





1. Introduction : ‘ /

Dlsorete models with quadratio Ham11ton1ans and oonstraints‘/
are being actively investigated at present v(e.g. in" oontext of
quar;tization of sympleotioc orbits. ‘or :as . sBome  disorete
approx:.matlons of the strmg models) and there already exlsts

£ 4 . From the aspect of

considéerable literature -on the subject
string theory the iﬁt‘erest‘ lies in the Iaot that all string»

theorles ,oan be oconsidered as 1nI1n1te dnmenslonal Ham1lton1an‘~

systems w1th quadratlo constraints. Por example, on quantizmg the‘ o

Green-Schwarz supersiring }n the light-oone gauge one 1s‘1ed to a -
system with quadratio oonstraints, ’where tﬁe irifinite number of
constraints corresponds to an infinite number of ghosts.

The mot1ve of this paper is to present a. general approaoh to'
discrete models w1th quadratio oonstralnts in the Zframework of
gaugmg of linear oarionioal symme‘l;rle:s5 . ‘We will also show how
some natural super—extenslon of the ordinary "“zero-dimensional"
and one-dimensional matrix .field theories oan be realized in’
this approach. Accordingly, the plan of the paper is as follows.
In seotion 2 the olassical Hamiltonian formulation is set up for
fermionio disorete systems with first-olass quadratio constraints.
Seotibn 3 deals ‘with  the quantization problem : incorporating
ghosts in the wusual BRST approach. Gauge models 'of <fermionio
/disorete "gtrings" are oonsidered .in section 4 and it is shown how
é super—extension of the matrix field theories oan' be obtained in
the framework of our approach. Seotion 6. comprises of our
oonolusions. : '

2. classical Hamiltonian Formulation of Fermionic Discrete Systema

Consider a sBystem desoribed .by oo-—ordinates zZ, = (Za'za) and
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its oconjugate momenta EA = (Ea,Ea) where (za,'Za) and ('za,E.a) are

even and odd variables respeotively (a = 1,2,..,N; a = 1",2,..,K).
Introduomg a oompaot notation for sign faotors: k
(- =4+ ird=a, (=4 =

, <—)f‘B =1 if 4

it 4 = a,

a, B =8, ()48 = 41 otherwiee,

we'oan write the OOmmutation relations for these variables as . .

T P 5E, )

= p% ‘are the standard real ooordmates

B A' ( ) B A’
" We remark that‘ z, = q

'and momenta whlle za,z are non—hermltlan Grassmann varlables, see

a
Refs. 6 In terms of these varlables the aotlon has the form

I at { z, (t)z (t) - z, (t)z (t) - H(z z)} @)

where H 1is the Ha.mlltonlan -and. the:. dot always- denotes_ the
.t~derivative. The oorresponding : Poisson superbraokets “have the

standard form ;
. - > - - E d

0 o 4 8- .8 ‘ ,
(X,¥) =X — — Y - (-)*x — —-Y (3)
6zA 6z 6 Oz

It is well known that the kmematloal part of thls aotlon
("trunoated" action) is invariant with respect to the rigid linear
superocanonical transformations . belonging +to the supergroup
* Osp(2N|2K,R) (the even subgroup of which is O(2K) ® Sp(2N)).

Let us- discuss this in more detail. Combining the coordinates
and ‘momenta into one superveoctor, Z.A = (zA',EA), one ocan write the

infinitesimal linear transformation in the form

. 82y =FupZg, d.e. : (4)
0z, = Fyl 2, + F 5 2., 82, = ol z, + P2 %

’where F Fan and F tJ are supermatrloes The kmematlcal part of the

aotlon (2) is represented as

s, g

21 ' 5 ' :
_éfdtzAGABzB _ (5)
with C a super skew—symmetfio matrix i.e. C = (—)‘ABHC
AB P , "8+ YuB BA *
Under these oiroumstances (4) will be the symmetry tra.nsformation
of the truncated aotion (5) if the supermatrix F.AB patisfies
PPC+CF=0 (6a)
with the symbol "T" denotihg the supermatrix transposition defined'x

as follows:

g = OFN s () g

= M8 L. (6v)
-'Usmg (4) we oan write (6a) in the form
FIZ = (ABBAF2 L R (B 1 By (P2 0. (6o)

It is usually oonvenient to write F in terms of independent
o-mumber matrioes (™) ;p (M =1,2,..,dim0Osp(2N|2K) = 2 (F+E)2+N-K):
Fan

= fn(TM)AB' From Eqs.(6) we obtain that ™ obeye the require-
ment of invarianoce of the sympleotio form defined \by‘the super-

ntatrix C, i.e.
(¥4 1% Co + Cyp T = O

These matrices are the generators of the Osp(2N|2K,R) supergroup.

To oonstruct gauge tnodels from the aotion S, we ohoose some
subalgebra h of osp(2N|2K,R) in a reduoible representation with
the generators ™ satisfying — ' ‘

N e T e o i A e ol (7)

Now oonsidering ’time-‘dep_enqent parameters [ e J'u(t),' ‘ intx;odﬁoingA
"gauge potentials" At g = lu(t)(TM),AB » and replacing  the
t-derivatives by the covariant derivative v = 8 = A we obtain the
new aotion

6 [} ] L
iat z4 045 ¢ = o' A(t)gg') Zg (8)



in whioh the rigid symmetries of the action (5) are localized. The
lagrangian in Eq.(8) is invariant under the gauge transformations
8Z=P(t)Z; OA=FP+[P,A] (9)
or, in component ﬁdtétion, ’ '
8Z 4 = Fy()(T M) 45 Zy 5 8L, () = J(t) + fL()L()EEY  (10)
where P(t) and ™ are elements of Lie superalgebra hc g, & is a
subalgebra of-osp (2N )éK,IR) oorféébonding to the gauge gfoup G. For
possible application to strings we have to. consider only maximal
subalgebras h i.é.r those having the same ra.ﬁk as osp(2|2K,R).

Now the following question is in order: what 'kind-,of dynamiocal
system is descoribed by the action (8)? A general vafgation of the
action (8) may be represented as .
' . T t=T

8s, = %L)’dt [2(82 CvZ)- Z C DA Z] + %Fz cez . (1)

’ t=0
The first two terms give the equations of motion A
VZ=(6t—A)Z=O (12)

and the oonstraints whioh we disouss later. The last iwo terms in

Eq.(11) determine the boundary oonditions, namely the variables

Z(0) and Z(T) have to be fixed. These oonditions are of ocourse
unphysical and the action (8) should be accordingly modified by
adding boundary terms so as‘tdbgive reasonable boundary oconditions
as. disoussed below. ' .

In our oase, the most natural boundary oonditions fix the

bosonic canonioal coordinates z, while for fermionic variables one.

has to fix initial (1) épordinates 2z, and final (f) "momenta" Za:

a
2,(0) = 2} , z () = 27 ‘ (13a)
2,(0) = 2}, Z, (1) = 2] (13b)

The oconditions (13b) for the fermionio variables are necessary for

EU——

the correot definition of the path-integral quantization7;' in the
oontext of »str:‘mg theory they have reocently ﬁeen disoussed in
Ref.8. To aocommodate the boundary oonditions (13) into the
variational prinoiple,‘ we add to the aotion (8) the boundary

terms, thereby defining the following new aotion
e 1 P o
S, = Sy + 312 4(MZ H(T) = Z,4(0)Z 4(0))
- 1¢I5 Rt 1 =f _ 3 1 ‘
= 5, + é[zazo‘(T) zaza(o)] + z[za(T)za za(o)za]. (14)
.The variational principle 632 = 0 now gives the equations of

motion (12), the oonstraints, and the boundary oonditions- (13).

The new aotion ocan be writien in the form

i _ . _ . : ¥
32 = [dt [za(t)Za(t) + %{Za(t)za(t) - Za(t)za(t)} - luT ] -
1157 i ¢ B
- 512524 (T) + 2,(0)2,] (15)
where the lu may be oonsidered as Lagrange multipliers and the
related oonstraints, ‘ ]
N _ 1 M :
T‘EZ.AP.ABZB’« (16)
are expressed in terms of thq new matrioes I‘"‘
N _ AN . _ mN _ (_\AD N
s = (M C g (Mg = - T Cgig = ()7 Thy - (1T
From the Grassmann parity of the aotion S, it is evident thafk
I‘i‘w =0 if (M) # (A4) + (B).' The Poissdﬁ superbrackets for the
variables Z.A oan be written as ’
) A1 14 _
{Z.A‘ZB}“C.AB’ (C'C=1) (18)
Using these we ‘obtain the following commutation relations for the
oconstraints (16)

My =z ' - M ez = - TR (19)

We see that the algebra (19) is isomorphic to the algebra (7)



LN —TH).

In passing, let us mention that to desoribe relativistio
systems we 8imply define the relativistio ‘'phdse superspace by
extending (Z.A R Z.A) to (Zp' R 5’&), where L is the D-dimensional
-space—time inc;ex, M =0,1,...,D-1. By oontracting these indioces
one trivially obtains the ILorentz invariant discrete systems with
a gauge‘ supergroup which is some subgroup of Osp(2¥ |2K,R).

~ Returning to the aotion S,, (15), we stress that it differs
from S; (8) by boundary terms. Therefore S, will be invariant
,undér the gauge transformations (9) only if ocertain boundary
ponditions on the gauge iransformations are fulfilled. To obtain
these conditions we make the gauge variation of (14) using Eqs. (4)

and (13). Prom ‘the ocondition GS = 0 we obtain

F12(T) + (- )EA F12(T) - 1;21 (T) + ( )AB+A+E 1;21 () = 0;
PNt + P2(T) = 0; ~ (20a)
Fap(0) + (-4 F21(0) = FI2(0) + (-)4BH4+B p12(0) _ o
(2 oNn7T + F”(O)';_o. | ' (20b)

The solution of the equations (6o), (20a) and (20b) can be
rewrltten as the followm,g oondltlons on _the elements of the

matrix P.AB
1
Fip(0)

Fia(0) = 0; (FP2(0)* + P''(0) = 0; PI(1) + (P (2))T)?

Fla(ry + ((P2@)HT = M - (V@)D = 0. (21a)

ie. P (D) = PR = Pl =Bl =0 (21b)

The equations (21b) mean the following: matrioces FJAé(T) are
block diagonal while the matrices FE(T) and FEA;(T) contain only

e

e, L iy

non-vanishing off—diagonal blooks.
These oonditions for t =0, t =T reduce the gauge supergroup

G to the two supergroups G and. G , whioﬁ rotate the boundaries

(2,(0),2,(0)), (2,(T),2

(za(o),za(o)), (za(T),za(T)) separately. We oan mtgrpret_these

(7)) and the ooordinates orthogonal to them

rotations as reparametrizations of the boundary oconditions. On the
other hand, the oonditiohs (21a,b) are equlvalent to oertam'
oonditions on the gauge parameters J'M(t) (t =0, T) It is
evidently olear also that G and Gf are subgroups oi‘ OBp(NIK lR)

The oomplete system of equatlons of motion is given by the
evolutlon equations (12) and by the constralnts TY = 0. The Cauchy

problem for Eq.(12) oan be Bolved as ]
Z(t) = V(t,t o) Z(ty) ’ (22)

V(t,ty) =P exp{L at’ lu(t')T“) o (@)
o |

From Eq.(19) it is now olear that the’ éxiBtenoe of the

oon‘straints‘T-" = 0 is oonsistent with (22) because

™) =L z@t) ™ z(t) = ) Z(ty) VPV Z(t,) =

= (Wit t))E TNty , ' (24)

where o o ' ‘
~, . " " o P W

V(t,t,) =P exp{f at* 1,(t") P (25a)

. Rt |

B =g . . (255)

~

The matrix V is an element of the group G € Osp(2N|2K) in- the
adjoint representatlon., For oompleteness let us note that the
finite gauge transformations corresponding to Egs.(9) and (10) oan

be represented as--



Z(t) »U)Z((); v UM) v ul(t);
V(t,tg) » U(E) V(t, 1) U1 (1) _ (26)
where the gauge transformatlon matrlx is
U(t) = exp(f, (1))
3.Quantization, Ghosts and BRST
In- this BsBection we generalize the resuits of Ref.2 to the
supersymmetric ocase. v ’ A -
Following the wusual rules for quantizing | cénstrained

9,10

hamiltonian systems » consider the path-integral repi'eséntation

for the transition amplitude (propagator):
of 27,775 25,247 = [Du explt[ dt (Z () 2 (1) N @7)
a’”a’ “a’“a’ — €xp 0 a a

+ JE(1)zg (1) = Zy(D)z, (1) - L (OT¥(1)1} - Lz, (D) + Z(0)zi1)

2

where the integration measure is

= q 1DZ, Dz, D) 6(Z,(T) - zf) 8z, (1) ~ z%) .
O<t<T

6(za(0)—z ) 8(2,(0)-2) [hgp Tyl (28)

Here the integration is performed over all Lagrange multipliers
1 (t) and all super-phase-space tra;jeotorles z (t), z, (t) with
fixed variables at the boundaries of the evolution interval (see
oondition (13)). In accordance with Rer.2, we also include the
Faddeev-Popbv determinant AFP and the gauge-fixing term Hgf in the
definition of the integration measure. ' ‘

We 1’1_x the gauge by ohoosing 1 (t) mdependent of t
= 173 '
1 (t) EAV - (29)

In this gauge the evo'lution matrix V(7,0) is simply exp(iuTu), Bee
Eq.(23). If the end point values of fu(t) vanished, all iu would

et i g £

-

be invariant under the gauge transformations (26). In faot, there

are Tesidual transformations of Iu

reparametrization (21a) of the boundary oonditions (13):

corresponding to the

exp(l, ™} » exp(f, (DT} exp(1, ™} exp(7, ()T} = (30a)

Z(0) » exp(£, (OPIZ(0); Z(T) > eaplf, (HPIZ(T)  (300)

~where the parameters of the transformations F(T) = fu(T)TM and

F(O)— 7,0 satisty (20) (21) and exp{P(T)} € G, and exp{F(0)} €

r

G ¢ The transformatlons (BOa) are automorphisms of the group G and

generate the group G, ® Gf. Therefore,»the invariant ocombinations
o:t the . parameters lu may be “considered as ocoordinates.. gf ‘the
different trajectories (30a). ,The'tpansfomations.of' the end-point
va{xfiyablkes:,ware analogous to reparé.metrizations of the boundary. .
oconditions in the propagator of strings in string models (sge‘

A

Ref.11), and the . invariant oombinations of the  parameters " lu
(coordinates of the - trajectories (30a)) ocorrespond to the
Teichmueller parameters .' .

» Our gauge oondltlon (29) is mplemented by Bettmg
¢ = Jandd, ) 11, Oy (1) - Thy (31)

where @(iu) is some measure over the Lie supergroup G. Using
standard teo;hniquera;g AFP is presenvted in the form:

A

FP Ber(a,tGg" ,fﬁN lg) = Ber(d, - Iy )

Img' exp'[‘zﬁfdt Blo, - L, Pi0 - (32)

where mg is an integration measure for the standard ghost
variables B¥ and Cu' while 'f,u realize the adjoint representation

(25b). The Grassmann parities of BY ana Cu'are opposite to those

\



of the gauge potentials Iy i.e.

BN = (o) )(N+1 )BNBH; C,Cy : (_)(u+1 ) (N1 )CNGH ,

Note that (B”,CH) ‘are analogs of the (b,c) and (B,7Y) systems in
string theories. .

According to uéual praoticeg'10 we extend the phase spéce by
adding ghost vé\riabies and"a'ppropriate ghost térms to the aotion

(15) (eee-equation (32))

T g - ’,"_ . .« . RECTRRL . ‘ -
= = 1 ,— - ‘
55= IO‘dt 2,2, + 5(242, - Zqza,)v + BHCHA'—i{ZMIIB",Q} ] 33)

where Q = [(-)¥ ¥ = (-)¥ %BL th GH]CNi is the standard BRST charge

corresponding “to’ the constraints: TY¥ and the Poisson superbrackets
for -the ghosts are {CH,BF}'= 6:. The action (33) can be obtained
by substituting Eq.(32) in Eq:(27) and then ocollecting the the
exponential terms. ‘ g . ’

The ghost equations of motion as derived from Eq.(33) are

- KN . oM _ KM :

Cy = gt Cy s B = - BV ¥ 1, LY
oan be solved expliocitly to give - :
o _ N =T

C(t) = V(1,t,) C(ty);  B(t) = B(ty) (V(t,t,)) (35)

where ﬁ(t,to) is defined in Eq.(25a):and thus the spaceé {BN,CH}
realize the adjoint representation‘of the group G. Substituting

E"qs.‘(31)—(33)' in Eq.(27) we obtain the more explicit form of the

propagator ot our éystem. In all BubséQuent disouseions it is th:iv.sk
‘expression for the propaga;tor that will beﬂouzl' conocern.

‘Now a disoussion of the ghost boundary.oonditions is in order.
First note that the aotion S, (33) is invariant under the gauge
transformation “(10) ‘extended b& the transformations of the ghost
variables ‘ ) A

8Cy = fe(t) ty" Cy s 8B = - BY ¢2¥ (). (36)

10
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- Next, oonsider the faot that at the end-points, t=0, t=T, the

gauge parameters are restrioted by the oconditions (21a,b). These
oonditions define supergroups G ¢ and Gf, the adjoint represen-
tations (30) of whioh are obviously reducible. This means that
with respeoct to fhe ‘aotion of the groups Gt and Gf we oan extract
invariant spaces Ip'I'n: in_ the spaces of ghosts M = (Cu(t),BN(t))

when =0 or t=T i.e.

= Tt t. . = 1f f
'M't=0 = Ip @ I’IE : 'M't=T =1, ® I’Jt . (37)
G G G
o srs o ol ¢ 1 t wf I
We have by def;n1t1qn Ip - ’Ip’ 1",1[ 4 ’I'n: and Tp }TP,

G

I,,{: >I,1{:. We identify-T "),I'E with the ghosts' coordinate spaoces
and 'II,I‘C, I,,j; with the ghosts' momentum spaoces. Ti}e fizxing of the

variables (at 1=0,T) of -the ooordinate spaces Ip' Ig neoessitates_

'adding new terms to the ao#ion SS (33) as was the oase in Eq.(14). v

It is rather diffioult to disouss these problems for a general
group G. However, in the next seotioﬁ.we oconsider the special oase
when G = Osp(N|K,IR)+® Osp4(N|K,IR)_(the’ so-called ohi;'al “disorete
fermionioc "Vstrings"a). In this‘spéoiai case it is possible to ﬁ.x

~ the boundary oonditions for ghosts explicitly and perform the

further calculation of the funotional integral (27).

4.Gauge Models of Fermionic Discrete "Strings” .= - .
Consider the oase when the gauge group G - Osp (N |K,R) + ©
0sp(N|K,R)_ (G € Osp(2N|2K,R)) and the first Osp(N|K,R), is dual
to the second 'Osp (N{K,R)_ ’in Cartan's sense. We shall disocuss this
later. With the above choice of the gauge group we oan represent

the sympleotio matrix C.AB (5) in the form>

11



_1 ~
Dys 0 T
Dyp = Dg, - (38)

-y

X
Coip= -
AB 5

—————
ws

T
l 0. (Dﬂ )AB
We now‘introduce new coordinates (z:,zg) = ZQA in phase space.
These ohiral variables are represented as linear ocombinations of
canonioal variables ‘ : - '
‘ 2t = (2, t Dy z) )Y (39)
where ()42 =1 it A=aqa, and (-)*2 = -f it 4 = a. This faotor
is neéded to make zai hermitian. | »
The ohifai Poisson superbrackets for the vdriables (39) are
{(z}, 23} = 2D,y = {25, 2,); {2, 25} =0 (40)
if the matrix D, satisties D= (—)AB+1£%A. It is clear that the

‘supermatrix Zuw oan be ohosen in the block form

f o o |

P i 0. =-0, ;0,=0 1)
Dyp= '= ] i' ab = Cba * “ap’~ “pa ° (4

L° e

‘The aotion of the group G = Osp(N|K,R) _ ® Osp(N|K,R)_ on (z:,z;)
is such that Osp(NlK,IR)+ rotatés 2zt while Osp(N|K,R)_ rotates 2™.

With the above choioe for the group G and using Egs.(38), (39)
and (41) the aotion Sz‘(15) can be rewritten as (for the boundary
oconditions (13)):

- S, = ﬁdt [Ea(t)z.:a(t) + %{z;;l 058 z‘é +zg a;é ég}

+ N - N 1% = t
-, T, -1, T - 502524 (T) + 2,(0)z4]. (42)

Here the constraints

1, + nt N _ %

124 PAB Zg (43)
are expressed in terms of the matrices T a5

TH-

Tis' =~ D *)gp 5 (0 g, = - T D (44)

12
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where DY = D , and tr' Zug . In this notation we can rewrite

AB
Egs. (40) in the form

(2%, 2y = 2D%, s (2%, ) = o. '

" The matrices {TiM} generate two Lie superalgebras of the
group_Osp(N‘K,R)+ 6 Osp(N}K,R)_: "

' [Pt Mt N]: = (0)¥F tzN Pt K_ (45)

We also mention that in k42) we have introduced the Lagrange‘
multipligrSVZ; related to the 'gauge fields 4* = Z; il (see
section 2). B v '
It is also seen from (45) that the algebras T" and T are
distinguished only by their‘ signs in the anticommutator. Such -

2 and generate the

algebras are called dual in Cartan's sense
self-dual éupergroup G = Osp(N]K,lR)+ ® Osp(N{K,R)_. It is rather
interesting to note that the fermionic string is based on the
self-dual product of two . superconformal groups while the N=2
Green-Sohwarz superstring can be constructed as a 0-model’ on the
self-dual product of two N=1 supertranslation groups13.

One should bear in mind the following symmetric properties of
the I'-matrices
I.:Bu = (-)AB+A+B I.‘EBM‘ = (<)4B I.;Au

a8 . . (46)
'PAB 0 irf (M) # (4) + (B).

The Polsson brackets for TZ are derived in full anélogy with
(19) as: g :
' LN S IR CSLLE Lol PR O S Sl B N (47)
VReturning‘to the Hamiltonian action S, (42) we emphasiZé that
5, is invariant under the gauge transformations
8z, = { £, (TN 2. = Fop 2.*

ot

84* = Fr+ [P, 4% ' (48)

13



if and only if the following boundary oonditions are fulfilled
(compare with Egs. (20), (21))
M- @ =0 5 2,70 - 7.7(0) = 03 (49a)
+ - = . - + _
fu (r) + ‘fu,(T) =0 3 fu (0) + tfh (0) = 0. (49b)

The oonditions (49a) are identiocal to the boundary oonditions

in the bosonioc discrete string modelsz, and are analogous to the
corresponding conditions in the bosonic string theory14. ‘The
complete system of equations of motion is given by the evolution
equations (i2) (rewritten for the present case, G = Osp(NlK.lR)+ ®
0sp(N|K,R)_) and by the constraints T: = 0. As‘in the general oase
- (22), (23) the Cauchy problem can be formally solved as

z (1) V,(t,t,) z t(to)

V,(t,t) = Pexp([ dt'ii(tiry. (50)
+(T,15) = Pexp ft (T 5
: (o}
The finite gauge transformations corresponding to Egs.(26) ocan

be represented as ;
z *(t) » U, (t) z *(1)
V,(L,t5) » U (0, (5,107 (2); U, (1) = exp(f, ()T}, - (51)
Consider now the quantization of the above desoribed model. We
shall be using essentially the results of seétion 3. The
funotional integral is |

D= Jalyal ooty tnué(l;(t)—(1/T)i;) 8(1(1)-(1/TY K, (522)

‘ K., = fDpexp (1S5). (52b)
Here Kf‘ is the relevant heat kernel and the measure Iﬁ
corresponds to integration over all paths X(t) in the extended

phase space X = (zA,Ek,C;.B:) with fixed end-points in the

14

U

O Y ‘-‘;r:-r‘ﬁ, _

coordinate space (see Eqs.(13)) and in the ghost coordinate space.
The aotion S3 in (52b) is the ghost extension of the aotion S2
in Eq.(42). Henoce with the help of the expression (33) we oan

rewrite our action in the form (up to a ghost boundary term) as

o~ T a - . . Ll ~°
- = 1.+ o1 ot - =1 A= -
8, = Iodt [Z,(1)2,(t) + }izg Db 25 + 25 Daf 251 + (BYCh + BYC)
~ (B, 0%y - (UBY, an - LZ Tz (T2, (007,1 (53)

where Qf = (—)N[TZ —(+)¥¥ %Bﬁ tiN C;] G; are the standard BRST
charges corresponding to. our constraints. Tzr and the Poisson

superbrackets for the ghosts are

(c:, g¥y = o ;

{c:, B} = o. (54)
The ghost equations of motion

CE = (o) ¢fTor o BY o _(s)¥MpD 1f X (55)

oan be solved explicitly to give

C*(t) = V,(t,ty) G*(ty):  B,(t) = B,(ty) [V, (t,t)1"

o ot o~
Tu(ttg) = Pexn( [ at'gce) 20 (56)
(o]

_ where (%ﬁu)ﬁ = (i)uLt;L are the generators of the two dual gauge

supergroups in the adjoint‘representation. It is worth mentioning
herg,that thé aotion gs (see Eq.(53)) is invariant under the gauge
transformations (48) and (oompare with Eq.(55)) _
8Cy = ()'hry " tyF Cp 5 OBy = -()*¥ B £t t]¥ (5T

In order to fix the boundary oonditions for ghosts it 1is
appropriate now to ohange the‘ohiral ghost vafiables B: and C; to
standard canoniocal ocoordinates (pu,ﬁu) and ‘momenta (w",ﬁu) by

using the following linear oanonioal supertransformations:.

By=sdypl+oyay Cy=alp, s (oI my 58)
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(there is no summation over ¥). It is necessary to have
Rl -l - (59a)
so aB to obtain the canonical Poisson superbrackets related to
(54) as:
o, » ™= Ty =0]. (59b)
In acoordance with the boundary conditions (49a,b) the spaces
Itb{a) and It&{i), must be invariant under the gauge
-transfonmations Gi and Gg. Then, oconsider the transformations (57)
for coordinates p,p. and momenta T,T:
op"-= o(- ¥ BY + v¥ BY )
S S Gl i Sl Nl 2
y M + N . -
U el AU G bl Nl P I A i (60a)

8p, = 0( VY Ccp + V¥ ¢ )

S (Vg e G 1) oy 1

T OE e (MR oL p 7y T T (60b)
on' =o(a BY + & B )

(alay ryt - M didl ) Bt
Sl U CO Ll Ml I S (600)
oty = () 6(-d¥ of + a¥ ¢ )
- ((_)M+1a.1: GE fN+ + (_)H+NLaE G_f_' fN—) pL tgL

(T oF p b+ (T o Sy tBE (60a)

-+

When t=0 and t=T, the transformations (60) must leave the spaces
{p,P} and {®,T} as invariant i.e. 8p =« p , Bp = p, OT « T, OF « T.
This statement when combined with (49a,b) leads to the following

conditions: -
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t=0, T DT = O™ 5 Mot = ot
a"a} = afa® ; da] = ald; ; (61)
t = thol = ¢ ool 5 o =t o™ ;
t =1 thol = 1 thol 5 o = ¢ aTat .

Note that the constant vectors a and bf‘in (58) are different for

:
the t=0 and for the t=T cases. Taking into acoount the condition
(59a) wé solve (61) and obtain the general solution

t= 0,T : ag = xﬁat : bz,= (1/ae’")bt ; a,b_+ b.a =1

t=0 :d=m"2&aq ; vl N, (62)

=7 : aﬁ = (1)1/2 EA a, ; bﬁ [(:)1/2whl'1b£

where 2! is an arbitrafy oonstant vector and we have used the

convention (f1)1/2'=“i. The solution (62): may be equivalehtly

written as: ) T
t=0 :dl=@¥2aa, ; o¥= ()",

o - a: _ (t)y/a b a, 3 b: - [(:)"/Za")'1bi

with 2 some arbitrary constant vector and a,b+ ba= 1. Note

(63a)

that we are free to redefine the ghost coordinates and momenta so
that #=1. The boundary conditions for the ghosts are ohosen in

the form:

U = 7% p¥0) = P py (D) = pls p,(0) = py (63b)
Thus, we arrive at the correct action S3 with the appropriate‘

ghost boundary oonditions aocoording to the equations (58), (63):
' ~
. S T ol - T oal ’
Sy, =85 + [ m(T) p7(T) ~ W, (0) p7(0) 1. (64)
Substituting the solutions (50),(56) of the equations of

motion in the action (64) we obtain the classical action

17



ol_ 1 r 1r 57 Z L
5= 1 Z (12T - Z_(0)2) 1 - L1 Ez () + Z,(0)2% ]

+ [ T () P - T 0) YOI (65)-

It now béoomes necessary to express the ocoordinates EG(T),

Ea(O),<za(T), Ed(O), ﬁH(T) and EM(O) into Eq.(65) in terms of ‘

boundary variables (13),(63b). To achieve this it is oonvenient to

‘introduoe new variables )
= | -1 5y . - (% ’
Y, = (2, , Dog 2g) ; Y, =z, , Dog 2g) (66)
and we have in terms of these variables

) PRV ' )
=¥, + Dy Yy = (4 (T, - Dy Vp)s

Y, (I = Yi (see eq.(13)). (67)
Then (65) oan be rewritten in the form
el _ 1 f = t = —tN = =N
5§ = E[YA(T)YA'" z,(0)z,] + [T (T)p’" - W, (0)p™"]. (68)
The Cauohy solutions (50) oan be recast as
v +DY =V, (2(0)+’Dz‘), i
(69)

(v -pY) =V_I(Z(0) -Dz"),
where I, = (-1)%0,, = (-1)4/%6,,, V, = Pexp{[ldt's,*(t)T¥}. We
also use JAB = (—)AG 80 that I '= IJ and J° = 1. Matrices I and
J are useful in the algebra of anticommuting variables (see the
first reference in Refs.12).

Aooordlngly with Egs. (63a) the solutions (56) now beocome:

a_fef-v_ Jmm =¥, @ p* -0 IO,
r iR . ¥ ot J®
e, pl+0 ITT) =V_(a Ip +Db JT0)) (70)
with T, = (0¥, T, = (-)¥%,, ., ¥, = Pexp(J7 at'fy(t )T ¥1.
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Equations (69) and (70) give the following relations

Z(0) oy -V, +IvI) Dz,

vV -IvI

1 , 2 ' .
T = (v, + WIl—— Dy -V, ——— IV.I Dz,  (T1)

+
) V+—IV_I V+—IV_I
T(0) = s—mwm—=— [(C f—1§ + C i"_’f) t_ (C, + C) ! ]
I'vI-vJ S Te B IRERT T B B EP
— . - ~oq Mg 7
T(T) = i_.lv:.li _1~ [p (C + C ) (C V I+ G I V P ],

where C, = @,/b,. Using {71) in'(68)'one has for S°1

st=Livsv,+vIl) ———DY

vV, -IV.I
2 : e \
—YfJ———;—-—_—;Dz‘—z‘J—————DYf
v _I) - T Vv, - IV.I ‘
: i 1 ¢ ‘
42— (v, + VD) D 2 )
v, -IVI
' oo o 1 ~
r1plc.Ivive V) =—awsIp (72)
. v, -IVI ‘
(C, +C_) (C, +C_)
'5f—~——;P"5lI“T-T:—:IPf
(V.- 7, V,-IV_ I
~ 1
+5‘I———T~—x(cv +GIVI)p .
v, -IVI

In order to Blmpllry this expression one can redefine 5tf > pt and
fpf » pf. Then, using the identity YJDY = O we oan rewrite (72)

in the oonocise form

19



5ol (717'vI - 2t) ! (DY7- v,D z)
— v, - IVI
F 0PIl -3 Tty : (72a)
L s oy 1 : .
+ (0, + 0@ VI - ) ———— (Ip7-Voph.
V -IV I
. +, -
The heat kernel Kfi in (52) is now rewritten in the form:
B (Vg 875 0 230 B, pp) = Zexn(t ) 3
To find the faotor Z we use the differential equations on Kfi.To
derive these equations first note that
K, = <7, 57,07 1P expi-tfT at 'H(t "))zt 6000 (74)
- where the operator H(t') has the form .
_ gt oM - M + 4NL A+ ~ IN A~
H(t') = L T+ 1, T8+ By 1 et o - BY 1 t2¥ ¢ . (75)
The momentum variables 724 , o, _M,

using the standard rule for quantizing dynamical- variables i.e.

are operators here and

[ ,1=1{, )}, we oan write in the Schroedinger representation

o> > »

a o o g
Zy= O — = — g w, = (M R

Z4 Py
We derive from Eq.(74) . .
- _ ,
- K‘ﬂ =- 1 H(t) Kﬂ'. - (77)
. . aT .
From Eq.(77) one finds that modulo a constant
1 ~ ~e o
Z=Ber¥2 [ — ——D 1 Ber[ V,- VT 1 (78)
V- IVI: -

The expressions (72), (73) and (78) for Z gives the supersymmetrio
2.4

generalization of the corresponding result for the bosonic case
It should, however, be noted that the operator (ﬁ+— IV I) has zero
eigenstates. The prime in Eq.(78) means that the corresponding

zero eigenvalues must be removed from the superdeterminant in the
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stanQard way. Then, it is necessary to multiply Kft by the
8-function 6(53 - ES)B(pé - pg) where p,,P, are ghost zero modes.
The appropriate procedure for bosonic disorete "strings" .was
oonsidered in Ref.4.

Note that oconsidering the infinite dimensional ocase we.
sqbstitute instead - of - the algebra Osp(N|K,R). the - infinite
dimensional ¥ =1 superconformal algébra Superconf.(S1). One  oan
show, after tedious oaloulations;.that the funotional .Z2 (78)  is
equal to the partition funétion for the fermionio string theory14.

In order to obtain thé propagator, ®

7
integration over the Lagrange multipliers 1* in Eq.(52a) i.e:

;» one has to perform the

‘ a4 5 a’z
fDﬂ = [ di"dl” Ber [V-
! +
where V_ = exp(i; T"i), ﬁz = exp(i;_%"i) are elements of the gauge

= D1 BerlV,- 1711 exp(15°}) (79)

group G € Osp(N[K,[R)+ ® Osp(N{K,R)_.

Let us now oonsider .the oase when the operator 0ab - has
eigenstates Zg with zero eigenvalue.The presence of such -states
enables the introduotion in our system of oonserved total
momehtumd. In this case it is possible'to impose” the further
oondition that in (79) all boundaries reduce to points. This means

Y, = @23, 0); 2= (Q'23, 05 PPy B~ Py (80)
The propagator now takes the form: .

Dy, = 0(g - Pf) 8(pg - el fal ,dl_ em [S

with '

1 (81)

S

matriz

= (d/2) str In [ =D 1+ sty In [V,- IV_I}

ety b (82)
where (compare with Egq.(3.18) of Ref.4)
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s°h@f, @Y = @-eH? / (219
and 1° is some functional of the ILagrange multipliers fld

+°

+- This
funotional 1° is invariant under the gauge transformations (51).
The functional integral of our system is represented by the
expression (81); We thus arrive at the oconclusion that our .system
is equivalent to some "zero- d1men510nal" matrix field model with
the funotional integral (81) and with the action (82).We emphasize
that our model as desoribed by (81) and (82) can be oconsidered as
the super extension of "zero dimensional" matrlx field theorles15

We have to consider matrix . field theories with two ortho-

symplectic matrices. The parameters . in our theory are the -

dimensions (¥,K) of the gauge group Osp(N|K), space-time dimension
d and the arbitrary parameters defining the Bympleof.io matrix D.
It would‘v_be interesting to investigate the double scaling 1imit'6
in our model. ‘

- 'Finally, note that Eq.{77) can be rewritten in the form:

R 3 »>
- + N 6 Y 6
[str { T° "V, 57— 1} + str a.dj.{ ™ V+ s 11 &,
8 Vi 8 V
- (= " N . .
= (1) [T, +T, ghosta ] Kf'." (83)
 where T: are defined in eqs.(43) and
’ N o NL + L NL A%
T, ghosts (£) B: ety Cg

The extra terms connected with conformal anomalies will appear . in

(83) in the infinite-dimensional case G=Supoonf s o Supoonjf(s1 )

as it would be necessary to make normal ordering presoriptions for
N N X . . .

the operators T and T +ghoats -and perform regularization procedure

Ior‘the divergent expression for Z (78).

At the end of this section we would like to disouss briefly
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the possible interpretation of Eq.(83). Let us rewrite Eq.(83) in

the form:
u _ N N N N ) _
Ti tot Kﬂ = [TV +T‘7 ‘+ T1+T+ ghosts ] Kﬂ~0 (84)
where we introduce
N »>
T —str{ ¥y, 1*}3, m=-1 92 ,
Vs - >
0 +
»>
N _ Pr MY ft o
T"‘;!"Btra.dj.{ il Vt‘II‘}, I~ = i».\. . (85)
. av,

The variables H‘+‘ and TI* can be oconsidered as momenta conjugate to
V,(t) = V,(t,0) and V,(t) = V(t,0). The solution of (84) oan be

written in the Iom

K

0= [_|'n {atary} Texplifat (ih(e)r¥, . + 15(0OT%, )31

+ g71- :
_[DJ.“ {di, ai,} exp{t S, .} ; (86)
where n{dlxdl } is'a product of the left invariant measures over

+tot}' i is a

measure over the trajectories X(t) in the phase space with

the group G, ®G_ generated by the operators {T

coordinates X = {z,'z','n:,p,'t_l:,b',V,ﬁ.H,ﬁ} satisfying the boundary
oonditidns (13a,b), (63b), and ’

V,(0) = ¥,(0) = 1; . (87a)
M=V, V,m=V,. (87b)
The aotion\Stot in Eq.(86) has the form:
~
Stot = SS + Sgra.u
where 33 is definéd‘in Eq.(64) while ng_au is - the action of

"6ne—dimensional supergravity" ( one-dimensional orthosymplectic
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matriz field theory).

T - + . — + . M —_ '_M -
S rav = j'o dtl ste{ (V" + VI0)-(1, TV, o+ 1, rv_m))

+ str, (V0 + V- P, 0. g T . (88)

It should be noted that the variation of Sgrau over momenta II* and

ﬁi gives rise to the equations
v,(t) = 05 A v, Vo) =g BN Ve ee)

Now taking into aocoount the initial oOﬁditions\(B?),the solutions
'of (89) are represented in the fopm (50) and (56).

" In the infinite dimensional oase - of the closed fermionio
string, when -the gauge group G, ® G_ will ﬁe isomorphic to
Superconf(S1) ® Superobnf(s1), additional terms related to the
oonformal. anomaly terms in Eq.(83) will appear in the action (88)7
Our view is that in this case we would obtain, instead of (88),the
aotion desoribing two-dimensional N=1 superoonformal gravity
oonsidered in Ref.17. We hope to study this conjecture in our

~subsequent'publioations,

- 5.Conclusions o

In this paper we have tried to set up a general approach to
gauge systems with quadratio oonstraiﬁts. For simplioity, we
oonsider dynamical (super)systems with a finite number of degrees
of freedom. We oan interpret theése systems as models of the bound
étates of a oolleotion of relativistic partioles. It is rather
interesting to note that for investigations-of physiocal models of
bound states it  is possible to use techniques and methods
developed for string theories.

Our-basio results may be -summarized as follows:
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1.8pecifically, we have solved the quantization problem for a
chiral fermionic disorete system with the gauge group
G = Osp(N|K,R), ® Osp(N|K,R)_. In this ocase,it is possible to fix
the boundary conditions for ghosts unambiguously and find the
expiioit‘fbnm of the propagator. With this,‘ the efrioaby and
validity of the approach as propounded‘ in Refs.2-4 is thereby
established and the supersymmetrio genéralization of\Refs.2'and 4
obtained. ‘ : k ) o

2.We have aléo shown that when zero-mode states are pfeéent
(éo that a oconserved totai momentum exists), it is' possible to
impose poiﬁt boundary conditions on the funotional iﬁtegrai and
the resulting theory is thén a natural super—extensian of the
ordinary "zero-dimensional" matrix field fheory15. The parameters
of this theory ‘are the dimensions (N,K) of the gauge group
Osp(N,K), space-time dimension d And fhe arbifrary paraméters
defining the sympleotic matrix D. ‘ k

3.Using the  differential equation for the propagator, we
have oonstruoted the one-dimensional orthosympledtio_matrix field
theory which oan be inté%ﬁreted as "one dimensional sﬁpergravity";

On - the other hand,the ochiral fermionic disorete" models
oonsidered in this paper are #ery similar to the fermionic string
models if we use the gauge group Supercénf(s1) ® Superoonf(s1)
(specifio to fermionio strings) instead of the finite dimensional =
gauge group Osp(N|K) ® Osp(N|K) oconsidered here. Wheﬁ thiB aépeot
is taken into acoount, there arises the interesting prospeot of
trying to construot-the interaoting field theory (i.e. 3-vertex
operator) for our disorete models invariant under the gauge group

Osp(N{K) ® Osp(N|K). We think that this would be very useful for
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exploring interacting string field theory from an algebraioc point

of view.
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