkoma spectroscopy) and :
‘ :the parameters of low- -energy. physlcs hke leptomc decay constant Fy. - ~

‘scnbe the static properties. of_pseudoscalar mesons T, K D and thﬂr radlal excxtatlons t

' inthe framework of NREM. 1 S |

“’potentlal and nonzero current quark mass is solved. Sect. 3 devoted to the solutlon of !
" the Bethe-Salpeter. (BS) equation for pseudoscalar mesons and their radlal excntahons
< In sect 4 the leptomc decay constants of mesons are evaluated ;

to the total momenturh of hadron: As the result we get the | new. relatlvlstnc potentlal

/ct‘w(z)(za-Fw(:) L
— 3/ #edvin) ¢a.(:)[K(=c—y)I )1a,ﬁ,a,a,¢n,(z)¢ra,(y)‘} o

(le)axﬂ:mﬂz ﬁu,a,[V(z*)s(zn)Jm,a,,' LAy

N R PM.is Justlﬁed by the Helsenberg Paulx mrmmal quantlzatron of gauge theory

’ [16] and the Markov-Yukava relativistic theory of bllocal fields ([13,14,15]). The's separa-.
" ble approx:matxon for NR.P.M. thh a short range potentnal ofhght quarks leads to thes
 Nambu-Jona-Lazinio model and chiral Lagranglan [3]: In the rest frame 7, = (10,0, 0)

this model coincides with the nonrelativistic one [5- 12] that describes the spontaneons

‘N.R.P.M. can be considered as the lowest order of hadron perturbation theory [15]

Just this problem is discussed in the’ ‘prescnt paper, the purpose of. wluch is to de- 3

In sect. 2, the Schwmger-DYson (SD) equatxon thh tbe Coulomb plus oscrllator

2 Quark self—energy : i '.

: We conslder the Coulomb plus osc1llator potentxal
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where a, and Vp are free parameters, and choose the momentum scale ("VO)I/" =1.
The Schwinger-Dyson equation for the model (1) has the form of two equation for the -

angle of the Foldy-Wouthuyzen tra.nsformatlon ¢(p) and for one-pa.rtlcl energy E(p)
[5-10]

E(p) = Z, cos o(p) + Znm® sin <p(p)

1 dq

+ 3/ @pvle- qI) Sm<P(<I)Sm<P(P)+pqcos<p(q)cos<p(P)]

Zy sm<p(P) Zmm’ c05<P(P)+ 2 / er ), V(p- ql)[Sln<P(<1)COS<P(P)
? —pqcow(q)ﬂmp(z’)] (5

where Z and Z,, are the ultra.vmlet regula.tlza.tlon factors [5], m® is the current quark
mass - .

4 d3q 47ra, 5 9

Z=-3) B Te- M e

4 d&Bq 4wa, m° - : .
Iy =—= | —=r———— ; = 7 4 0)2
u="3) @rrlp-airtg ' TOTVEIEF

Finally, we get the following equation for the angle o(p)

23(: /dq%{ il(P,é) [sinp(q) — %] cos ¢(p) Sl
— lp,q) [cosep(q)— r(qq)]SimP(P)} (6)

where

Pty P+
= = l y -1
L(p,q) =In| p—q |, k(p,9) = “ora 1(p9)

Flo(p)] = ¢"(p) + 2<P;(P) 482 :P(P) —2p sin 2<p(p) +2m°cosp(p) (7N

Equation (6) for the pure oscillator potentla.l (a, =0) ta.kes the form of the differ-
ential equation i

me—o - v,";~V ®)

with the external parameters m® , V5. The solutlons to this equation in the massless
case (m?) are obtained in ref [6],where the spontaneous breaking of chiral symmetry
due to the rising potential is obtajned. The massive ‘case (m® 3£ 0) is considered in
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- ‘where

[

'refs 12 17], and lt is shown that for hea.v quark m° > 4V[, 173 the dynamical nature' “
avy. y

“of the quark mass is negligible [17]
. We have derived numerical solutlons to the mtegro-dlﬂ'erentla.l equa.tlon (6) w1th
the boundary conditions,

#(0) = ,90(00)—0 (©)

usmg the computatlonal scheme developed in ref. [18]."
modification of the Newton iterations by combining the continuation over a parameter
(mo or a,) method. This scheme has a’ convement algorithm for assignment of the
initial conditions as functions of the external parameters ‘(mgor a,), due to-a special

This‘ scheme consists the

- .J e

choice of the iteration parameter as a ‘step of the modified Newton iteration. So,in .~

this scheme the solutions to problem (8) (9) are used as an input.

The numerical solutions to boundary problem (6),(9) and the quark energy for B

severals values of m® and a, are shown in Figs 1 and 2. The values of free parameters

"~ m° YV, and a, belonging to the physical region will be defined from the solutions to the '

BS equatlon for mesons.

3. Spectrum of composite pseudosca.la.r mesons a,nd their radial
excitations

The BS equation for 'Sy bound states of quark-anthuark pa.ll‘ (1 e. pseudoscalar
mesons and their radial excxtatlons) can be wntten in the followmg form [13]

ML( )(P) ET(p)L( )(p) /(2 )3V(| p- q |)[C(:F)(p)c(:F)(q)

= cosldn(B TP . P =l FIAG)
) = s[5 . e

" ¢y is.the solution to the SD eqhetion (6) a‘nd.ET =Ey + Eh is the total energy of a
* quark-antiquark pair-with flavors f; and f; ; M is the bound state energy (mass)
The functlons L( ) ! sa.tlsfy the norxhahzatlon condltlon

/(2 E x(q)Lz(q)—l RN e . ) f‘(iz) i

Before solving the equations we consxder some its asymptotlc properties.” As 1t 1s‘~
e shown in refs {5,13], equation (10) in the limit of zero current quark mass reduces to

’ ~the SD equation yielding the Goldstone theorem for composne pseudoscalar mesons.
The correspondmg solutions are

4

+pq3w>(,,)sm(q)]L( y(a) (o)

L ( )~ 2sm<P(P)\/—- ' | L | ‘ (13) ‘ ;l

4m® [N. . o e
L~y (1)

where Nc;= 3 is the colour number
1 o_1 e 0 A
p= 5(90!1 + (Ph) ’ m = E(mh + mf:) . (15)

In the other extremal li-mit, m® > (3Vp)Y/? , equation (10) takes the form of the
Schréodinger equation ,

-2l = [ G hV(p-abin@ (9)
where r = ('r,i1 +r4)/2,r=/p* +m}and
In@)=LG)=hLe) . (D

Now consider a solution of equatlon (10) with potentlal (3) In this case the equation
takes the form of integro-differential equations :

U(";)(p) + w(‘:)(p)’U(;)(p) + MU(:)(p) + a;Iéz:))(p) =0 ‘ : (18)

‘where

19 ;;/?_iqvm(‘p,q)v(;)(q),

VO p,0) = —[h(p, )P ()P ) + b(p, )PP Q)]
wF(p) = ?{Er(p)+[<P'(""(p)]’+;,2;{3(""(17)]’} : |
¢ Fp) = d_i'[‘/’h(l’)'*"f’h(P)] » Upy®) =pL()(P) - (19)

"The boundary conditiohs are
U(1)(0) = U(;)(oo) =0 L . (20)

The boundary problem (12),(18)- (20) in the case of pure oscillator potential (as.
for massless (m§, = m9%, = 0 ) and massive (mf #0 ,m5, # 0 ) quarks composing a
meson is considered in refs [6,12]. The main result of these works is the foundation of a
large gap between masses of 7 and p mesons due to the effects of dynamical symmetry
breakdown, without-an additional spin-spin interaction-

We have solved equations (12),(18)-(20) using the same computatlona.l scheme ap-
plied to the SD equation. The procedure is described in detail in ref {19]. In Fig.3, the
dependence of the eigenvalues (M) on a current quark mass is shown. :




Y

~ The free parameters ( m° V; and a, ) are fixed using the experimental values of
the masses of w, K and D mesons ( respectively , for m% = m3,m? and m? ) , the
determinations of ref. [6] ( for V4 ) and heavy quarkonia spectroscopy ( for a, )} . They
are _ , \ T

' 4. 4 .
md=my = 0.021(—3—1/0)1/3 , mi= 0.20(51/0)1/3 ;o oml= 5.0(%%)1/3
4 ,
« (gvt,)l/3 =289MeV , o,=02 . . : (21)
The solutions to the BS-equation with (21) give the masses and wave functions
of bare radial excitations, As the masses of 7, K and D mesons ‘are fitted, in Table
1 we quoted only the masses of radial excited mesons ( we restricted ourselves to the
first excited levels ). The wave functions of all the mesons are shown in Figs 3-9. In

order to test the results we evaluated the leptonic decay constants of these mesons and
compa.red them with the avallable data.

4. Leptomc decay constants of the mesons.

For the leptomc decay constants of comp051te pseudoscalar mesons in ref [13] ‘the
followmg expression is obtamed

FM \/4N f o )3Lz(q)smso(q) ' (22)

where ¢ is defined in (15). This equa.tlon is more accurate ‘than ones used in hterature
Indeed, in the limit of heavy quarks, m® > (4V0)1/3 from (5) (12) and (17) we ha.ve

sinp(p) = Li(p) = La(p) (23)

r(p)
Substituting (23) into ('22)>we obtam the nonrelativistic deﬁnitibn of the decay con-

stants, o
m(m ~oo)$::2\/7/(2 )7 M(q)r(q) , . (29)

’Eipanding this expression in g/m?’ one can see that eq. (24) up to O((q/ mo)z) coin-
cides with-the known definition [20] . -

, ) [N, o ' '
. S iFM: TLELM(,.\.___mol)_\.‘_ | T _‘(25)
where p = mgmq/(my, +mgq), mq and mq are the masses of constituent quarks, and

Iufr=m 1) = ¢ 9T/ma T, (g)

(2 )3
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Fig. 1. The solutions SD equa.tlon (6) for qua.rks with the
current masses. ;
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Fig. 2. The constituent quark energy (4) corresponding

; to the solutions of eq. (6).




- Fig. 3. The dependence of meson mass on the mass of second quark.
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Fig. 4. The solution to BS equation for = meson.
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Fig. 5. The solution to BS equation for radial excitation of  meson. '
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Fig. 6. The solution to BS e’quafion for K meson.
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- - Fig..7. Wave function of K meson radial excitation.

Fig. 8. Wave function of D meson.
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- - Fig. 9. Wave function of D meson radial excitation. -
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Fig. 10. The depekndence of Faon second quark mass.
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The values of Far calculated by usmg (21)-and (22) for the mesons are quoted in
Table 2. In Fig.10 the dependence of Fjr on a current mass is shown. It should be
. noted that to correct evalution of Fys requires carefulness since the solution to the BS

equation must satisfy not only normalization condition (12) but the Goldstone theorem

(13) too. Perhaps, the neglect of just this requirement is the reason for too small values
of F, obtained in refs [6-10].

Table 1. The masses of meson (1or current quark masses (for current quark 3
masses m% = 6.1,m? = 5 8,m? = 1445 ). All the quantities are given in MeV's.

M as EXP a

0 0.2 MeV
My [1606.2 | 1483.6 1300
Moo [1653.2 1520, | 1460
My |2753. 2490.8

Table 2. Leptonic decay constants.

F (4V°/3) 5 Exp. or

M ' = 289 MeV 6 models

Fr | 97.5 93 _
3.6 6.2 [21), 4.7 [23

Fe | 122.6 | e

et | : 21 51 (221

Fp 216.4

Fp! : 208,

12

- 5. Conclusmns

We present here the result of the calculation of the Schwmger-Dyson and Bethe-
Salpeter equations for model (1) with the potential (3). It is shown that in the region of’
heavy quarks, m® > (4 V5)1/3 | the dynamical nature of the quark inside the hadron be- °
comes negligible, and the dependence of the meson mass on quark mass tends to linear

~law (see Figs 1-3). In this region, the effect of the Coulomb potential is considerable,

unlike the region of light quarks. From Tables 1'and 2 we see-that the calculated values.
of the meson masses and decay constants on the qualitativel level are in agreement with
the available data. The value of F.is close to the results of the sum rulles method‘
(For = 6.2£2MeV [21] and 4.7TMeV [22] ) wherea.s FK: is smaller tha.n Fyr = 51MeV ~
obtained in the sum rulles a.pproa.ch [22] T ’ :
Thus, the potential model (1) gives'good reproduction of the static properties of
both the heavy and light quarkonia. Moreover, this approach. yields new predictions
for radial excited mesons which can be tested in current or planned expenments for
mstance charm-tau factories. : e : i
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