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1 • Introduction 

Discrete models with quadratic Hamiltonians. ,and constraints 

are being actively investigated at present (e.g. in context of 

quantization of symplectio orbits or as some discrete 

approximations of t.he string models) and there already exists 

considerable literature . on the. subject 1 - 4 From the aspect of 

string theory the interest lies in the fact that all string 

theories can be considered as infinite dimensional Hamiltonian . 

systems with quadratic constraints. For example, on quantizing .~he 

Green-Schwarz superstring in the light-cone gauge one is led to a 
. . I 

system with quadratic constraints, where the infinite number of 

constraints corresponds to an infinite number of ghosts. 

The motive of this paper is to present a. general approach to 

, discrete models with quadratic constraints in the framework of 

gauging of linear canonical symmetries5 • We will also show how 

some natural super-exti::nsion of the ordinary "zero-dimensional" 

and one-dimensional • matrix , field theories can be realized in 

this approach. Accordingly, the plan of the paper is as follows. 

In section 2 the classical Hamiltonian formulation is set up for 

fermionic discrete systems with first-class quadratic constraints. 

Section 3 deals with the quantization problem· incorporating 

ghosts in the usual BRST approach. Gauge models · of fermionio 

discrete "strings" are considered in section 4 and it is shown how 

a super-extension of the matrix field theories can•be obtained in 

the framework of our approach. Section 5. comprises of our 

conclusions. 

2.Classical Hamiltonian Formulation ot Fermionic Discrete Systems 

Consider a system described ,by co-ordinates zA = (za.,za> and 



its oonjugate momenta ZA = (Za,za> where (Za,Za) a.pd <.za,za> are 

even and odd variables respeotively (a = 1•,2, •• ,N; a=1,2, •• ,K). 

Introduoing a oompaot notation 

(-)A= +1 if.A= a, 

for sign faotors: 

(-).A= -1 

(-)~ = -1 if A= a, B = ~. (-)AB =+1 

if A = a, 

otherwise, 

we oan write the oommutation relations for these variables as 

ZAZB = (-)ABZBZA' ZAZB = (-)AB z~A' ZAZB = (-)AB z~A (1) 
. - a We remark .that za = qa, ·Za= p are the standard real coordinates 

and moment~ while za,Za are non-hermitian GrasEimannvari~bles, see 
' ~ ! 

Refs.6. In terms of these variables the aotion has the form 

S = ~1 dt { zA(t)z..A.(t) - zA(t)zA(t) - H(z,z)} (2) 

where H is the Hamiltonian. and the dot always denotes the 

t-derivative. The oorresponding Poisson superbrackets have the 

standard form 
• ➔ • ➔ 

{J {J A {J {J 
{X,Y} = X - - y - (-) X - - y • (3) 

OZA ozA OZA ozA 

rt is well known that the kinematioal part of this actio:g. 

("trunoated" action) is invariant with respect to the rigid linear 

superoanonical transformations belonging to the supergroup 

Osp(2Nl2K,~) (the even subgroup of whioh is 0(2K) © Sp(2N)). 

Let us discuss this in more detail. Combining the coordinates 

and momenta into one superveotor, Z.A = (zA,zA), one oan write the 

infinitesimal linear transformation in the form 

az .A = P _,mZ B , i.e. (4) 

· 11 12 -
azA = PAB ZB + PAB ZB' 

,.- ..-21 ..22 -
uZ A = l'AB ZB + 1:AB ZB 

wher~ P.A B and P~ are supermatrioes. The kinematioal part of the 

aotion (2) is represented as 

;,2 
'.; 

.( 

I 

l 
I 

i 
11 

I 

! 

1 r · · 
so= 2Jdt z.A a.AB ZB (5)' 

with a.AB a super skew-symmetrio matrix i.e. a.AB= (-).AB+1a8.A. 

Under these oiroumstanoes (4) will be the symmetry transformation 

of the trunoated aotion (5) if the supermatrix P.AB satisfies 

J!2 a+ a P = 0 (6a) 

with the symbol "T" denoting the supermatrix transposition defined 

as follows: 

(PT).AB '.'" (-) (B+.A).A PB.A ((PT)T).AB = (-).A+B p.AB • (6b) 

Using (4) we oan write (6a.) in the form 

p12 = (-)A+B+BA p12 • F.1 = (-)AB _f.:1 
AB · BA' AB. BA 

p11 + (F2)T= o. (60) 

It is usually oonvenient to write P in terms of independent 

o-number ~atrioes (T').AB (M =1,2, •• ,dim0sp(2Nl2K) = 2(N+K)2 +N-K): 

P.AB = f~(T').AB. From Eqs.(6) we obtain that T' obeys the require

ment of invarianoe of the sympleotio form defined by the super-

matrix a, i.e. 

(~ )11.A ~ aCB + a .AC ~B = O. 

These matrioes are the generators of the Osp(2Nl2K,~) supergroup. 

To construot gauge models from the aotion s0 we ohoose some 

subalgebra n of osp(2Nl2K,~) in a reduoible representation with 

the generators T' satisfying 

[ T 11, T N } = T 11 T N - (- )MN T N T 11 = tllN T K. (7) 
K 

Now oonsidering time-dependent parameters f 11 ➔ f 11(t), introduoing 

"gauge potentials" A(t).AB = l 11 _(t)(T').AB , and replaoing the 

t-derivatives by the covariant derivative~= {Jt- A we obtain the 

new aotion 

s1 = Hdt z .A a.AB 

3 

!_ 6BB'- A(t)BB') ZB' 
at 

(8) 



in which the rigid symmetries of the action (5) are localized. The 

lagrangian in Eq.(8) is invariant l.lllder the gauge transformations . 
az = F(t)Z BA= F + [·F, A] (9) 

or, in component notation, 
N. • LN az.A = !N.(t)(T ).AB ZB; BlN.(t) = f11(t) + !L(t)lN(t)tll (10) 

where F(t) and p1l are elements ot Lie superalgebra h cg, g is a 

subalgebra o!·osp(2Nl2K,~) corresponding to the gauge group G. For 

possible application to strings we have to_ con~ider only maximal 

subalgebras h i.e. those having the same rank as osp(212K,~). 

Now the following question is in order: what kind of dynamical 
.v 

system is described by the action (8)? A general variation ot the 

action (8) may be represented as 

1 
t=T 

+ 2 [Z O BZ] • 
t=O 

. T 
as1 = ;Jodt [2(BZ O "1Z)- Z G BA Z] 

The first two terms give the equations ot·motion 

"1 Z = ( at - A )Z = o 

( 11 ) 

(12) 

and the constraints which we discuss -later. The last two terms in 

Eq. (11) determine the bol.llldary conditions, namely the variables 

Z(O) and Z(T) have to be fixed. These conditions are ot course 

l.lllphysioal and the action (8) should be accordingly modified by 

adding bol.llldary terms so as to give reasonable bol.llldary conditions 

as discussed below. 

In our case, the· most natural bol.llldary conditions fix the 

bosonic canonical coordinates z while tor termionic variables one. a 

has to fix initial (0 coordinates za and final (f) "momenta" za: 

z (O) = zi , a a z (T) = z1 
a a (13a) 

za(O) = z~, z (T) = z1 
a a (13b) 

The conditions (13b) tor the termionic variables are necessary tor 

4 

j 
;, 

\ 

f 

the correct definition ot the path-integral quantization7
; in the 

context ot string theory they have recently been .discussed in 

Ret.8. To accommodate the bol.llldary conditions (13) into the 

variational principle, we add to the action (8) the bol.llldary 

terms, thereby defining the following new action 

·1 
s2 = s1 + 2[Z.A(T)Z.A(T) - Z.A(O)Z.A(O)] 

= s1 + ~[Z~Za(T) - zaz!(o)] + ~[Za(T)z~ - Za(O)Z~]. (14) 

The variational principle as2 = O now gives the equations ot 

motion (12), the constraints, and the bol.llldary conditions· (13). 

The new action can be written in_the form 

s2 = Jdt [Za(t)za(t) + ;{za(t)Za(t) - za(t)za(t)} - lN.TN.] -

- ;[z~za(T) + Za(O)Z~] (15) 

where the l
11 

may be considered as Lagrange multipliers and the 

related constraints, 

TN. ~z.Ar.Jz8 (16) 

are expressed in terms of the new matrices r11 

N. .A N. G mM M .AB 11 r.A.B = (-) .AB'(:J.~)B'B = - T.AB' GB'B = (-) rB.A (17) 

From the Grassmann parity of the acUon s2 it is evi9-ent that 

r~ = O .if (M) i, (.A) + (B) ~ The Poisson superbrackets for the 

variables Z,,,t can be written as 
-1 

{Z.A, z8 } = G.A.B, (G-10 = 1) (18) 

Using these we 'obtain the following commutation relations tor the 

constraints (16) 

{TN.,TN} = ; zcrM c-1rN - (-)N.N rN c-1rM1z = - t:N T K_ (19) 

We see that the algebra ( 19) is isomorphic to the algebra (7) 

5 



(TM_, -'J!L) . 

In passing, let us mention that to describe relativistic 

systems we simply define the relativistic phase superspaoe by 

extending (Z .A , Z .A) to (Z1 , z1) , where µ is the D-dimensional 

-space-time ind_ex, µ = O, 1 , ••• ,D-1 . By oontraoting these indices 

one trivially obtains the Lorentz invariant discrete systems with 

a gauge'supergroup which is some subgroup of Osp(2Nj2K,~). 

Returning to the action s2 , (15), we stress that it differs 

from S1 (8) by boundary terms. Therefore S2 will be invariant 

under the gauge transformations (9) only if certain boundary 

conditions on the gauge transformations are fulfilled. To obtain 

these conditions we make the gauge variation of (14) using Eqs.(4) 

and (13). From the condition as2 =Owe obtain 

p12(T) + (-)BA p12(T) = F.1 (T) + (-)AB+A+B i:1 (T) = O· 
AB BA AB _ BA ' 

(F11 (T))T + F 2 (T) = O; (20a) 

.P':l(O) + (-)BA _P.:l(O) = p12(0) + (-)AB+A+B p12(0) = O• 
AB BA AB BA ' 

(F2(o))T + p11(0)· = o. (20b) 

The solution of the equations (60), (20a) and (20b) oan be 

rewritten as the following conditions on . the elements of the 

matrix F .AB 

F~(o) = F~(o) = o; (F2 (o))T + F11 
(O) = o; F21 (T) + ccF21 (T»T? 

= p12(T) + ((F12(T))T)T = pJJ(T) - ((pJJ(T))T)T ~ O. (21a) 

i.e. F.1 (T) = p12(T) = pJJ(T) = P!,J(T) =' o 
AA AA a.a Cla (21b) 

The equations (21b) mean the following: matrices F~(T). are 

block diagonal while the matrices F~(T) and F~(T) contain only 

6 

\ 

) 

\ .. 

( 
' 

non-vanishing off-diagonal blocks. 

These conditions fort= O, t = T reduce the gauge supergroup 

G to the two supergroups a, and_ a
1 

which rotate the boundaries 

(za(O),za(O)),(Za(T),Za(T)) and the coordinates orthogonal t~ them 

(za(O),za(O)), (za(T),za(T)) separately. We oan interpret. these 

rotations as reparametrizations of the boundary oondit~ons. On the 

other hand, the conditions (21a,b) are equivalent to certain 

conditions on the gauge parameters fM(t) (t = O,T). It is 

evidently clear also that a, and a1 are subgroups of Osp(NIK,~). 

The complete system !)f equations of motion is given by the 

evolution equations (12) and by the constraints TM= o. The Cauchy 

problem for Eq.(12) oan be solved as 

Z(t) = V(t,to) Z(to) 

V(t,t
0

) = P exp{Jt dt' lM(t')rM} 
to 

(22) 

(23) -

From Eq.(19) it is now clear that the' existence of the 

constraints TM= 0 is consistent with (22) because 

T],l(t) = ~ Z(t) r" Z(t) = ; Z(to) vT r1' V Z(to) = 

.,. - M N 
= (V(t,to>>N T (to) (24) 

where 

... It ~ V(_t, t
0

) = P exp{ t dt' lM(t ') 1-} 

0 

(25a) 

<rK>: = t~. (25b) 

The matrix V is an element of the group G E Osp(2Nj2K) in the 

adjoint representation._ For completeness let us note that the 

finite gauge transformations corresponding to Eqs.(9) and (10) oan 

be represented as 

7 



Z(t) • U(t)Z(t); v • U(t) v u-1 (t); 

V(_t,t
0

) • U(t) V(t,t
0

) U-1 (t) 

where the gauge transformation matrix is 

U(t) = exp{/H(t)T"} 

3 .• Quantization, Ghosts and BRST 

(26) 

In · this section we generalize the reaul ta of Ref. 2 to the 

auperaymmetric case. 

Following the uaual rules for quantizing constrained 

hamiltonian systems9
•
10

, consider the path-integral representation 

for the transition amplitude (propagator): 

~[ z~,z~; z!,z~J = Jiµ e~ltJ:dt {za(t) 
. 
Za(t) + (27) 

+ ;cza<t>~a<t) - za<t>za(t) - lM(t)TM(t)J} 

where the integration measure is 

1 -/ - ) t 1 2[ZaZa(T) + Za(O Za] 

Lµ = n [DZA DzA DlM] B(za· (T) - z1a> a(z (T) - zl) oge a a 

. a(za(O)-Z~) a(za(O)'-z!,) [AFP Ilgf] (28) 

Here the integration is performed over all Lagrange mul tipliera 

lH(t) and all super-phase-apace trajectories ZA(t), ZA(t) with 

fixed variables at the boundaries of the evolution interval (a.ee 

condition ( 13) ) • In accordance with Ref. 2, we also include the 

Faddeev-Popov determinant AFP and the gauge-fixing term Ilgf in the 

definition of the integration measure. 

We fix the gauge by choosing lH(t) independent oft 

1 A 

ll,l(t) = . T ll,l (29) 

In this gauge the evolution matrix V(T,O) is simply exp(IT), see 
A 

Eq.(23). If the end ~oint values of /H(t) vanished, all lH would 

8 

'I 

4> 

;, 

be invariant under the gauge transformations (26). In fact, there 
A 

are residual transformations of lH corresponding to the 

reparametrization (21a) of the boundary condition~ (13): 

exp{IH T1'} • exp{/H(T)T1'} exp{IHT1'} exp{/H(O)T1'} 

Z(O) • exp{/M(o)T1'}Z(O); Z(T) ~ exp{fM(T)T1'}Z(T) 

(30a) 

(30b) 

where the parameters of the transformations F(T) = /H(T)T1' and· 

P(O)= /H(O)T" satisfy (~0);'(21) and exp{F(T)} E Gt and_exp{F(O)} E 

Gt~ The transformations (30a) are automorphisms of the group G and 

generate the group Ge ©.Gf. Therefore,.the invariant combinations 

of the parameters IH _may be · considered as coordinates. of the 

different trajectories (30a). The t~sformationaof the end-point 

variables. are analogoua to reparametrizations of the boundary 

conditions in the propagator of strings in string models (s~e 
A 

Ref .11), and the invariant combinations of the parameters · lH 

(coordinates of the trajectories (30a)) correspond to the 

Teichmueller parameters. 

Our gauge condition (29) is implemented by setting 

f A 1 A 

rrgf = j':4.1.ClH> n anH<t> - - iH > 
t,M T 

(31 ) 

where dµ(IH) is some measure over the Lie supergroup G. Using 

standard techn~ques9 AFP is presented in the form: 

N KN '::K AFP = Ber(otaM - tM lK) = Ber(ot - lK 1--) 

= J Lµg expltt dt Bfot - lK rJOJ (32) 

where Lµ is an integration measure for the standard ghost g . ., 

variables~ and GM, while T' realize the adjoint representation 

(25b). The Grassmann parities of~ and GM are opposite to those 

9 



of the gauge potentials i
11

, i.e. 
. ) -

Ji'FI' = (-)(11+1 )(N+1)Fl'Ji'; CJ]N = (-)(11+1 )(N+1 )C~JI 

Note that (Ii',011 ) are analogs of the (b,c) and (~,,) systems in 

string theories. 

According to usual practice9
•
10 we extend the phase space by 

adding ghost variables and appropriate ghost terms to the action 

(15) (see equation (32)) 

S3 = r: dt [za.;a + 1<za2a - i-aza> -I; Ii' OJI ..:p/.m J (33) 

where O == [(-)NTN - (-)N ~Ir' t~N CM]Cll is the standard BRST charge 

corresponding to the constraints.T11 and the Poisson superbrackets 

for the ghosts are {011,Jr'} = a:. The action (33) can be obtained 

by substituting Eq. (32) in Eq~ (27) · and then collecting the the 

exponential terms. 

The ghost equations of motion as derived from Eq.(33) are 
• KN :.J,f ..NKJl. . 
ell = iK tll CN ; J:J = - tr tN iK (34) 

can be solved· explicitly to give 

C(t) = V(t,t0 ) C(t
0

); B(t) = B(t0 ) (V(t,i
0
))-1 (35) 

where V(t,t 0 ) is defined in Eq.(25a) and thus the spaces {Jr',C
11

} 

realize the adjoint representation of the group G. Substituting 

Eqs.(31)-(33) in Eq.(27) we obtain the more explicit form of the 

propagator of our system. In all subsequent discussions it is this 

expression for the propagator that will be our concern. 

Now a discussion of the ghost boundary _conditions is in order. 

First note that the action S
3 

(33) is invariant under the gauge 

transformation (10) extended by the transformations of the ghost 

variables 

acll = /K(t) t~ CN KJl ali' = - Fl' tN lx<t). (36) 

IO 

., 

) 

i• 

? 

Next, consider the fact that at the end-points, t=0, t=T, the 

gauge parameters are restricted by the conditions (21a,b). These 

conditions define supergroups G, and GI' the adjoint represen

tations (30) of whioh are obvi<?usly reducible. This means that 

with respect to the action of the groups a, and a1 we can extract 

invariant spaces Tp,T% in the spaces of ghosts .M = (C
11

(t),lr'(t)) 

when t=0 or t=T i.e. 

- T- t T' • u _ t t .Mt=O - p © % ' .,...t=T - T p © T% • (37) 

. . Gt . Gt 
definition T~--.. -•T~, T~--•T~ We have by 

. Gt 
and T1-· -►Tt 

p P' 
Gt . 

-rt--►Tt 
.£% %" We identify-T~,T~ with the ghosts' coordinate spaces 

and T~, T' with the ghosts' momentum spaces. The fixing of the 

variables (at t=0,T) of the coordinate spaces T~, T~ necessitates 

adding new terms to the action S
3 

(33) as was the case in Eq.(14). 

It is rather diffioul t to discuss these problems for a general 

group G. However, in the next section we consider the special case 

when ·a= 0sp(NIK,~) ® 0sp(NIK,~) (the so-called chiral discrete 
+ -

fermionio 11strings113
). In this speciai case it is possible to fix 

the boundary conditions for ghosts explicitly and perform the 

further calculation of the functional integral (27). 

4.Gauge Models or Ferm1on1c Discrete "Strings". 

Consider the case when the gauge group G = 0sp(NIK,~)+ © 

0sp(NIK,~)_ (G E 0sp(2Nl2K,~)) and the first 0sp(NIK,~)+ is dual 

to the second 0sp(NIK,~)_ in Cartan•a sense. We shall discuss this 

later. With the above choice_of the gauge group we can represent 

the symplectio matrix C .AB (5) in th~ form3 

II 



a.AB = 
1 

2 

r D~ 

I l o 

OT l 
CD-1 > AB j 

T 
DAB= DBA • (38) 

We now introduce new coordinates (z!,z;> = Z.,4 in phase space. 

These chiral variables are represented as linear combinations of 

canonical.variables 

ZA± = (ZA ± DAB Z~) (±1)A/2 (39) 

where (-)A12 = 1 if A= a, and (-)A12 =-!if A= a. This factor 

is needed to make za± hermitian. 

The chiral Poisson superbrackets for the variables (39) are 

+ + - -} { + - ( ) {ZA' ZB} = 2DAB = {ZB' ZA; ZA' ZB} = 0 40 

if the matrix DAB sat
1
isfies DAB= (-)AB+1DBA" It is clear that the 

supermatrix DAB can be chosen in the block form 

r 0ab O l 
I I • 
I I t 

I 1 I 
I O 2.0aA I 

L " J 

DAB oab - " · o A = OAr, • - -vba • a" r-- (41 ) 

The action of the group G = Os?(NIK,~)+ ® Osp(NIK,~)_ on (z!,z;) 
is such that Osp(NIK,~)+ rotates z+ while Osp(NIK,~) __ rotates z-. 

With the above choice for the group G and using Eqs.(38), (39) 

and (41) the action S
2 

(15) can be rewritten as (for the boundary 

conditions (13)): 

S2 = fodt [za(t);a(t) + ;{z~ oaj} ;i + z~ oajl ;~} 

+ 11 l- 11 1 [-f T - ( ' 1 ( ) - lll T+ - 11 T_ J - 2 Zaza< ) + Za O)Za. 42 

Here· the constraints 

T 11 = !z ± r± 11 z ± 
± 4 A AB B (43) 

are expressed in terms of the matrices r±ll as 

r± JI= -(T±11 ) (D ±,-1 • (T± 11> = - r± 1I D ± 
AB AC CB . ' BA BC CA 

(44) 

12 

., 

-y 

,. 
i, 
l 
:1 

N 

+ -where D = DAB , and D D~. In this.notation we can rewrite 

Eqs.(40) in the form 

{z!, z~} = 2D!a + -{ZA, ZB} = 0. 

The matrices {T±M} generate two Lie superalgebras Of the 

group Osp(NIK,~)+ ® Osp(NIK,~)_: 

[T± 11
1 

p± N]± = (±)MN t:N p± K_ (45) 

We also mention that in (42) we have introduced the Lagrange 

multipliers l~ related to the gauge fields A± = l± p±M 
JI 

(see 

section 2). 

It is also seen from (45) that the algebras p+ and r are 

distinguished only by their signs in the anticommutator. Such 

algebras are called dual in Cartan's sense 12 and generate the 

self-dual supergroup G = Osp(NIK,~)+ © Osp(NIK,~)_. It is rather 

interesting to note that the fermionic string is based on the 

self-dual product of two superconformal groups while the N=2 

Green-Schwarz superstring can be constructed as a a-model on the 

self-dual product of two N=1 supertranslation groups13 

One should bear in mind the following symmetric p~operties of 

the r-matrices 

r± JI= (-)AB+A+B r+ M ~ (-)AB r± M 
AB AB BA 

r!a M = o if! (M) t- (A) + (B) • 
(46) 

The Poisson brackets for T! are derived in full analogy with 

(19) as: 

{ T! , T! } = -(± )MN t;N T! ; { T! , T1!_ } = 0. (47) 

Returning to the Hamiltonian action s2 (42) we emphasize that 

s2 is invariant under the gauge transformations 

az ± = { / ±(t)T± 11 } z ± = p± z ± 
A 11 AB B AB B 

aA± = p± + [ p± , A± ] (48) 

13 



if and only if the following boundary conditions are fulfilled 

(compare with Eqs.(20), (21 )) 

f +(T) - f -(T) = 0 m m 

fµ+(T) + !fµ-(T) = 0 

t + -
m (0) - fm (0) = 0; 

fµ-(0) + !fµ+(O) = 0. 

(49a) 

(49b) 

The conditions (49a) are identical to the boundary conditions 

in the bosonic discrete string models2
, and are analogous to the 

corresponding conditions in the bosonic string theory14
• The 

complete system of equations of motion is given by the evolution 

equations (12) (rewritten for the present case, G = 0sp(NIK,~)+ © 

0sp(NIK,~)_) and by the constraints T! = 0. As. in the general case 

• (22), (23) the Cauchy problem can be formally solved as 

z ±(t) = V±(t,t
0

) z ±(t
0

) 

t 
V±(t,t

0
) = Pexp{ft dt'l!(t')T±ll}. 

0 

(50) 

The finite gauge transformations corresponding to Eqs.(26) can 

be represented as 

z ±(t) • U±(t) z ±(t) 

-1 
V±(t,to). U±(t)V±(t,to)U± (to); U±(t) = exp{fll±(t)T±ll}~ (51) 

Consider now the quantization of the above described model. We 

shall be using essentially the results of section 3- The 

functional integral is 

';f)1i= fdl~z;fni~i; n aci!(t)-(1/T)Z;) aci;ct)-(1/T)Z;)Klt' (52a) 
t,Jl 

Kit = I iii. exp ( ! s3). (52b) 

~ 
Here Kit is the relevant heat kernel and the measure Lµ 

corresponds to integration over all paths X(t) in the extended 

phase space X = (zA,zA,o!,~> with fixed end-points in the 

14 

! 
I 
l 

'.J't 

., 
r 

1, 
I 
i 

,f 
~ 
\ 

coordinate space (see Eqs.(13)) and in the ghost coordinate space. 

The action S 3 in (52b) is the ghost extension of the action S
2 

in Eq.(42). Hence with the help of the expression (33) we can 

rewrite our action in the form (up to a ghost boundary term) as 

83 = I:dt [za(t)~a(t) + ¼[z~ v~ ~i + z~ v~ ~~] + <B!O:, + El!..a;>' 

- {1~, n+} - {l;El!.., n-}1 - ~[za1za(T)+za<o>zatl (53) 

where n± = (-)N[T! -(±)JIN l~ t1f;1 O!l o; are the standard BRST 

charges corresponding to. our constraints, T! and the Poisson 

superbrackets tor the ghosts are 
± nM }l ± ..JI {ON,'°±}= (}N; {ON, 11;} = O. (54) 

The ghost equations of motion 

0± = (+)NLL± tNLo± • :.Ji= -(+)llN...L L± tNJl 
JI - N JI L ' '°± - '°± N L (55) 

can be solved explicitly to give 

+ rv + -o- ( t) = V ± ( t, t 
O

) o- (t 
O

) ; 
~ -1 B±(t) = B±(t0 ) [V±(t,t0 )] 

V±(t,to> = Pexp{J: dt•i;ct') p± }l} (56) 
0 

where (T±M>t = (±)JlLt~ are the generators of the two dual gauge 

supergroups in the adjoint representation. It is worth mentioning 
~ here that the action S3 (see Eq.(53)) is invariant under the gauge 

transformations (48) and (compare with Eq.(55)) 

ao; = (±)NL!N± t;L o;_; aB! =-(±)JIN~ /N± t1J,1' (57) 

In order to fix the boundary conditions for ghosts it is 

appropriate now to change the chiral ghost ~ariables H! and o; to 

standard canonical coordinates (pM,pll) and momenta (-n;ll,~) by 

using the following linear canonical supertransformations: 

81: = + a! Pll + h! -n;ll; o; = ~ P11 + (-)M ~ 'ii:M (58) 

• 
15 



(there is no summation over M). It is necessary to have 

a!b~+~~=1 (59a) 

so as to obtain the canonical Poisson superbraokets related to 

(54) as: 

{ _N} {- N - N. 
PM • on;-· = P • 'ICM} = aM • 

In aooordanoe with the boundary conditions (49a,b) the 

T~j{p) and T~-ic':iJ . must be invariant under the 

(59b) 

spaces 

gauge 

transformations Gi and Gf. Then, consider the transformations (57) 

for coordinates p,p and momenta 'IC,i: 

apM•= ac- b~ S:. + ~ ~ > 

= - ( ~ a!'. I/ + (- )MN ~ ~ IN

+ ( bM b:' I+ - (-)MN bM if' I -
- + N + - N 

) PL tNM 
L 

) ~ tNM 
L 

M 0+ bM -apM = a( b+ M + - GM) 

= ( bM cf, I++ (-)NL bM af: I - ) p. tNL 
+ - N -· + N L M 

+((-)L+1bM bL I++ (~)NL+~M bL I-) 'IC- tNL 
+-N -+N LM 

a-rr!' = ac ~ s:_ + a! "Ji!.> 
_.11 _T, + MN _M _I, -'--

= ( a:= a:; IN - (-) a:; a:= IN 

-( ~ t!'. I/ + (-)MN a! b~ IN

BiM = (-)M. a(- a! a;+~ a;) 

) PL tNM 
L 

) ~ tNM 
L 

((-)M+1~ cf, I+ + (-)M+NLc/' af: I-) pL tNL 
+-N -+N M 

+ ((-)M+L~ bL I "f: + (-)M+L+NLc/' bL I -)-'IC tNL 
+-N ---+N LM 

(60a) 

(60b) 

(60c) 

(60d) 

When t=O and t=T, the transformations (60) must leave the spa_oes 

{p,p} and {'IC,i} as invariant i.e. ap a: p , Bp a: p, B'IC a: 'IC, Bi a: i. 

This statement when combined with (49a,b) leads to the following 

conditions: 

16 
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t = o, T : bmbn = bnbm. - + - + , tfb'A. = lf-b'A. • - + + - , 
aman = aman. 

- + + - , al_:a~ = a~ci.;:; (61) 
t = 0 : ~b! = l ~b~ ; amd- = l amcf: 

+ - - + 
t = T': ~b~ = l ~b!; amcf: ·= l amd- • 

- + + -

Note that the constant vectors~ and b; in (58) are different for 

the t=O and for the t=T oases. Taking into aooount the o·ondition 

(59a) we solve (61) and obtain the general solution 

t= O,T 

t= 0 

t= T 

a!= ~ma+ ; b! = (1/.i11)b+ ; a+b_+ b+a-=1 - - - -
oz= (+)1/2.,;.. q± ; b~ = [(±)112.,;..1-1b± 

oz= (±)1/2.,;.. a± ; b~ = [(+)112.,;..1-1b± 

(62) 

where al' is an arbitrary constant vector and we have used the 

convention (-1) 112 =-l. The solution (62) may be equivalently 

written as: 

t = 0 : ~ = (+)M/2 a/' a± ; b! = [(±)M/2a!'J-1b± 

: ~ = (±)M/2 a/' a±; b! = [(+)M/2~]-1b± 
(63a) 

t = T 

with al' some arbitrary constant vector and a+b_+ ba= + - 1 • Note 

that we are 1ree to redefine the ghost coordinates and momenta so 

that ~=1. The boundary conditions for the ghosts are chosen in 

the form: 

pM(T) = pfM; pM(O) = p<M; pM(T) = p'; pM(O) = P! (63b) 

N 

Thus, we arrive at the oorreot action S
3 

with the appropriate 

ghost boundary conditions aooording to the equations (58j, (63): 
N N 

s3 = s3 + [ ~M(T) pM(T) - ~M(O) p1'(o) ]. (64) 

Substituting the solutions (50),(56) of the equations of 

motion in the action (64) we obtain the olassioal action 

17 



I. 

s01= ![ z (T)zf - z (O)Z! ) - ![ zfz (T) 
2 a a a a 2- a a 

- ! J + za(O)za 

+ [ iy(T) pfH - iM(O) p!M ). (65) · 

It now becomes necessary to express the coordinates z (T), 
a 

Za(O), Za(T), Za(O), iM(T) and iM(O) into Eq.(65) in terms of 

boundary variables (13),(63b). To achieve this it is convenient to. 

introduce new variables 

YA= (Za, D~ Zp) . YA = (zA , Dap zp> (66) 

and we have in terms of these variables 

z! = YA + DAB YB - A y ZA = (t) ( A - DAB YB); 

y (T) = yf 
A A 

(see eq. (13)). (67) 

Then (65) oan be rewritten in the form 

s01 = ~[YA(T>Y!- ZA(o>z!J + [iH(T)pfM - iM(O)p'MJ_ (68) 

The Cauchy solutions· (50) oan be recast as 

Y(T) + D yf = v+ ( Z(O) +Dz!), 

r 1 ( Y(T) - D yf) = V_ I( z(O) - Dz!), 
(69) 

where IAB = (-t)AaAB = (-1)A12aAB, v± = Pexp{J~dt'/M±(t')T'}. We 

also use JAB= (-)AOAB so that r 1= IJ and .J2 = 1. Matrices I _and 

J are useful in the algebra of antioommuting variables (see the 

first reference in Refs.12). 

Accordingly with Eqs.(63a) the solutions (56) now become: 

a_ I pf - b_ J i(T) = V+ (a_ pt - b_ I i(O)), 

a+ pf+ b+ I i(T) = V_ (a+ I pi -+: b+ j i(O)) (70) 

• "' 1l - "' M "' /J! ± · "'± M with INN= (-t) OllN, JHN = (-) OHN, V± = Pexp{f0 dt'/M(t')T }. 
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Equations (69) and (70) give the following relations 

2 
Z(O) = -----[D yf - ;c v+ + IV_I ) D Zi], 

V - IV I 

Y(T) 
1 2 

= [V+ + IV_I]--- vy-f - v+ --- IV_I Dz!, 
V -IV I V -IV I · + - + -

(71) 

- 1 . "'-1"' "' '" l f ~co>=,., 1,,, N ,., ,., [(O_I v+ + o+v I)p - co++ o >P J, 
I- V+I - V_J - -

_ 1 £ · '"-1'" '"-1~...::1 f 
~(T) =,,, 

1
,,, 

1
,., ,,, 

1
,,, [p (0+ + 0) - (0 V+ I+ O+I V )p J, 

I- v- I- V~ J . - - -
- + 

where c± = a±/b±. Using (71) in (68) one has for s01 

1 
s01 = ![ yfJ V + IV I) ----- D yf 

2 + - V+-IVI 

2 2 
- yfJ ----,--Dz' - z'J ----- D yf 

(IV I)-1- v-1 V. - IV I - + + -
1 

+ z'J ----- (V+ + IV I) D z' 
V+ - I V_I -

-f · "' "' "' '" 1 '" f + [ p (0- I V_I + o+ V+> ,,, ,., ,., ,., Ip 
- V+ - I V_I 

(72) 

( o+ + o_) N ( o+ + o_ ,., 
- pf ----- pt - p' I ----- I pf 

v - 'i v 'i 
+ -

c'iv r>-1- v-1 
- + 

t - 1 - -- - ' +p IN ,.,,,,,.,(OV++O+IVI)p ). 
V+ - I V_I - -

In order to simplify this expression one oan redefine p''i • pt and 

Ipf • pf. Then, using the identity YJVY = 0 we oan rewrite (72) 

in the concise form 
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sol= (Ytr1V_I _ 2 iJ) 1 (DY1- V+D Zi) 

V+ - IV I 

+ [C+( pf I pf - pi I pi ) (72a) 

+ (C+ + C_)(p1 IV_I - p< I) 
IV tvN N 

c1p1-vpi>. 
V - IV I 

+ -

The heat kernel K1i in (52) is now rewritten in the form: 

K (Yi -fM I i -iM i) - (' sol) ti A' P • PM' 2A• P • PM - Zexp • (73) 

To find the faot~r Z we use the differential equations on K
1

i.To 

derive these equations first note that 

K
1

i = <Y1 ,p1 ,p1 1P exp{-tf~ dt'1l(t')}lzi,pi,pt> 

where the operator 1l(t') has the form 
, + 7M 1- M. .JI + NL + .JI - LN -

1l(t ) = 'ZM + + MT_+~ 'ZN tM CL - ~ 'ZN tM CL 

The momentum variables .zA, .Jr!l, ~M' are operators here 

~ing the standard rule for quantizing dynamical variables 

(7 4) 

(75) 

and 

i.e. 

[ , ] = t{ , }, we oan write in the Schroedinger representation 
➔ 

{J 
ZA = (-)A+1t 

{JzA 

from Eq. (74) 
{J 

We derive 

- Kti 
{JT 

➔ 

,ir}l = (-)Nt 
{J 

{JpN 
~M = 

= - t 1l(t) Kti· 

From Eq.(77) one finds that modulo a constant 

➔ 

{J 
)M, - • (- • -M {Jp 

d/2 1 ~ ~~ ~ Z = Ber [ ---- D ] Ber' [ V+- IV_I 
V - IV I + -

(76) 

(77) 

(78) 

The expressions (72), (73) and (78~ for Z gives the supersymmetrio 

generalization of the corresponding result for the bosonic case2 • 4 

N rvtv l'V 

It should, however, be noted that ·the operator (V+- IV_I) has zero 

eigenstates. The prime in Eq. (78) means that the corresponding 

zero eigenvalues must be removed from the superdeterminant in the 
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standard way. Then, it is necessary to multiply Kti by the 

a-function O(p~ - p~)O(p~ - p~) where p0 ,p0 are ghost zero modes. 

The appropriate procedure for bosonic discrete "strings" was 

considered in Ref.4. 

Note that considering the infinite dimensional oase we 

substitute instead of· the algebra Osp(NIK,~) the infinite 

dimensional N = 1 superconformal alg~bra Superconf.(S 1 ). One oan 

show, after tedious oaloulations, that the functional Z (78) is 

equal to the partition function for the fermionio string theory14• 

In order to obtain the propagator, ~,i• one has to perform the 

integration over the Lagrange multipliers z± in Eq.(52a) i.e: 

~,i = f dl+dl- Bera,12 [ 
1 

D] Ber[V+- IV_I] exp(ts01 ) (79) 
. V+- IV_I 

""+ nJI+ N "'+ r;:Ji_+ 
where V± = exp('lM 1~-), V± = exp('lM _1~-) are elements of the gauge 

group GE Osp(NIK,~)+ ® Osp(NIK,~)_. 

Let us now consider the oase when the operator {Jab has 

eigenstates z0 with zero eigenvalue.The presence of such states a 

enables .the introduction in our system of conserved total 

momentum4
• In this case it is possible to impose· the further 

condition that in (79) all boundaries, reduce to points. This means 

that 

yl = (,.,fZO O)· zi = (Qtzo O)· 
A ~ · a' ' a a' , ' P ~ P0 ; P ~ P0 - (80) 

The propagator now takes the form: 
. -( -f ( . I A A 

~ft= O(po - Po) O(po - Po) fd'l +d'l_ exp [ Smatrtz] (81) 

with 

Smatrtx = (d/2) str 1n 

+ 5ol(cf,Q<) 

V - IV ID]+ straa.J_ln [V - IV I] 
+ - + -

(82) 

where (compare with Eq.(3.18) of Ref.4) 
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5cl(cf, Qt)= (cf- Qt)2 / (2lo) 

and 1° is some functional of the Lagrange multipliers 
All 
l±. This 

functional 1°-is invariant under the gauge transformations (51). 

The functional integral of our system is represented by the 

expression (81). We thus arrive at the conclusion that our system 

is equivalent to some "zero-dimensional" matrix field model with 

the functional integral (81) and with the action (82).We emphasize 

that our model as described by (81) and (82) can be considered as 

the super extension ·of "zero-dimensional" matrix field theories 1-5 • 

We have to consider matrix field theories with two ortho

symplectio matrices. The parameters in our theory are the • 

dimensions (N,K) of the gauge group Osp(NIK), space-time dimension 

d and the arbitrary parameters defining the symplectio matrix V. 

It would_be interesting to investigate the double scaling limit16 

in our model • 

. Finally, note that Eq.(77) can be rewritten in the form: 

• • 
. {) "'± 11 "' {) [ str { p± 11 V - } + str adJ.{ T V± ;-: } ] Kit ± • 

tJ v± tJ v± 

· = (-t) [ T! + T! ho. t J K1 , 
- -8 BB ~ 

(83) 

· where T! are defined in eqs. (43) and 

TM = (+ )NL El' l± tNL c± 
± ghosts - ± N 11 L 

The extra terms connected with conformal anomalies will appear in 

(83) in the infinite-dimensional case G~Su~conf(S1
) ® Supconf(S1

), 

as it would be necessary to make normal ordering prescriptions for 

the operators T! and T! ho t and perform regularization procedure 
- -8 BB · 

for the divergent expression for Z (78). 

At the end of this section we would like to discuss briefly 
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the possible interpretation of Eq.(83). Let us rewrite Eq.(83) in 

the form: 

11 11 + TM Jl Jl 
T ± tot Kft = [T v + T + + T + ho t J K1 , = o 

''± - - g B B 
(84) 

± 

where we introduce 

• 
TH ± 11 ± rr± = -t {) 

= str { T V± II }, 
V± • 

{j v± 

• 
TJL = str { p± ll V fi± } "'+ {) rr- = -t V± ad.J. . ± , . "' (85) 

tJ v± 
The variables rr± and fi± can be considered as momenta conjugate to 

"' "' 
V±(t) = V±(t,O) and V±(t) V(t,O). The solution of (84) can be 

written in the form 

Ji +- Ji+ Jl - Jl K1, = <fl[ n {dl;plJL} Texp{! dt (lJL(t)T+tot + lJL(t)T_tot)}JI!> 
t 

= flµ~ {dlt dl;} exp{! Stot} (86) 

where n{dl}n;} is a product of the left invariant measures over 
t 

the group G+ ® G_ generated by the operators {TJL } • ±tot Lµ is a 

measure over the trajectories X(t) in the phase space with 

coordinates X = {z,z.~.p,i,p,V,V,II,fi} satisfying the boundary 

conditions (13a,b), (63b), and 
"' V±(O) = V±(O) = 1; 

V±(T) = v±. V±(T) = v±. 

The action Stot in Eq.(86) has the form: 
N 

8 tot = s3 + 8grau 
N 

where s3 is defined in Eq.(64) while S is grau 
,,. '' 
one-dimensional supergravity ( one-dimensional 

23 , 

(87a) 

(87b) 

the action of 

orthosymplectio 



matrix field theory). 

IT • • 
Sgrav = dt[·str{(V+IT+ + V_Il-)-(!~ ,rtM V+ W + i; T-M V_ TI-)} 

0 . . . 
+ stra.dJ{(V+fi+ + v_fi-)-(!! r-M v+ fi+ + i; rM v_ fl-)}]. (88). 

It should be noted that the variation of S over momenta n± and grav 

fi± gives rise to the equations . 
v±ct> = n;co T± M1 v±ct>; v±ct> = n;co r± Mi v±ct> (89) 

Now taking into account the initial conditions (87),the solutions 

of (89) are represented in the form (50) and (56). 

In the infinite dimensional case· of the closed fermionic 

string, when ·the gauge group G+ © G_ will be isomorphic to 

Superconf(S1 ) © Superconf(S1
), additional terms related to the 

conformal.anomaly terms in Eq.(83) will appear in the action (88). 

Our view is that in this case we would obtain, instead of (88),the 

action describing two-dimensional N=1 superconformal gravity 

considered in Ref.17. We hope to· study this conjecture in our 

subsequent publications. 

5.Conclusions 

In this paper we have tried to set up a 

gauge systems with quadratic constraints. 

general approach 

For simplicity, 

to 

we 

consider dynamical (super)systems with a finite number of degrees 

of freedom. We can interpret these systems as models of the bound 

states of a collection of relativistic particles. It is rather 

interesting to note that for investigations of physical models of 

bound states it. is possible to use techniques and methods 

developed for string theories. 

Our basic results may be •summarized as follows: 
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1.Specifically, we have solved the quantization problem for a 

chiral fermionic discrete system with the gauge group 

G = Osp(NIK,~)+ © Osp(NIK,~)_. In this case,it is possible to fix 

the boundary conditions for ghosts unambiguously and find the 

explicit form of the propagator. With this, the ef!icacy and 

validity of the approach as propounded in Refs.2-4 is thereby. 

established and the supersyrnmetric generalization of Refs.2 and 4 

obtained. 

2.We have also shown that when zero~mode states are present 

(so that a conserved total momentum exists), it is possible to 

impose point boundary conditions on the functional integral and 

the resulting theory is then a natural super-extension of the 

ordinary "zero-dimensional" matrix field theory15 • The parameters 

of this theory are the dimensions (N,K) of the gauge group 

Osp(N,K), space-time dimension d and the arbitrary parameters 

defining the symplectic matrix D. 

3.Using the differential equation for the propagator, we 

have constructed the one-dimensional orthosymplectic matrix field 

theory which can be interpreted as "one dimensional supergravity•i. 

On the other hand,the chiral fermionic discrete models 

considered in this paper are very similar to the fermi6nic string 

models if we use the gauge group Superconf(S 1 ) © Superconf(S1 ) 

(specific to fermionic strings) instead of the finite dimensional 

gauge group Osp(NIK) © Osp(NIK) considered here. When this aspect 

is taken into account, there arises the interesting prospect of 

trying to construct 'the interacting field theory (i.e. 3-vertex 

operator) for our discrete models invariant under the gauge group 

Osp(NIK) © Osp(NIK). We think that this would be very useful for 
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exploring interacting string field theory from an algebraic point 

of view. 
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