

объєдиненный институт ядерных исследований
 дубна

E2-91-260

A.T.Filippov, D.Gangopadhyay, A.P.Isaev

QUANTUM DISCRETE GAUGE MODELS
WITH BOSONIC AND FERMIONIC DEGREES
OF FREEDOM

Submitted to "International Journal of Modern Physics"

Филиппов А.Т., Гангопадхайн Д., Исаев А.П.
Квантовые дискретные калибровочные модели. с бозонными и фермионными степенами свободы

В рамках локализации линейных канонических симметрий представлен общий подход к квантованию дискретных (имеющих конечное число бозонных и фермионных степеней свободы) моделей с квадратичными связами первого рода. Показано, что в данном подходе естественно возникают суперрасширения матричных теорий (например "нульмерные" ортосимплектические матричные теории пола).

Работа выполнена в Паборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследоваянй. Дубна 1991

Filippov A.T., Gangopadhyay D., Isaev A.P.
E2-91-260 Quantum Discrete Gauge Models with Bosonic and Fermionic Degrees of Freedom

A general approach to quantizing discrete models fi.e. having a finite number of coordinates) with quadratic first-class constraints is presented in the framework of gauging linear canonical symmetries, It is also proposed how a natural superextension of matrix field theories (viz. orthosymplectic "zero dimensional" matrix field theories) might emerge in this approach.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

1. Introduction

Discrete models with quadratic Hamiltonians and constraints are being actively investigated at present (e.g. in context of quantization of symplectio orbits or as some disorete approximations of the string models) and there already exists considerable literature on the subject ${ }^{1-4}$. From the aspect of string theory the interest lies in the fact that all string theories oan be considered as infinite dimensional Hamiltonian systems with quadratic constraints. For example, on quantizing the Green-Sohwarz superstring in the light-cone gauge one is led to a system with quadratio oonstraints, where the infinite number of oonstraints corresponds to an infinite number of ghosts.

The motive of this paper is to present a general approach to discrete models with quadratic oonstraints in the framework of gauging of linear canonical symmetries ${ }^{5}$. We will also show how some natural super-extension of the ordinary "zero-dimensional" and one-dimensional matrix field theories can be realized in this approach. Acoordingly, the plan of the paper is as follows. In seotion 2 the olassical Hamiltonian formulation is set up for fermionio disorete systems with first-olass quadratio constraints. Seotion 3 deals with the quantization problem incorporating ghosts in the usual BRST approach. Gauge models of fermionic disorete "strings" are considered in seotion 4 and it is shown how a super-extension of the matrix field theories oan be obtained in the framework of our approach. Seotion 5, oomprises of our oonolusions.

2.Classical Haniltonian Formulation of Fermionic Discrete Sybtems

Consider a system desoribed by oo-ordinates $z_{A}=\left(z_{a}, z_{\alpha}\right)$ and
its oonjugate momenta $\bar{z}_{A}=\left(\bar{z}_{a}, \bar{z}_{\alpha}\right)$ where $\left(z_{a}, \bar{z}_{a}\right)$ and $\left(z_{\alpha}, \bar{z}_{\alpha}\right)$ are even and odd variables respectively ($\alpha=1,2, \ldots, N ; \quad \alpha=1,2, \ldots, K$). Introduoing a oompaot notation for sign faotors:

$$
\begin{aligned}
& (-)^{A}=+1 \quad \text { if } A=a, \\
& (-)^{A}=-1 \quad \text { if } A=\alpha, \\
& (-)^{A B}=-1 \text { if } A=\alpha, B=\beta, \quad(-)^{A B}=+1 \text { othemise, }
\end{aligned}
$$

we oan write the oommutation relations for these variables as

$$
\begin{equation*}
z_{A} z_{B}=(-)^{A B} z_{B} z_{A}, \quad z_{A} \bar{z}_{B}=(-)^{A B} \bar{z}_{B} z_{A}, \quad \bar{z}_{A} \bar{z}_{B}=(-)^{A B} \bar{z}_{B} \bar{z}_{A} \tag{1}
\end{equation*}
$$

We remark that $z_{a}=q_{a}, \bar{z}_{a}=p^{a}$ are the standard real coordinates and momenta while $z_{\alpha}, \bar{z}_{\alpha}$ are non-hermitian Grassmann variables, see Refs.6. In terms of these variables the aotion has the form

$$
\begin{equation*}
S=\frac{1}{2} \int_{0}^{T} d t\left\{\bar{z}_{A}(t) \dot{z}_{A}(t)-\dot{\bar{z}}_{A}(t) z_{A}(t)-H(z, \bar{z})\right\} \tag{2}
\end{equation*}
$$

where H is the Hamiltonian and the dot always denotes the t-derivative. The corresponding Poisson superbrackets have the standard form

$$
\begin{equation*}
\{\mathrm{X}, \mathrm{Y}\}=\mathrm{X} \frac{\stackrel{+}{\partial}}{\partial z_{A}} \frac{\vec{\partial}}{\partial \bar{z}_{A}} \mathrm{Y}-(-)^{A} \mathrm{X} \frac{\stackrel{+}{\partial}}{\partial \bar{z}_{A}} \frac{\partial}{\partial z_{A}} \mathrm{Y} \tag{3}
\end{equation*}
$$

It is well known that the kinematioal part of this aotion ("trunoated" aotion) is invariant with respect to the rigid linear superoanonical transformations belonging to the supergroup Osp $(2 N \mid 2 K, \mathbb{R})$ (the even subgroup of which is $O(2 K) \otimes \mathrm{Sp}(2 N)$).

Let us discuss this in more detail. Combining the coordinates and momenta into one supervector, $\mathcal{Z}_{\mathcal{A}}=\left(\mathcal{Z}_{A}, \bar{z}_{A}\right)$, one oan write the infinitesimal linear transformation in the form

$$
\begin{gather*}
\delta Z_{\mathcal{A}}=F_{A B} \mathcal{Z}_{B}, \quad \text { i.e. } \tag{4}\\
\delta Z_{A}=F_{A B}^{11} z_{B}+F_{A B}^{12} \bar{z}_{B}, \quad \delta \bar{z}_{A}=F_{A B}^{21} z_{B}+F_{A B}^{22} \bar{z}_{B}
\end{gather*}
$$

where $F_{\mathcal{A} B}$ and $F_{A B}^{i j}$ are supermatrioes. The kinematical part of the aotion (2) is represented as

$$
\begin{equation*}
S_{\mathrm{O}}=\frac{1}{2} \int d t \mathcal{Z}_{\mathcal{A}}^{C_{\mathcal{A} B}} \dot{z}_{\mathcal{B}} \tag{5}
\end{equation*}
$$

with $C_{A B}$ a super skew-symmetrio matrix i.e. $C_{A B}=(-)^{A B+1} C_{B A}$. Under these oiroumstances (4) will be the symmetry transformation of the trunoated aotion (5) if the supermatrix $F_{\mathcal{A} B}$ satisfies

$$
\begin{equation*}
F^{T} C+C F=0 \tag{6a}
\end{equation*}
$$

with the symbol "I" denoting the supermatrix transposition defined as follows:

$$
\begin{equation*}
\left(F^{\mathrm{T}}\right)_{\mathcal{A B}}=(-)^{(\mathcal{B}+\mathcal{A}) \mathcal{A}} F_{B \mathcal{A}} ; \quad\left(\left(F^{\mathrm{T}}\right)^{\mathrm{T}}\right)_{\mathcal{A B}}=(-)^{\mathcal{A}+B} F_{\mathcal{A B}} \tag{6b}
\end{equation*}
$$

Using (4) we oan write (6a) in the form

$$
\begin{equation*}
F_{A B}^{12}=(-)^{A+B+B A} F_{B A}^{12} ; F_{A B}^{21}=(-)^{A B} F_{B A}^{21} ; F^{11}+\left(F^{22}\right)^{T}=0 \tag{60}
\end{equation*}
$$

It is usually oonvenient to write F in terms of independent o-number matrioes $\left(T^{M}\right)_{\mathcal{A B}} \quad\left(\boldsymbol{M}=1,2, \ldots\right.$, dim0sp $\left.(2 N \mid 2 K)=2(N+K)^{2}+N-K\right)$: $F_{\mathcal{A B}}=f_{\mathbb{L}}\left(T^{M}\right)_{\mathcal{A} B}$. From Eqs. (6) we obtain that T^{M} obeys the requirement of invariance of the sympleotio form defined by the supermatrix C, i.e.

$$
(-)^{M \mathcal{A}} T_{A C}^{M} C_{C B}+C_{\mathcal{A C}} T_{C B}^{M}=0
$$

These matrices are the generators of the $0 s p(2 N \mid 2 K, \mathbb{R})$ supergroup.
To construot gauge models from the aotion S_{0} we ohoose some subalgebra h of $\operatorname{osp}(2 N \mid 2 K, \mathbb{R})$ in a reduoible representation with the generators T^{N} satisfying

$$
\begin{equation*}
\left[T^{M}, T^{N}\right\}=T^{M} T^{N}-(-)^{M N} T^{N} T^{M}=t_{K}^{M N} T^{K} \tag{7}
\end{equation*}
$$

Now considering time-dependent parameters $f_{M} \rightarrow f_{M}(t)$, introduoing "gauge potentials" $A(t)_{\mathcal{A B}}=\boldsymbol{\tau}_{M}(t)\left(T^{\mathcal{M}}\right)_{\mathcal{A B}}$, and replaoing the t-derivatives by the oovariant derivative $\nabla=\partial_{t}-A$ we obtain the new aotion

$$
\begin{equation*}
S_{1}=\frac{1}{2} \int d t \mathcal{Z}_{\mathcal{A}} C_{\mathcal{A} B}\left(\frac{\delta}{\partial t} \delta_{B B}^{\prime}-A(t)_{B B}^{\prime}\right) \mathcal{Z}_{B}^{\prime} \tag{8}
\end{equation*}
$$

in whioh the rigid symmetries of the aotion (5) are localized. The lagrangian in Eq. (8) is invariant under the gauge transformations

$$
\begin{equation*}
\mathbb{B Z}=P(\mathrm{t}) \boldsymbol{Z} ; \quad 8 A=\dot{F}+[F, A] \tag{9}
\end{equation*}
$$

or, in oomponent notation,

$$
\delta Z_{\mathcal{A}}=f_{M}(t)\left(T^{M}\right)_{A B} \mathcal{Z}_{B} ; \delta l_{M}(t)=\dot{f}_{M}(t)+f_{L}(t) l_{N}(t) t_{M}^{L N}
$$

where $P(t)$ and T^{M} are elements of Lie superalgebra $h \subset g$, g is a subalgebra of $\operatorname{osp}(2 N \mid 2 K, \mathbb{R})$ oorresponding to the gauge group G. For possible applioation to strings we have to consider only maximal subalgebras h i.e. those having the same rank as $0 \operatorname{sp}(2 \mid 2 K, \mathbb{R})$.

Now the following question is in order: what kind of dynamioal system is desoribed by the aotion (8)? A general variation of the aotion (8) may be represented as

$$
\begin{equation*}
\delta S_{1}=\frac{1}{2} \int_{0}^{T} d t[2(\delta \mathcal{Z} C \nabla \mathcal{Z})-\mathcal{Z} C \delta A \mathcal{Z}]+\frac{1}{2}[\mathcal{Z} C \delta \mathcal{Z}]_{t=0}^{t=T} \tag{11}
\end{equation*}
$$

The first two terms give the equations of motion

$$
\begin{equation*}
\nabla \boldsymbol{Z}=\left(\partial_{t}-A\right) \boldsymbol{\mathcal { Z }}=0 \tag{12}
\end{equation*}
$$

and the constraints whioh we disouss later. The last two terms in Eq. (11) determine the boundary conditions, namely the variables $\mathcal{Z}(0)$ and $\mathcal{Z}(T)$ have to be fixed. These oonditions are of oourse unphysioal and the aotion (8) should be acoordingly modified by adding boundary terms so as to give reasonable boundary oonditions as discussed below.

In our oase, the most natural boundary oonditions fix the bosonio oanonioal coordinates z_{a} while for fermionio variables one has to fix initial (i) ooordinates z_{α} and final (f) "momenta" \bar{z}_{α} :

$$
\begin{array}{ll}
z_{\alpha}(0)=z_{\alpha}^{i}, & z_{\alpha}(T)=z_{\alpha}^{f} \\
z_{\alpha}(0)=z_{\alpha}^{i}, & \bar{z}_{\alpha}(T)=\bar{z}_{\alpha}^{f} \tag{13b}
\end{array}
$$

The oonditions (13b) for the fermionio variables are neoessary for
the correot definition of the path-integral quantization ${ }^{7}$; in the context of string theory they have reoently been disoussed in Ref.8. To acoommodate the boundary oonditions (13) into the variational prinoiple, we add to the aotion (8) the boundary terms; thereby defining the following new aotion

$$
\begin{gather*}
S_{2}=S_{1}+\frac{1}{2}\left[\mathcal{Z}_{A}(T) \overline{\mathcal{Z}}_{\mathcal{A}}(T)-\overline{\mathcal{Z}}_{\mathcal{A}}(0) \mathcal{Z}_{\mathcal{A}}(0)\right] \\
=S_{1}+\frac{1}{2}\left[z_{a}^{f} \overline{\mathcal{Z}}_{a}(T)-z_{a} \bar{z}_{a}^{\ell}(0)\right]+\frac{1}{2}\left[z_{\alpha}(T) \bar{z}_{\alpha}^{f}-\bar{z}_{\alpha}(0) z_{\alpha}^{\ell}\right] \tag{14}
\end{gather*}
$$

The variational prinoiple $\delta S_{2}=0$ now gives the equations of motion (12), the constraints, and the boundary oonditions. (13). The new aotion oan be written in the form

$$
\begin{align*}
S_{2}=\int d t & {\left[\bar{z}_{a}(t) \dot{z}_{a}(t)+\frac{1}{2}\left\{\bar{z}_{\alpha}(t) \dot{z}_{\alpha}(t)-\bar{z}_{\alpha}(t) z_{\alpha}(t)\right\}-z_{M} \tau^{M}\right]-} \\
& -\frac{1}{2}\left[\bar{z}_{\alpha}^{f} z_{\alpha}(T)+\bar{z}_{\alpha}(0) z_{\alpha}^{\ell}\right] \tag{15}
\end{align*}
$$

where the l_{M} may be considered as Lagrange multipliers and the related oonstraints,

$$
\begin{equation*}
T^{M}=\frac{1}{2} \mathcal{Z}_{\mathcal{A}} \Gamma_{\mathcal{A} B}^{M} \mathcal{Z}_{B} \tag{16}
\end{equation*}
$$

are expressed in terms of the new matrioes Γ^{M}

$$
\begin{equation*}
\Gamma_{A B}^{M}=(-)^{\mathcal{A} M} C_{\mathcal{A B}} \cdot\left(T^{M}\right)_{\mathcal{B}^{\prime} B}=-T_{A B}^{M}, C_{B^{\prime} B}=(-)^{A B} \Gamma_{B, A}^{M} \tag{17}
\end{equation*}
$$

From the Grassmann parity of the aotion S_{2} it is evident that $\Gamma_{\mathcal{A} B}^{M}=0$ if $(\mathbb{N}) \neq(\mathcal{A})+(B)$. The Poisson superbraokets for the variables $\mathcal{Z}_{\mathcal{A}}$ oan be written as

$$
\begin{equation*}
\left\{\mathcal{Z}_{A}, \mathcal{Z}_{B}\right\}=C_{\mathcal{A B}}^{-1}, \quad\left(C^{-1} C=1\right) \tag{18}
\end{equation*}
$$

Using these we obtain the following commutation relations for the constraints (16)

$$
\begin{equation*}
\left\{T^{M}, T^{N}\right\}=\frac{1}{2} \mathcal{Z}\left[\Gamma^{M} C^{-1} \Gamma^{N}-(-)^{N N} \Gamma^{N} C^{-1} \Gamma^{M}\right] \mathcal{Z}=-t_{K}^{M N} T^{K} \tag{19}
\end{equation*}
$$

We see that the algebra (19) is isomorphic to the algebra (7)
$\left(T^{\boldsymbol{N}} \leftrightarrow-T^{\boldsymbol{L}}\right)$.
In passing, let us mention that to desoribe relativistio systems we simply define the relativistio phase superspace by extending $\left(\mathcal{Z}_{\mathcal{A}}, \overline{\mathcal{Z}}_{\mathcal{A}}\right)$ to $\left(\mathcal{Z}_{\mathcal{A}}^{\mu}, \overline{\mathcal{Z}}_{\mathcal{A}}^{\mu}\right)$, where μ is the D-dimensional space-time index, $\mu=0,1, \ldots, D-1$: By contraoting these indioes one trivially obtains the Lorentz invariant disorete systems with a gauge supergroup whioh is some subgroup of $\operatorname{Osp}(2 N \mid 2 K, \mathbb{R})$.

Returning to the aotion S_{2}, (15), we stress that it differs from S_{1} (8) by boundary terms. Therefore S_{2} will be invariant under the gauge transformations (9) only if certain boundary conditions on the gauge transformations are fulfilled. To obtain these conditions we make the gauge variation of (14) using Eqs. (4) and (13). From the condition $\delta S_{2}=0$ we obtain

$$
\begin{gather*}
F_{A B}^{12}(T)+(-)^{B A} F_{B A}^{12}(T)=F_{A B}^{21}(T)+(-)^{A B+A+B} F_{B A}^{21}(T)=0 \\
\left(F^{11}(T)\right)^{T}+F^{22}(T)=0 \tag{20a}\\
F_{A B}^{21}(0)+(-)^{B A} F_{B A}^{21}(0)=F_{A B}^{12}(0)+(-)^{A B+A+B} F_{B A}^{12}(0)=0 \\
\left(F^{22}(0)\right)^{T}+F^{11}(0)=0
\end{gather*}
$$

(20b)
The solution of the equations (60), (20a) and (20b) oan be rewritten as the following conditions on the elements of the matrix $P_{A B}$

$$
\begin{align*}
F_{A B}^{21}(0) & =F_{A B}^{12}(0)=0 ;\left(F^{22}(0)\right)^{T}+F^{11}(0)=0 ; F^{21}(T)+\left(\left(F^{21}(T)\right)^{\mathrm{T}}\right)^{\mathrm{T}} \\
& =F^{12}(T)+\left(\left(F^{12}(T)\right)^{\mathrm{T}}\right)^{\mathrm{T}}=F^{3 \prime}(T)-\left(\left(F^{3}(T)\right)^{\mathrm{T}}\right)^{\mathrm{T}}=0 \tag{21b}
\end{align*}
$$

i.e. $\quad F_{A A}^{21}(T)=F_{A A}^{12}(T)=F_{\alpha \alpha}^{j J}(T)=F_{\alpha a}^{j J}(T)=0$

The equations (21b) mean the following: matrioes $F_{A B}^{\mathcal{J}}(T)$ are block diagonal while the matrioes $F_{A B}^{12}(T)$ and $F_{A B}^{21}(T)$ oontain only
non-vanishing off-diagonal blocks.
These conditions for $t=0, t=T$ reduce the gauge supergroup G to the two supergroups G_{i} and G_{f} whioh rotate the boundaries $\left(z_{a}(0), z_{\alpha}(0)\right),\left(z_{\alpha}(T), \bar{z}_{\alpha}(T)\right)$ and the ooordinates orthogonal to them $\left(\bar{z}_{a}(0), \bar{z}_{\alpha}(0)\right), \quad\left(\bar{z}_{a}(T), z_{\alpha}(T)\right)$ separately. We oan interpret, these rotations as reparametrizations of the boundary oonditions. On the other hand, the conditions (21a,b) are equivalent to oertain conditions on the gauge parameters $f_{M}(t) \quad(t=0, T)$. It is evidently olear also that G_{i} and G_{f} are bubgroups of $O_{B p}(N \mid K, \mathbb{R})$.

The complete system of equations of motion is given by the evolution equations (12) and by the constraints $\boldsymbol{T}^{M}=0$. The Cauchy problem for Eq. (12) can be solved as

$$
\begin{gather*}
\mathcal{Z}(t)=V\left(t, t_{0}\right) \mathcal{Z}\left(t_{0}\right) \tag{22}\\
V\left(t, t_{0}\right)=P \exp \left\{\int_{t_{0}}^{t} d t^{\prime} \tau_{M}\left(t^{\prime}\right) P^{M}\right\} \tag{23}
\end{gather*}
$$

From Eq. (19) it is now olear that the existence of the constraints $T^{M}=0$ is oonsistent with (22) beaause

$$
\begin{align*}
T^{M}(t) & =\frac{1}{2} \mathcal{Z}(t) \Gamma^{M} \mathcal{Z}(t)=\frac{1}{2} \mathcal{Z}\left(t_{0}\right) V^{T} \Gamma^{M} V \mathcal{Z}\left(t_{0}\right)= \\
& =\left(\tilde{V}\left(t, t_{0}\right)\right)_{N}^{M} T^{N}\left(t_{0}\right) \tag{24}
\end{align*}
$$

where

$$
\begin{align*}
& \tilde{V}\left(t, t_{0}\right)=P \exp \left\{\int_{t_{0}}^{t} \mathrm{~d} t^{\prime}\right. \tag{25a}\\
&\left.l_{M}\left(t^{\prime}\right) \tilde{T}^{M}\right\} \tag{25b}\\
&\left(\tilde{T}^{M}\right)_{K}^{N}=t_{K}^{M N}
\end{align*}
$$

The matrix \tilde{V} is an element of the group $G \in O \operatorname{sp}(2 N \mid 2 K)$ in the adjoint representation. For completeness let us note that the finite gauge transformations corresponding to Eqs. (9) and (10) an be represented as

$$
\begin{gather*}
\mathcal{Z}(t) \rightarrow U(t) \mathcal{Z}(t) ; \quad \nabla \rightarrow U(t) \nabla U^{-1}(t) ; \\
V\left(t, t_{0}\right) \rightarrow U(t) V\left(t, t_{0}\right) U^{-1}(t) \tag{26}
\end{gather*}
$$

where the gauge transformation matrix is

$$
U(t)=\exp \left\{f_{\mathbf{N}}(t) T^{N}\right\}
$$

3. Quantization, Ghosts and BRST

In this seotion we generalize the results of Ref. 2 to the supersymmetric oase.

Following the usual rules for quantizing constrained hamiltonian systems ${ }^{9.10}$, consider the path-integral representation for the transition amplitude (propagator):

$$
\begin{gather*}
\mathfrak{D}\left[z_{a}^{f}, \bar{z}_{\alpha}^{f} ; z_{a}^{\ell}, z_{\alpha}^{i}\right]=\int D \mu \exp \left[i \int _ { 0 } ^ { T } d t \left\{\bar{z}_{\alpha}(t) \dot{z}_{a}(t)+\right.\right. \tag{27}\\
\left.\left.+\frac{1}{2}\left[\bar{z}_{\alpha}(t) \dot{z}_{\alpha}(t)-\dot{\bar{z}}_{\alpha}(t) z_{\alpha}(t)-\tau_{M}(t) T^{\alpha}(t)\right]\right\}-\frac{1}{2}\left[\bar{z}_{\alpha}^{f} z_{\alpha}(T)+\bar{z}_{\alpha}(0) z_{\alpha}^{i}\right]\right]
\end{gather*}
$$

where the integration measure is

$$
\begin{gather*}
D \mu=\prod_{0 \leqslant t \leqslant T}\left[D \bar{z}_{A} D z_{A} D l_{\mu}\right] \delta\left(\bar{z}_{\alpha}(T)-\bar{z}_{\alpha}^{f}\right) \delta\left(z_{a}(T)-z_{a}^{f}\right) \\
 \tag{28}\\
\delta\left(z_{\alpha}(0)-z_{\alpha}^{i}\right) \delta\left(z_{a}(0)-z_{a}^{i}\right)\left[\Delta_{F P} \Pi_{g \mathrm{P}}\right]
\end{gather*}
$$

Here the integration is performed over all Lagrange multipliers $l_{M}(t)$ and all super-phase-space trajectories $\bar{z}_{A}(t), z_{A}(t)$ with fixed variables at the boundaries of the evolution interval (see condition (13)). In acoordance with Ref.2, we also include the Faddeev-Popov determinant Δ_{FP} and the gauge-fixing term $\Pi_{g f}$ in the definition of the integration measure.

We fix the gauge by ohoosing $l_{M}(t)$ independent of t

$$
\begin{equation*}
l_{N^{\prime}}(t)=\frac{1}{T} \hat{l}_{N} \tag{29}
\end{equation*}
$$

In this gauge the evolution matrix $V(T, 0)$ is simply $\exp \left(\hat{l}_{M_{N}} q^{M}\right)$, see Eq. (23). If the end point values of $f_{M}(t)$ vanished, all \hat{l}_{M} would
be invariant under the gauge transformations (26). In fact, there are residual transformations of \hat{l}_{M} corresponding to the reparametrization (21a) of the boundary conditions (13):

$$
\begin{gather*}
\exp \left\{\hat{\imath}_{M} T^{M}\right\} \rightarrow \exp \left\{f_{M}(T) T^{M}\right\} \exp \left\{\hat{\imath}_{\boldsymbol{M}^{M}} T^{M}\right\} \exp \left\{f_{M}(0) T^{M}\right\} \tag{30a}\\
\mathcal{Z}(0) \rightarrow \exp \left\{f_{M}(0) T^{M}\right\} \mathcal{Z}(0) ; \quad \mathcal{Z}(T) \rightarrow \exp \left\{f_{M}(T) T^{M}\right\} \mathcal{Z}(T) \tag{30b}
\end{gather*}
$$

where the parameters of the transformations $P(T)=f_{M}(T) T^{M}$ and $P(0)=f_{M}(0) T^{M}$ satisfy $(20),(21)$ and $\exp \{P(T)\} \in G_{f}$ and $\exp \{P(0)\} \in$ G_{i} : The transformations (30a) are automorphisms of the group G and generate the group $G_{i} \otimes_{f}$. Therefore, the invariant oombinations of the parameters \hat{l}_{M} may be considered as coordinates of the different trajeotories (30a). The transformations of the end-point variables are analogous to reparametrizations of the boundary oonditions in the propagator of strings in string models (see Ref.11), and the invariant oombinations of the parameters \hat{l}_{M} (ooordinates of the trajeotories (30a)) oorrespond to the Teichmueller parameters.

Our gauge oondition (29) is implemented by setting

$$
\begin{equation*}
\Pi_{g \mathrm{f}}=\int \alpha \mu\left(\hat{l}_{M}\right)_{t, M} \delta\left(\eta_{M}(t)-\frac{1}{T} \hat{l}_{M}\right) \tag{31}
\end{equation*}
$$

Where $\not \subset\left(\hat{l}_{M}\right)$ is some measure over the Lie supergroup G. Using standard teohniques ${ }^{9} \Delta_{F P}$ is presented in the form:

$$
\begin{align*}
\Delta_{\mathrm{FP}} & =\operatorname{Ber}\left(\partial_{t} \delta_{M}^{N}-t_{\boldsymbol{M}}^{K N} \eta_{K}\right)=\operatorname{Ber}\left(\partial_{t}-\eta_{K} \tilde{T}^{K}\right) \\
& =\int D \mu_{g} \exp \left[i \int_{0}^{T} d t B\left\{\partial_{t}-l_{K} \tilde{T}^{K}\right\} C\right] \tag{32}
\end{align*}
$$

where $D \mu_{g}$ is an integration measure for the standard ghost variables B^{M} and C_{M}, while \tilde{T}^{M} realize the adjoint representation (25b). The Grassmann parities of B^{M} and C_{M} are opposite to those
of the gauge potentials l_{N}, i.e.

$$
B^{M} B^{N}=(-)^{(N+1)(N+1)} B^{N} B^{N} ; \quad C_{K} C_{N}=(-)^{(N+1)(N+1)} C_{N} C_{M}
$$

Note that $\left(B^{N}, C_{M}\right)$ are analogs of the (b, c) and (β, γ) systems in string theories.

According to usual practice 9.10 we extend the phase space by adding ghost variables and appropriate ghost terms to the aotion (15) (see equation (32))

$$
\begin{equation*}
S_{3}=\int_{0}^{T} d t\left[\bar{z}_{\alpha} \dot{z}_{a}+\frac{1}{2}\left(\bar{z}_{\alpha} \dot{z}_{\alpha}-\dot{\bar{z}}_{\alpha} z_{\alpha}\right)+B^{M} \dot{C}_{u}-\left\{\tau_{M} B^{M}, \Omega\right\}\right] \tag{33}
\end{equation*}
$$

where $\Omega=\left[(-)^{N} T^{N}-(-)^{N} \frac{1}{2} B^{L} t_{L}^{N N} C_{\mu}\right] C_{N}$ is the standard BRST charge corresponding to the constraints T^{M} and the Poisson superbrackets for the ghosts are $\left\{C_{M}, B^{N}\right\}=\delta_{\mathcal{M}}^{N}$. The action (33) can be obtained by substituting Eq. (32) in Eq. (27) and then colleoting the the exponential terms.

The ghost equations of motion as derived from Eq. (33) are

$$
\begin{equation*}
\dot{C}_{H}=l_{K} t_{M}^{K N} C_{N} ; \quad \dot{B}^{M}=-B^{N} t_{N}^{K M} l_{K} \tag{34}
\end{equation*}
$$

oan be solved explicitly to give

$$
\begin{equation*}
C(t)=\tilde{V}\left(t, t_{\mathrm{o}}\right) C\left(t_{\mathrm{o}}\right) ; B(t)=B\left(t_{\mathrm{o}}\right)\left(\tilde{V}\left(t, t_{\mathrm{o}}\right)\right)^{-1} \tag{35}
\end{equation*}
$$

where $\tilde{V}\left(t, t_{0}\right)$ is defined in Eq. (25a) and thus the spaces $\left\{B^{N}, C_{k}\right\}$ realize the adjoint representation of the group G. Substituting Eqs.(31)-(33) in Eq. (27) we obtain the more explioit form of the propagator of our system. In all subsequent disoussions it is this expression for the propagator that will be our concern.

Now a discussion of the ghost boundary oonditions is in order. First note that the action S_{3} (33) is invariant under the gauge transformation (10) extended by the transformations of the ghost variables

$$
\begin{equation*}
\delta C_{M}=f_{K}(t) t_{\boldsymbol{M}}^{K N} C_{N} ; \quad \delta B^{M}=-B^{N} t_{N}^{K M} f_{K}(t) \tag{36}
\end{equation*}
$$

Next, oonsider the ract that at the end-points, $t=0, t=T$, the gauge parameters are restrioted by the oonditions (21a,b). These oonditions define supergroups G_{i} and G_{f}, the adjoint representations (30) of which are obviously reduoible. This means that with respeot to the aotion of the groups G_{i} and G_{f} we oan extract invariant spaces $\mathcal{I}_{\rho}, \mathcal{I}_{\pi}$ in the spaces of ghosts $\boldsymbol{M}=\left(C_{\boldsymbol{M}}(t), B^{\mathbb{N}}(t)\right)$ when $t=0$ or $t=T$ i.e.

$$
\begin{equation*}
\mathcal{M}_{t=0}=\bar{I}_{\rho}^{\imath} \oplus I_{\pi}^{i} ; \quad M_{t=T}=I_{\rho}^{f} \oplus I_{\pi}^{f} \tag{37}
\end{equation*}
$$

We have by definition $\mathcal{I}_{\rho}^{i} \xrightarrow{G_{i}} I_{\rho}^{i}, \quad I_{\pi}^{i} \xrightarrow{G_{i}} I_{\pi}^{i}$ and $T_{\rho}^{f} \xrightarrow{G_{f}} I_{\rho}^{f}$, $I_{\pi}^{f} \xrightarrow{G_{f}} \rightarrow I_{\pi^{f}}^{f}$ We identify $\mathcal{I}_{\rho}^{l}, I_{\rho}^{f}$ with the ghosts ${ }^{\prime}$ coordinate spaces and $I_{\pi}^{\ell}, T_{\pi}^{p}$ with the ghosts' momentum spaces. The fixing of the variables (at $t=0, T$) of the coordinate spaces $T_{\rho}^{i}, \tau_{\rho}^{f}$ neoessitates adding new terms to the aotion S_{3} (33) as was the oase in Eq. (14). It is rather diffioult to disouss these problems for a general group G. However, in the next seotion we oonsider the special case when $G=\operatorname{Osp}(N \mid K, \mathbb{R})_{+} \otimes \operatorname{Osp}(N \mid K, \mathbb{R})_{-}$(the so-oalled ohiral disorete fermionio "strings" ${ }^{3}$). In this speoial case it is possible to fix the boundary oonditions for ghosts explioitly and perform the further oaloulation of the funotional integral (27).

4.Gauge Models of Fermionic Discrete "Strings".

Consider the case when the gauge group $G=\operatorname{Osp}(N \mid K, \mathbb{R})_{+} \oplus$ $\operatorname{Osp}(N \mid K, \mathbb{R})_{_} \quad(G \in \operatorname{Osp}(2 N \mid 2 K, \mathbb{R}))$ and the first $\operatorname{Osp}(N \mid K, \mathbb{R})_{+}$is dual to the seoond $\operatorname{Osp}(N \mid K, \mathbb{R})$ _ in Cartan's sense. We shall disouss this later. With the above ohoioe of the gauge group we oan represent the sympleotio matrix $C_{\mathcal{A B}}(5)$ in the form ${ }^{3}$

$$
C_{A B}=\frac{1}{2}\left[\begin{array}{cc}
\mathcal{D}_{A B}^{-1} & 0 \tag{38}\\
0 & \left(\mathcal{D}^{-1}\right)_{\Delta B}^{\tilde{T}}
\end{array}\right] ; \quad \mathcal{D}_{A B}^{\tilde{T}}=\mathcal{D}_{B A}
$$

We now introduce new coordinates $\left(\mathcal{Z}_{A}^{+}, \mathcal{Z}_{B}^{-}\right)=\mathcal{Z}_{\mathcal{A}}$ in phase space. These ohiral variables are represented as linear combinations of oanonical variables

$$
\begin{equation*}
z_{A}^{ \pm}=\left(\bar{z}_{A} \pm \mathcal{D}_{A B} z_{B}^{\dot{\prime}}\right)(\pm 1)^{A / 2} \tag{39}
\end{equation*}
$$

where $(-)^{A / 2}=1$ if $A=a$, and $(-)^{A / 2}=-i$ if $A=a$. This faotor is needed to make $z_{\alpha}{ }^{ \pm}$nermitian.

The ohiral Poisson superbrackets for the variables (39) are

$$
\begin{equation*}
\left\{z_{A}^{+}, z_{B}^{+}\right\}=2 \mathcal{D}_{A B}=\left\{z_{B}^{-}, z_{A}^{-}\right\} ; \quad\left\{z_{A}^{+}, z_{B}^{-}\right\}=0 \tag{40}
\end{equation*}
$$

if the matrix $\mathcal{D}_{A B}$ satisfies $\mathcal{D}_{A B}=(-)^{A B+1} \mathcal{D}_{B A}$. It is olear that the supernatrix $\mathcal{D}_{A B}$ oan be ohosen in the blook form

$$
\mathcal{D}_{A B}=\left(\begin{array}{cc}
\partial_{a b} & 0 \tag{41}\\
0 & \frac{1}{2} \partial_{\alpha \beta}
\end{array}\right\} ; \quad \partial_{a b}=-\partial_{b a} ; \partial_{\alpha \beta}=\partial_{\beta a}
$$

The aotion of the group $G=\operatorname{Osp}(N \mid K, \mathbb{R})_{+} \otimes \operatorname{Osp}(N \mid K, \mathbb{R})_{-}$on $\left(z_{A}^{+}, z_{B}^{-}\right)$ is such that $\operatorname{Osp}(N \mid K, \mathbb{R})_{+}$rotates z^{+}while $\operatorname{Osp}(N \mid K, \mathbb{R})_{-}$rotates z^{-}.

With the above ohoice for the group G and using Eqs. (38), (39) and (41) the aotion S_{2} (15) can be rewritten as (for the boundary oonditions (13)):

$$
\begin{align*}
S_{2}= & \int_{0}^{T} d t\left[\bar{z}_{a}(t) \dot{z}_{a}(t)+\frac{1}{2}\left\{z_{\alpha}^{+} \partial_{\alpha \beta}^{-1} \dot{z}_{\beta}^{+}+z_{\alpha}^{-} \partial_{\alpha \beta}^{-1} \dot{z}_{\beta}^{-}\right\}\right. \\
& \left.-\tau_{M}^{+} T_{+}^{M}-\tau_{\mu}^{-} T_{-}^{M}\right]-\frac{1}{2}\left[\bar{z}_{\alpha}^{f} z_{\alpha}(T)+\bar{z}_{\alpha}(0) z_{\alpha}^{i}\right] \tag{42}
\end{align*}
$$

Here the constraints

$$
\begin{equation*}
T_{ \pm}^{M}=\frac{1}{4} z_{A}^{ \pm} \Gamma_{A B}^{ \pm M} z_{B}^{ \pm} \tag{43}
\end{equation*}
$$

are expressed in terms of the matrices $\Gamma^{ \pm M}$ as

$$
\begin{equation*}
\Gamma_{A B}^{ \pm M} \equiv-\left(T^{ \pm M}\right)_{A C}\left(\mathcal{D}^{ \pm}\right)_{C B}^{-1} ; \quad\left(T^{ \pm M}\right)_{B A}=-\Gamma_{B C}^{ \pm M} \mathcal{D}_{C A}^{ \pm} \tag{44}
\end{equation*}
$$

where $\mathcal{D}^{+}=\mathcal{D}_{A B}$, and $\mathcal{D}^{-}=\mathcal{D}_{A B}^{\tilde{T}}$. In this notation we can rewrite Eqs. (40) in the form

$$
\left\{z_{A}^{ \pm}, z_{B}^{ \pm}\right\}=2 D_{\Delta B}^{ \pm} ; \quad\left\{z_{A}^{+}, z_{B}^{-}\right\}=0
$$

The matrices $\left\{T^{ \pm M}\right\}$ generate two Lie superalgebras of the $\operatorname{group} \operatorname{Osp}(N \mid K, \mathbb{R})_{+} \otimes \operatorname{Osp}(N \mid K, \mathbb{R})_{-}:$

$$
\begin{equation*}
\left[T^{ \pm M}, T^{ \pm N}\right]_{ \pm}=(\pm)^{M N} t_{K}^{U N} T^{ \pm K} \tag{45}
\end{equation*}
$$

We also mention that in (42) we have introduced the Lagrange multipliers $l_{M}^{ \pm}$related to the gauge fields $A^{ \pm}=l_{M}^{ \pm} T^{ \pm M}$ (see section 2).

It is also seen from (45) that the algebras T^{+}and T^{-}are distinguished only by their signs in the anticommutator. Such algebras are called dual in Cartan's sense ${ }^{12}$ and generate the self-dual supergroup $G=\operatorname{Osp}(N \mid K, \mathbb{R})_{+} \otimes \operatorname{Osp}(N \mid K, \mathbb{R})_{-}$. It is rather interesting to note that the fermionic string is based on the self-dual product of two superconformal groups while the $N=2$ Green-Sohwarz superstring can be oonstructed as a o-model on the self-dual produot of two $N=1$ supertranslation groups ${ }^{13}$.

One should bear in mind the following symmetric properties of the Γ--matrices

$$
\begin{align*}
& \Gamma_{A B}^{ \pm M}=(-)^{A B+A+B} \Gamma_{A B}^{\mp M}=(-)^{A B} \Gamma_{B A}^{ \pm U} \tag{46}\\
& \Gamma_{A B}^{ \pm M}=0 \text { iff }(M) \neq(A)+(B) .
\end{align*}
$$

The Poisson brackets for $T_{ \pm}^{N}$ are derived in full analogy with (19) as:

$$
\begin{equation*}
\left\{T_{ \pm}^{M}, T_{ \pm}^{N}\right\}=-(\pm)^{M N} t_{K}^{M N} T_{ \pm}^{K} ;\left\{\dot{T}_{+}^{M}, T_{-}^{N}\right\}=0 \tag{47}
\end{equation*}
$$

Returning to the Hamiltonian action S_{2} (42) we emphasize that S_{2} is invariant under the gauge transformations

$$
\begin{gather*}
\delta z_{A}^{ \pm}=\left\{f_{A}^{ \pm}(t) T_{A B}^{ \pm M} z_{B}^{ \pm}=F_{A B}^{ \pm} z_{B}^{ \pm}\right. \\
\delta A^{ \pm}=\dot{F}^{ \pm}+\left[P^{ \pm}, A^{ \pm}\right] \tag{48}
\end{gather*}
$$

if and only if the following boundary oonditions are fulfilled (compare with Eqs. (20), (21))

$$
\begin{array}{lll}
f_{m}^{+}(T)-f_{m}^{-}(T)=0 & ; & f_{m}^{+}(0)-f_{m}^{-}(0)=0 \\
f_{\mu}^{+}(T)+i f_{\mu}^{-}(T)=0 & ; & f_{\mu}^{-}(0)+i f_{\mu}^{+}(0)=0 \tag{49b}
\end{array}
$$

The oonditions (49a) are identioal to the boundary oonditions in the bosonio disorete string models ${ }^{2}$, and are analogous to the corresponding conditions in the bosonic string theory ${ }^{14}$. The complete system of equations of motion is given by the evolution equations (i2) (rewritten for the present oase, $G=O \operatorname{sp}(N \mid K, \mathbb{R})_{+}{ }^{\otimes}$
 - (22), (23) the Cauohy problem can be formally solved as

$$
\begin{align*}
z^{ \pm}(t) & =V_{ \pm}\left(t, t_{0}\right) z^{ \pm}\left(t_{0}\right) \\
V_{ \pm}\left(t, t_{0}\right) & =\operatorname{Pexp}\left\{\int_{t_{0}}^{t} d t^{\prime} l_{M}^{ \pm}\left(t^{\prime}\right) T^{ \pm \boldsymbol{M}_{Y}}\right\} \tag{50}
\end{align*}
$$

The finite gauge transformations corresponding to Eqs. (26) oan be represented as

$$
\begin{gather*}
z^{ \pm}(t) \rightarrow U_{ \pm}(t) z^{ \pm}(t) \\
V_{ \pm}\left(t, t_{0}\right) \rightarrow U_{ \pm}(t) V_{ \pm}\left(t, t_{0}\right) U_{ \pm}^{-1}\left(t_{0}\right) ; \quad U_{ \pm}(t)=\exp \left\{f_{M}^{ \pm}(t) T^{ \pm \boldsymbol{M}}\right\} \tag{51}
\end{gather*}
$$

Consider now the quantization of the above desoribed model. We shall be using essentially the results of seotion 3. The funotional integral is
$\mathscr{D}_{f i}=\int व \hat{\imath}_{\boldsymbol{M}}^{+} d \hat{l}_{\boldsymbol{M}}^{-} \int D l_{\boldsymbol{M}}^{+} D l_{\boldsymbol{M}}^{-} \prod_{t \cdot \boldsymbol{M}} \delta\left(l_{\boldsymbol{M}}^{+}(t)-(1 / T) \hat{\imath}_{\boldsymbol{M}}^{+}\right) \delta\left(l_{\boldsymbol{M}}^{-}(t)-(1 / T) \hat{l}_{\boldsymbol{M}}^{-}\right) K_{f i}$, (52a)

$$
\begin{equation*}
K_{f i}=\int \tilde{\mu} \exp \left(i S_{3}\right) \tag{52b}
\end{equation*}
$$

Here $K_{f \ell}$ is the relevant heat kernel and the measure $\tilde{\sim} \tilde{\mu}$ corresponds to integration over all paths $X(t)$ in the extended phase space $X=\left(z_{A}, \bar{z}_{A}, C_{\mathcal{K}}^{ \pm}, B_{ \pm}^{M}\right)$ with fixed end-points in the
coordinate space (see Eqs.(13)) and in the ghost coordinate space.
The aotion S_{3} in (52b) is the ghost extension of the aotion S_{2} in Eq. (42). Henoe with the help of the expression (33) we oan rewrite our aotion in the form (up to a ghost boundary term) as

$$
\begin{align*}
\tilde{S}_{3}= & \int_{0}^{T} d t\left[\bar{z}_{\alpha}(t) \dot{z}_{\alpha}(t)+\frac{1}{4}\left[z_{\alpha}^{+} \mathcal{D}_{\alpha \beta}^{-1} \dot{z}_{\beta}^{+}+z_{\alpha}^{-} \mathcal{D}_{\alpha \beta}^{-1} \dot{z}_{\beta}^{-}\right]+\left(B_{+}^{M} \dot{C}_{M}^{+}+B_{-}^{M_{M}^{*}} C_{M}^{-}\right)\right. \\
& \left.-\left\{l_{M^{+}}^{+} B_{+}^{M}, \Omega^{+}\right\}-\left\{l_{M}^{-} B_{-}^{M}, \Omega^{-}\right\}\right\}-\frac{1}{2}\left[\bar{z}_{\alpha}^{f} z_{\alpha}(T)+\bar{z}_{\alpha}(0) z_{\alpha}^{i}\right] \tag{53}
\end{align*}
$$

where $\Omega^{ \pm}=(-)^{N}\left[T_{ \pm}^{N}-(\pm)^{H N} \frac{1}{2} B_{ \pm}^{L} t_{L}^{M N} C_{M}^{ \pm}\right] C_{N}^{ \pm}$are the standard BRST oharges corresponding to. our oonstraints, $T_{ \pm}^{N}$ and the Poisson superbrackets for the ghosts are

$$
\begin{equation*}
\left\{C_{N}^{ \pm}, B_{ \pm}^{M}\right\}=\delta_{N}^{M} ; \quad\left\{C_{N}^{ \pm}, B_{\mp}^{M}\right\}=0 \tag{54}
\end{equation*}
$$

The ghost equations of motion

$$
\begin{equation*}
\dot{C}_{\boldsymbol{M}}^{ \pm}=(\pm)^{N L_{2}} l_{N}^{ \pm} t_{M}^{N L_{C^{\prime}}^{ \pm}} ; \quad \dot{B}_{ \pm}^{M}=-(\pm)^{M N} B_{ \pm}^{L} l_{N}^{ \pm} t_{L}^{N M} \tag{55}
\end{equation*}
$$

oan be solved explioitly to give

$$
\begin{gather*}
C^{ \pm}(t)=\tilde{V}_{ \pm}\left(t, t_{0}\right) C^{ \pm}\left(t_{0}\right) ; \quad B_{ \pm}(t)=B_{ \pm}\left(t_{0}\right)\left[\tilde{V}_{ \pm}\left(t, t_{0}\right)\right]^{-1} \\
\tilde{V}_{ \pm}\left(t, t_{0}\right)=\operatorname{Pexp}\left\{\int_{t_{0}}^{t} d t^{\prime} \tau_{M}^{ \pm}\left(t^{\prime}\right) \tilde{T}^{ \pm M_{1}}\right. \tag{56}
\end{gather*}
$$

where $\left(\tilde{T}^{ \pm M}\right)_{N}^{L}=(\pm)^{M L} t_{N}^{N L}$ are the generators of the two dual gauge supergroups in the adjoint representation. It is worth mentioning here that the aotion \tilde{S}_{3} (see Eq. (53)) is invariant under the gauge transformations (48) and (oompare with Eq. (55))

$$
\begin{equation*}
\delta C_{M}^{ \pm}=(\pm)^{N L} f_{N} \pm t_{M}^{N L} C_{L}^{ \pm} ; \quad \delta B_{ \pm}^{M}=-(\pm)^{M N} B_{ \pm}^{L} f_{N}^{ \pm} t_{L}^{N M} \tag{57}
\end{equation*}
$$

In order to fix the boundary oonditions for ghosts it is appropriate now to ohange the ohiral ghost variables $B_{ \pm}^{M}$ and $C_{\boldsymbol{X}}^{ \pm}$to standard canonioal coordinates ($\rho_{\boldsymbol{K}}, \bar{\rho}^{\boldsymbol{M}}$) and momenta ($\pi^{\boldsymbol{M}}, \pi_{\boldsymbol{M}}$) by using the following linear oanonioal supertransformations:

$$
\begin{equation*}
B_{ \pm}^{M}=\mp a_{ \pm}^{M} \bar{\rho}^{M}+b_{ \pm}^{M} \pi^{M} ; \quad C_{M}^{ \pm}=\alpha_{\mp}^{M} \rho_{M} \mp(-)^{M} b_{\mp}^{M} \pi_{M} \tag{58}
\end{equation*}
$$

(there is no summation over M). It is necessary to have

$$
a_{+}^{M} b_{-}^{M}+b_{+}^{M} a_{-}^{M}=1
$$

so as to obtain the canonical Poisson superbrackets related to (54) as:

$$
\begin{equation*}
\left\{\rho_{M}, \pi^{N}\right\}=\left\{\bar{\rho}^{N}, \bar{\pi}_{M}\right\}=\delta_{M}^{N} \tag{59b}
\end{equation*}
$$

In accordance with the boundary conditions (49a,b) the spaces $\mathcal{I}_{(\rho, \bar{\rho})}^{i, f}$ and $\mathcal{I}_{(\pi, \bar{\pi})}^{i, j}$ must be invariant under the gauge transformations G_{i} and $G_{\mathbf{P}}$. Then, consider the transformations (57) for coordinates $\rho, \bar{\rho}$ and momenta $\pi, \bar{\pi}$:

$$
\begin{align*}
& \delta \bar{\rho}^{M}=\delta\left(-b_{-}^{M} B_{+}^{M}+b_{+}^{M} B_{-}^{M}\right) \\
& =-\left(b_{-}^{\bar{M}} a_{+}^{L_{+}^{L}} f_{N}^{+}+(-)^{M N} b_{+}^{M} a_{-}^{L} f_{N}^{-}\right) \bar{\rho}^{L} t_{L}^{N M} \\
& +\left(b_{-}^{M} b_{+}^{L} f_{N}^{+}-(-)^{N N} b_{+}^{N} b_{-}^{L} f_{N}^{-}\right) \pi^{I} t_{L}^{N M} \tag{60a}\\
& \delta \rho_{M}=\delta\left(b_{+}^{M} C_{M}^{+}+b_{-}^{M} C_{M}^{-}\right) \\
& =\left(b_{+}^{M} a_{-}^{L} f_{N}^{+}+(-)^{N L} b_{-}^{M} a_{+}^{L} f_{N}^{-}\right) \rho_{L} t_{N}^{N L} \\
& +\left((-)^{L+1} b_{+}^{M} b_{-}^{L} f_{N}^{+}+(-)^{N L+L_{z}^{M}} b_{+}^{L} f_{N}{ }^{-}\right) \pi_{L}^{-} t_{\boldsymbol{\mu}}^{N L} \tag{60b}\\
& \delta \pi^{M}=\delta\left(\alpha_{-}^{M} B_{+}^{M}+\alpha_{+}^{M} B_{-}^{M}\right) \\
& =\left(\alpha_{-}^{M} a_{+}^{L} f_{N}^{+}-(-)^{N N} \alpha_{+}^{M} a_{-}^{L} f_{N}^{-}\right) \bar{\rho}^{L} t_{工}^{N M} \\
& -\left(a_{-}^{M} b_{+}^{L} f_{N}^{+}+(-)^{M N} a_{+}^{M} b_{-}^{L} f_{N}^{-}\right) \pi^{L} t_{L}^{N M} \\
& \delta \bar{\pi}_{M}=(-)^{M} \cdot \delta\left(-\alpha_{+}^{M} C_{M}^{+}+a_{-}^{M} C_{M}^{-}\right) \\
& =\left((-)^{M+1} a_{+}^{M} a_{-}^{L} f_{N}{ }^{+}+(-)^{M+N L} \alpha_{-}^{M} a_{+}^{L} f_{N}{ }^{-}\right) \rho^{L} t_{M}^{N L} \\
& +\left((-)^{\boldsymbol{M + L}} \alpha_{+}^{\boldsymbol{M}} b_{-}^{L} f_{N}^{+}+(-)^{\boldsymbol{M}+L+N L} \alpha_{-}^{M} b_{+}^{L} f_{N}^{-}\right)^{-} \pi_{L} t_{M}^{N L} \tag{60d}
\end{align*}
$$

When $t=0$ and $t=T$, the transformations (60) must leave the spaces $\{\rho, \bar{\rho}\}$ and $\{\pi, \bar{\pi}\}$ as invariant i.e. $8 \bar{\rho} \propto \bar{\rho}, \delta \rho \propto \rho, \delta i \pi \propto, \delta \bar{\pi} \propto \bar{\pi}$. This statement when oombined with (49a,b) leads to the following conditions:

$$
\begin{align*}
t=0, T: & b_{-}^{m} b_{+}^{n}=b_{-}^{n} b_{+}^{m} ; b_{-}^{\mu} b_{+}^{\lambda}=b_{+}^{\mu} b_{-}^{\lambda} ; \\
& a_{-}^{m} a_{+}^{n}=a_{+}^{m} a_{-}^{n} ; a_{-}^{\mu} a_{+}^{v}=a_{-}^{v} a_{+}^{\mu} ; \tag{61}\\
t=0: & b_{-}^{\mu} b_{+}^{l}=i b_{+}^{\mu} b_{-}^{l} ; a_{+}^{m} a_{-}^{\lambda}=i a_{-}^{m} a_{+}^{\lambda} ; \\
t=T: & b_{+}^{\mu} b_{-}^{l}=i b_{-}^{\mu} b_{+}^{l} ; a_{-}^{m} a_{+}^{\lambda}=i a_{+}^{m} a_{-}^{\lambda} .
\end{align*}
$$

Note that the constant vectors $\alpha_{ \pm}^{M}$ and $b_{ \pm}^{I}$ in (58) are different for the $t=0$ and for the $t=T$ osses. Taking into account the condition (59a) we solve (61) and obtain the general solution

$$
\begin{align*}
& t=0, T: \quad a_{ \pm}^{m}=\mathscr{X}^{m} a_{ \pm} ; b_{ \pm}^{m}=\left(1 / \mathscr{X}^{m}\right) b_{ \pm} ; a_{+} b_{-}+b_{+} a_{-}=1 \\
& t=0: a_{ \pm}^{\lambda}=(F)^{1 / 2} \mathscr{X}^{\lambda} a_{ \pm} ; b_{ \pm \pm}^{\lambda}=\left[(\pm)^{1 / 2} \mathscr{X}^{\lambda}\right]^{-1} b_{ \pm} \tag{62}\\
& t=T: a_{ \pm}^{\lambda}=(\pm)^{1 / 2} X^{\lambda} a_{ \pm} ; b_{ \pm}^{\lambda}=\left[(F)^{1 / 2} \mathscr{X}^{\lambda}\right]^{-1} b_{ \pm}
\end{align*}
$$

where \boldsymbol{X}^{M} is an arbitrary constant veotor and we have used the convention $(-1)^{1 / 2}=-t$. The solution (62) may be equivalently written as:

$$
\begin{align*}
& t=0: a_{ \pm}^{M}=(\mp)^{M / 2} x^{M} a_{ \pm} ; b_{ \pm}^{M}=\left[(\pm)^{M / 2} x^{M}\right]^{-1} b_{ \pm} \\
& t=T: a_{ \pm}^{M}=(\pm)^{M / 2} x^{M} a_{ \pm} ; b_{ \pm}^{M}=\left[(\mp)^{M / 2} x^{M}\right]^{-1} b_{ \pm} \tag{63a}
\end{align*}
$$

with $\mathfrak{X}^{\boldsymbol{M}}$ some arbitrary constant vector and $a_{+} b_{-}+b_{+} a_{-}=1$. Note that we are free to redefine the ghost coordinates and momenta so that $x^{\boldsymbol{K}}=1$. The boundary conditions for the ghosts are ohosen in the form:

$$
\begin{equation*}
\bar{\rho}^{M}(T)=\bar{\rho}^{\jmath M} ; \quad \bar{\rho}^{M}(0)=\bar{\rho}^{i M} ; \quad \rho_{M}(T)=\rho_{M}^{f} ; \quad \rho_{M}(0)=\rho_{M}^{i} \tag{63b}
\end{equation*}
$$

Thus, we arrive at the correct aotion $\stackrel{\sim}{S}_{3}$ with the appropriate ghost boundary conditions acoording to the equations (58), (63):

$$
\begin{equation*}
\stackrel{N}{S}_{3}=\tilde{S}_{3}+\left[\bar{\pi}_{\boldsymbol{u}}(T) \bar{\rho}^{\boldsymbol{u}}(T)-\bar{\pi}_{\boldsymbol{u}}(0) \bar{\rho}^{\boldsymbol{u}}(0)\right] \tag{64}
\end{equation*}
$$

Substituting the solutions (50),(56) of the equations of motion in the action (64) we obtain the olasbical action

$$
\begin{align*}
S^{01}= & \frac{1}{2}\left[\bar{z}_{a}(T) z_{a}^{f}-\bar{z}_{a}(0) z_{a}^{l}\right]-\frac{1}{2}\left[\bar{z}_{\alpha}^{f} z_{a}(T)+\bar{z}_{\alpha}(0) z_{\alpha}^{l}\right] \\
& +\left[\bar{\pi}_{M}(T) \bar{\rho}^{f M}-\bar{\pi}_{M}(0) \bar{\rho}^{i M}\right] \tag{65}
\end{align*}
$$

It now beoomes necessary to express the coordinates $\bar{z}_{a}(T)$, $\bar{z}_{a}(0), z_{\alpha}(T), \bar{z}_{\alpha}(0), \bar{\pi}_{M}(T)$ and $\bar{\pi}_{\boldsymbol{M}}(0)$ into Eq. (65) in terms of boundary variables (13), (63b). To achieve this it is oonvenient to, introduce new variables

$$
\begin{equation*}
Y_{A}=\left(z_{a}, D_{\alpha \beta}^{-1} \bar{z}_{\beta}\right) ; \quad Y_{A}=\left(\bar{z}_{A}, D_{\alpha \beta} z_{\beta}\right) \tag{66}
\end{equation*}
$$

and we have in terms of these variables

$$
\begin{array}{cc}
z_{A}^{+}=Y_{A}+\mathcal{D}_{A B} Y_{B} ; & z_{A}^{-}=(i)^{A}\left(Y_{A}-\mathcal{D}_{A B} Y_{B}\right) ; \\
Y_{A}(T)=Y_{A}^{f} & \text { (see eq. (13)). } \tag{67}
\end{array}
$$

Then (65) oan be rewritten in the form

$$
\begin{equation*}
S^{\mathrm{cl}}=\frac{1}{2}\left[Y_{A}(T) Y_{A}^{\rho}-\bar{z}_{A}(0) z_{A}^{i}\right]+\left[\bar{\pi}_{\boldsymbol{N}}(T) \bar{\rho}^{f M}-\bar{\pi}_{\boldsymbol{M}}(0) \bar{\rho}^{\imath M}\right] \tag{68}
\end{equation*}
$$

The Cauohy solutions (50) oan be reoast as

$$
\begin{gather*}
Y(T)+\mathcal{D} Y^{f}=V_{+}\left(\bar{z}(0)+\mathcal{D} z^{i}\right), \\
I^{-1}\left(Y(T)-\mathcal{D} Y^{f}\right)=V_{-} I\left(\bar{z}(0)-\mathcal{D} z^{\ell}\right), \tag{69}
\end{gather*}
$$

where $I_{A B}=(-i)^{A_{\delta}} \delta_{A B}=(-1)^{A / 2} \delta_{A B}, \quad V_{ \pm}=\operatorname{Pexp}\left\{\int_{0}^{T} d t^{\prime} f_{M}^{ \pm}\left(t^{\prime}\right) T^{M}\right\}$. We also use $J_{A B}=(-)^{A^{A}} A_{A B}$ so that $I^{-1}=I J$ and $J^{2}=1$. Matrioes I and J are useful in the algebra of anticommuting variables (see the first referenoe in Refs.12).

Aooordingly with Eqs. (63a) the solutions (56) now beoome:

$$
\begin{align*}
& a_{-} \tilde{I} \rho^{f}-b_{-} \tilde{J} \bar{\pi}(T)=\tilde{V}_{+}\left(a_{-} \rho^{i}-b_{-} \tilde{I} \bar{\pi}(0)\right) \\
& a_{+} \rho^{f}+b_{+} \tilde{I} \bar{\pi}(T)=\tilde{V}_{-}\left(a_{+} \tilde{I} \rho^{i}+b_{+} \tilde{J} \bar{\pi}(0)\right) \tag{70}
\end{align*}
$$

with $\tilde{I}_{M N}=(-i)^{\mathbf{I}_{\delta_{M N}}}, \tilde{J}_{M N}=(-)^{N_{\delta_{M N}}}, \tilde{V}_{ \pm}=\operatorname{Pexp}\left\{\int_{0}^{T} d t \cdot f_{M}^{ \pm}\left(t^{\prime}\right) \tilde{T}^{ \pm}{ }^{\mathbf{N}}\right\}$.

Equations (69) and (70) give the following relations

$$
\begin{aligned}
& \bar{z}(0)=\frac{2}{V-I V I}\left[\mathcal{D} Y^{f}-\frac{1}{2}\left(V_{+}+I V_{-} I\right) D z^{i}\right], \\
& Y(T)=\left[V_{+}+I V_{-} I\right] \frac{1}{V_{+}-I V_{-} I} D Y^{f}-V_{+} \frac{2}{V_{+}-I V_{-} I} I V_{-} I D z^{i}, \\
& \bar{\pi}(0)=\frac{1}{\tilde{I}^{-1} \tilde{V}_{+} \tilde{I}-\tilde{V}_{-} \tilde{J}}\left[\left(C_{-} \tilde{I}^{-1} \tilde{V}_{+}+C_{+} \tilde{V}_{-} \tilde{I}\right) \rho^{i}-\left(C_{+}+C_{-}\right) \rho^{f}\right]^{2} \\
& \bar{\pi}(T)=\frac{1}{\tilde{I}^{-1} \tilde{V}_{-}^{-1} \tilde{I}-\tilde{V}_{+}^{-1} \tilde{J}}\left[\rho^{i}\left(C_{+}+C_{-}\right)-\left(C_{-} \tilde{V}_{+}^{-1} \tilde{I}+C_{+} \tilde{I}^{-1} \tilde{V}_{-}^{-1}\right) \rho^{f}\right],
\end{aligned}
$$ where $c_{ \pm}=a_{ \pm} / b_{ \pm}$. Using (71) in (68) one has for $S^{\text {ol }}$

$$
\begin{aligned}
S^{\mathrm{ol}} & =\frac{1}{2}\left[Y^{f} J V_{+}+I V_{-} I\right) \frac{1}{V_{+}-I V_{-} I} \mathcal{D} Y^{f} \\
& -Y^{f} J \frac{2}{\left(I V_{-} I\right)^{-1}-V_{+}^{-1}} \mathcal{D} z^{i}-z^{i} J \frac{2}{V_{+}-I V_{-} I} \mathcal{D} Y^{f} \\
& \left.+z^{i} J \frac{1}{V_{+}-I V_{-} I}\left(V_{+}+I V_{-} I\right) \mathcal{D} z^{i}\right] \\
& +\left[\bar{\rho}^{f\left(C_{-} \tilde{I} \tilde{V}_{-} \tilde{I}_{+} C_{+} \tilde{V}_{+}\right) \frac{1}{\tilde{V}_{+}-\tilde{I}_{\tilde{V}} \tilde{I}} \tilde{I}^{f}}\right. \\
& -\bar{\rho}^{f} \frac{\left(C_{+}+C_{-}\right)}{\left(\tilde{I}_{-} \tilde{I}\right)^{-1}-\tilde{V}_{+}^{-1}} \rho^{i}-\bar{\rho}^{i} \tilde{I} \frac{\left(C_{+}+C_{-}\right)}{\tilde{V}_{+}-\tilde{I} \tilde{V}_{-} \tilde{I}} \tilde{I} \rho^{f} \\
& \left.+\bar{\rho}^{i} \tilde{I} \frac{1}{\tilde{V}_{+}-\tilde{I} \tilde{V}_{-} \tilde{I}}\left(C_{-} \tilde{V}_{+}+C_{+} \tilde{I} \tilde{V}_{-} \tilde{I}\right) \rho^{i}\right] .
\end{aligned}
$$

In order to simplify this expression one can redefine $\bar{\rho}^{i} \tilde{I} \rightarrow \rho^{i}$ and $\tilde{I} \rho^{f} \rightarrow \rho^{f}$. Then, using the identity $Y J D Y=0$ we oan rewrite (72) in the oonoise form

$$
\begin{align*}
S^{0 I_{2}} & =\left(Y^{f} I^{-1} V_{-} I-z^{i} J\right) \frac{1}{V_{+}-I V_{-} I}\left(D Y^{f}-V_{+} \mathcal{D} z^{i}\right) \\
& +\left[C_{+}\left(\bar{\rho}^{f} \tilde{I} \rho^{f}-\bar{\rho}^{i} \tilde{I} \rho^{i}\right)\right. \tag{72a}\\
& +\left(C_{+}+C_{-}\right)\left(\bar{\rho}^{f} \tilde{I} V_{-} \tilde{I}-\bar{\rho}^{i} \tilde{I}\right) \frac{1}{\tilde{V}_{+}-\tilde{I} \tilde{V}_{-} \tilde{I}}\left(\tilde{I} \rho^{f}-\tilde{V} \rho^{i}\right) .
\end{align*}
$$

The heat kernel $K_{\rho i}$ in (52) is now rewritten in the form:

$$
\begin{equation*}
K_{f i}\left(Y_{A}^{i}, \bar{\rho}^{f M}, \rho_{M}^{f}, z_{A}^{i}, \bar{\rho}^{i M}, \rho_{M}^{i}\right)=\mathbb{Z} \exp \left(i S^{\mathrm{cl}}\right) \tag{73}
\end{equation*}
$$

To find the faotor \mathbb{Z} we use the differential equations on $K_{f i} \cdot T o$ derive these equations first note that

$$
\begin{equation*}
K_{f i}=\left\langle Y^{f}, \bar{\rho}^{f}, \rho^{f}\right| P \exp \left\{-i \int_{0}^{T} d t^{\prime} \mathcal{H}\left(t^{\prime}\right)\right\}\left|z^{i}, \bar{\rho}^{i}, \rho^{i}\right\rangle \tag{74}
\end{equation*}
$$

where the operator $\mathcal{H}\left(t^{\prime}\right)$ has the form

$$
\begin{equation*}
\mathcal{H}\left(t^{\prime}\right)=\eta_{M}^{+} T_{+}^{M}+\eta_{M}^{-} \tau_{-}^{M}+B_{+}^{M} \eta_{N}^{+} t_{M}^{N L} C_{L}^{+}-B_{-}^{M} \eta_{N}^{-} t_{M}^{L N} C_{L}^{-} \tag{75}
\end{equation*}
$$

The momentum variables $\bar{z}_{A}, \pi^{N}, \bar{\pi}_{M}$, are operators here and using the standard rule for quantizing dynamioal variables i.e. $[]=,i\{$,$\} , we oan write in the Sohroedinger representation$

$$
\begin{equation*}
\bar{z}_{A}=(-)^{A+1} i \frac{\vec{\partial}}{\partial z_{A}} ; \pi^{N}=(-)^{N} i \frac{\vec{\partial}}{\partial \rho_{N}} ; \bar{\pi}_{M}=(-)^{M_{i}} \frac{\vec{\partial}}{\partial \bar{\rho}^{M}} . \tag{76}
\end{equation*}
$$

We derive from Eq. (74)

$$
\begin{equation*}
\frac{\partial}{\partial T} K_{f i}=-i \mathcal{H}(t) K_{f i} \tag{77}
\end{equation*}
$$

From Eq. (77) one finds that modulo a constant

$$
\begin{equation*}
\mathbb{Z}=\operatorname{Ber}^{d / 2}\left[\frac{1}{V_{+}-I V_{-} I} \mathcal{D}\right] \operatorname{Ber} \cdot\left[\tilde{V}_{+}-\tilde{I} \tilde{V}_{-} \tilde{I}\right] \tag{78}
\end{equation*}
$$

The expressions (72), (73) and (78) for \mathbb{Z} gives the supersymmetrio generalization of the corresponding result for the bosonic case ${ }^{2.4}$ It should, however, be noted that the operator ($\tilde{V}_{+}-\tilde{I} \tilde{V}_{-} \tilde{I}$) has zero eigenstates. The prime in Eq. (78) means that the oorresponding zero eigenvalues must be removed from the superdeterminant in the
standard way. Then, it is neoessary to multiply $K_{f i}$ by the δ-function $\delta\left(\bar{\rho}_{\mathrm{O}}^{i}-\bar{\rho}_{\mathrm{O}}^{f}\right) \delta\left(\rho_{\mathrm{O}}^{i}-\rho_{\mathrm{O}}^{f}\right)$ where $\bar{\rho}_{\mathrm{O}}, \rho_{\mathrm{O}}$ are ghost zero modes. The appropriate prooedure for bosonic disorete "strings" was oonsidered in Ref. 4.

Note that considering the infinite dimensional case we substitute instead of the algebra $\operatorname{Osp}(N \mid K, \mathbb{R})$ the infinite dimensional $N=1$ superconformal algebra Superconf.(S^{1}). one oan show, after tedious oaloulations, that the functional \mathbb{Z} (78) is equal to the partition function for the fermionio string theory ${ }^{14}$.

In order to obtain the propagator, $\mathfrak{D}_{f i}$, one has to perform the integration over the Lagrange multipliers $l^{ \pm}$in Eq. (52a) i.e:

$$
\begin{equation*}
\mathfrak{D}_{\rho t}=\int d \hat{l}^{+} d \hat{l}^{-} \operatorname{Ber}^{d / 2}\left[\frac{1}{V_{+}-I V_{-} I} \operatorname{D}\right] \operatorname{Ber}\left[\tilde{V}_{+}-I \tilde{V}_{-} I\right] \exp \left(t S^{\mathrm{cl}}\right) \tag{79}
\end{equation*}
$$

where $V_{ \pm}=\exp \left(\hat{l}_{M}^{ \pm} T^{\mathbb{M}}\right), \tilde{V}_{ \pm}=\exp \left(\hat{l}_{M}^{ \pm} \tilde{T}^{\mathcal{M}}\right)$ are elements of the gauge group $G \in \operatorname{Osp}(N \mid K, \mathbb{R})_{+} \otimes \operatorname{Osp}(N \mid K, \mathbb{R})_{-}$.

Let us now consider the case when the operator $\partial_{a b}$ has eigenstates z_{a}^{0} with zero eigenvalue. The presence of such states enables the introduotion in our system of oonserved total momentum ${ }^{4}$. In this oase it is possible to impose the further condition that in (79) all boundaries reduce to points. This means that

$$
\begin{equation*}
Y_{A}^{f}=\left(Q^{f} z_{a}^{0}, 0\right) ; z_{a}^{i}=\left(Q^{i} z_{a}^{0}, 0\right) ; \rho \sim \rho_{0} ; \bar{\rho} \sim \bar{\rho}_{0} . \tag{80}
\end{equation*}
$$

The propagator now takes the form:

$$
\begin{equation*}
\mathfrak{D}_{f i}=\delta\left(\bar{\rho}_{0}^{\imath}-\bar{\rho}_{\mathrm{O}}^{f}\right) \delta\left(\rho_{\mathrm{O}}^{\imath}-\rho_{\mathrm{O}}^{f}\right) \int d \hat{l}+d \hat{l}-\exp \left[S_{m a t r i x}\right] \tag{81}
\end{equation*}
$$

with

$$
\begin{align*}
S_{m a t r i x} & =(d / 2) \text { str } \ln \left[\frac{1}{V_{+}-I V_{-} I} D\right]+s t r_{a d j} \ln \left[\tilde{V}_{+}-I \tilde{V}_{-} I\right] \\
& +S^{\mathrm{ol}}\left(Q^{f}, Q^{i}\right) \tag{82}
\end{align*}
$$

where (compare with Eq. (3.18) of Ref.4)

$$
S^{\mathrm{ol}}\left(Q^{f}, Q^{i}\right)=\left(Q^{f}-Q^{i}\right)^{2} /\left(2 l^{0}\right)
$$

and τ° is some functional of the Lagrange multipliers $\hat{l}_{ \pm}^{M}$. This funotional l^{0} is invariant under the gauge transformations (51).

The funotional integral of our system is represented by the expression (81). We thus arrive at the conolusion that our system is equivalent to some "zero-dimensional" matrix field model with the functional integral (81) and with the aotion (82). We emphasize that our model as desoribed by (81) and (82) can be oonsidered as the super extension of "zero-dimensional" matrix field theories ${ }^{15}$.

We have to consider matrix field theories with two orthosymplectio matrioes. The parameters in our theory are the dimensions (N, K) of the gauge group Osp $(N \mid K)$, space-time dimension d and the arbitrary parameters defining the sympleotio matrix D. It would be interesting to investigate the double scaling limit ${ }^{16}$ in our model.

Finally, note that Eq. (77) can be rewritten in the form:

$$
\begin{align*}
& {\left[\operatorname{str}\left\{T^{ \pm M} V_{ \pm} \frac{\partial}{\partial V_{ \pm}}\right\}+\operatorname{str} \text { adj. }\left\{\tilde{T}^{ \pm M} \tilde{V}_{ \pm} \frac{\vec{\partial}}{\vec{\partial} \tilde{V}_{ \pm}}\right\}\right] K_{f i}} \\
& =(-i)\left[T_{ \pm}^{M}+T_{ \pm}^{M} \text { ghosts }\right] K_{f i} \tag{83}
\end{align*}
$$

where $T_{ \pm}^{M}$ are delined in eqs. (43) and

$$
T_{ \pm \text {ghoste }}^{N}=(\pm)^{N L} B_{ \pm}^{M} l_{N}^{ \pm} t_{\boldsymbol{M}}^{N L} C_{L}^{ \pm}
$$

The extra terms conneoted with conformal anomalies will appear in (83) in the infinite-dimensional case $G=$ Supoonf $\left(S^{1}\right) \otimes \operatorname{Supoonf}\left(S^{1}\right)$, as it would be neoessary to make normal ordering presoriptions for the operators $T_{ \pm}^{M}$ and $T_{ \pm g h o s t s}^{\mathcal{M}}$ and perform regularization prooedure for the divergent expression for \mathbb{Z} (78).

At the end of this seotion we would like to disouss briefly
the possible interpretation of Eq. (83). Let us rewrite Eq. (83) in the form:

$$
\begin{equation*}
\tau_{ \pm t o t}^{M} K_{f i}=\left[T_{V_{ \pm}}^{M}+T_{\tilde{v}_{ \pm}}^{M}+T_{ \pm}^{M}+\tau_{ \pm \text {ghosts }}^{M}\right] K_{f i}=0 \tag{84}
\end{equation*}
$$

where we introduce

$$
\begin{array}{ll}
T_{V_{ \pm}}^{M}=\operatorname{str}\left\{T^{ \pm M} V_{ \pm} \Pi^{ \pm}\right\}, & \Pi^{ \pm}=-i \frac{\vec{\partial}}{\vec{\partial} V_{ \pm}}, \\
T_{\tilde{V}_{ \pm}}^{M}=\operatorname{str} \tag{85}\\
a d y . & \left.\tilde{T}^{ \pm \mu} \tilde{V}_{ \pm} \tilde{\Pi}^{ \pm}\right\}, \quad \tilde{\Pi}^{ \pm}=-i \frac{\vec{\partial}}{\vec{\partial} \tilde{V}_{ \pm}}
\end{array}
$$

The variables $\Pi^{ \pm}$and $\tilde{\Pi}^{ \pm}$can be oonsidered as momenta conjugate to $V_{ \pm}(t)=V_{ \pm}(t, 0)$ and $\tilde{V}_{ \pm}(t)=\tilde{V}(t, 0)$. The solution of (84) oan be written in the form

$$
K_{f i}=\langle f|\left[\int_{t}\left\{d l_{\boldsymbol{M}}^{+} d l_{\boldsymbol{M}}^{-}\right\} \operatorname{Texp}\left\{i \int d t\left(l_{\boldsymbol{M}}^{+}(t) T_{+t o t}^{M}+l_{M}^{-}(t) T_{-t o t}^{M}\right)\right\}\right]|i\rangle
$$

$$
\begin{equation*}
=\int q \mu \prod_{t}\left\{d l_{\boldsymbol{M}}^{+} d l_{\boldsymbol{M}}^{-}\right\} \exp \left\{t S_{t o t}\right\} \tag{86}
\end{equation*}
$$

where $\prod_{t}\left\{d l_{\boldsymbol{M}}^{+} d l_{\boldsymbol{M}}^{-}\right\}$is a product of the left invariant measures over the group $G_{+} \otimes G_{-}$generated by the operators $\left\{T_{ \pm t o t}^{\mathcal{M}}\right\}, D \mu$ is a measure over the trajectories $X(t)$ in the phase space with coordinates $X=\{z, \bar{z}, \pi, \rho, \bar{\pi}, \bar{\rho}, \nabla, \tilde{\nabla}, \Pi, \tilde{\Pi}\}$ satisfying the boundary conditions (13a,b), (63b), and

$$
\begin{gather*}
V_{ \pm}(0)=\tilde{V}_{ \pm}(0)=1 ; \tag{87a}\\
V_{ \pm}(T)=V_{ \pm}, \quad \tilde{V}_{ \pm}(T)=\tilde{V}_{ \pm} \tag{87b}
\end{gather*}
$$

The aotion $S_{t o t}$ in Eq. (86) has the form:

$$
S_{t o t}=\stackrel{N}{S}_{3}+S_{g r a v}
$$

where $\stackrel{\sim}{S}_{3}$ is defined in Eq. (64) while $S_{\text {grav }}$ is the action of "one-dimensional supergravity" (one-dimensional orthosymplectic
matrix field theory).

$$
\begin{aligned}
& S_{g r a v}=\int_{0}^{T} d t\left[\cdot \operatorname{str}\left\{\left(\dot{V}_{+} \Pi^{+}+\dot{V}_{-} \Pi^{-}\right)-\left(l_{M}^{+} T^{+M} V_{+} \Pi^{+}+l_{M}^{-} T^{-M} V_{-} \Pi^{-}\right)\right\}\right. \\
& \left.\quad+\operatorname{str}_{a d j}\left\{\left(\dot{\tilde{V}}_{+} \tilde{\Pi}^{+}+\dot{\tilde{V}}_{-} \tilde{\Pi}^{-}\right)-\left(l_{M}^{+} \tilde{T}^{+M} \tilde{V}_{+} \tilde{\Pi}^{+}+l_{M}^{-} \tilde{T}^{-M} \tilde{V}_{-} \tilde{\Pi}^{-}\right)\right\}\right]
\end{aligned}
$$

It should be noted that the variation of $S_{\text {grav }}$ over momenta $\Pi^{ \pm}$and $\tilde{\Pi}^{ \pm}$gives rise to the equations

Now taking into aooount the initial oonditions (87), the solutions of (89) are represented in the form (50) and (56).

In the infinite dimensional oase of the olosed fermionic string, when the gauge group $G_{+} \otimes G_{-}$will be isomorphio to Superoonf $\left(S^{1}\right) \otimes$ Superoonf $\left(S^{1}\right)$, additional terms related to the oonformal anomaly terms in Eq. (83) will appear in the aotion (88). Our view is that in this oase we would obtain, instead of (88), the aotion desoribing two-dimensional $N=1$ superoonformal gravity oonsidered in Ref.17. We hope to study this conjeoture in our subsequent publioations.

5. Conclusions

In this paper we have tried to set up a general approaoh to gauge systems with quadratio constraints. For simplioity, we oonsider dynamical (super)systems with a finite number of degrees of freedom. We oan interpret these systems as models of the bound states of a oolleotion of relativistio partioles. It is rather interesting to note that for investigations of physioal models of bound states it is possible to use teohniques and methods developed for string theories.
our basio results may be summarized as follows:
1.Speoifioally, we have solved the quantization problem for a ohiral fermionio disorete system with the gauge group $\mathrm{G}=\operatorname{Osp}(N \mid K, \mathbb{R})_{+} \otimes \operatorname{Osp}(N \mid K, \mathbb{R})_{-}$. In this case, it is possible to fix the boundary oonditions for ghosts unambiguously and find the explioit form of the propagator. With this, the effioaoy and validity of the approach as propounded in Refs.2-4 is thereby established and the supersymmetrio generalization of Refs. 2 and 4 obtained.
2. We have also shown that when zero-mode states are present (so that a conserved total momentum exists), it is possible to impose point boundary oonditions on the funotional integral and the resulting theory is then a natural super-extension of the ordinary "zero-dimensional" matrix field theory ${ }^{15}$. The parameters of this theory are the dimensions (N, K) of the gauge group $\operatorname{Osp}(N, K)$, space-time dimension d and the arbitrary parameters defining the sympleotio matrix D.
3.Using the differential equation for the propagator, we have oonstruoted the one-dimensional orthosympleotio matrix field theory whioh oan be interpreted as "one dimensional supergravity".

On the other hand, the ohiral fermionic disorete models oonsidered in this paper are very similar to the fermionio string models if we use the gauge group Superconf $\left(S^{1}\right) \otimes$ superconf $\left(S^{1}\right)$ (speoific to fermionio strings) instead of the finite dimensional gauge group $\operatorname{Osp}(N \mid K) \otimes \operatorname{Osp}(N \mid K)$ considered here. When this aspeot is taken into acoount, there arises the interesting prospect of trying to oonstruot the interacting field theory (i.e. 3-vertex operator) for our disorete models invariant under the gauge group $\operatorname{Osp}(N \mid K) \otimes \operatorname{Osp}(N \mid K)$. We think that this would be very userul for
exploring interaoting string field theory from an algebraio point of view.

References

1.A.Alekseev, L.Faddeev, S.Shatashvili, J.Geom.Phys. 5(1989) 391. c.Thorn, Nucl.Phys.B263 (1986) 493.
G.P.Pron'ko and A.V.Razumov, Teor.Hat.Ftz. 56 (1983) 192.
V.D.Gershun and A.I.Pashnev, Teor.Mat.Ptz. 73 (1987) 294.
S.Hwang and R.Marnelius, Nucl.Phys.B315 (1989) 638.
R.Narnelius and U.Martenssion, Nucl.Phys.B321 (1989) 185.
2.A.T.Filippov and A.P.Isaev, Hod.Fhys.Iett. A4 (1989) 2167.
3.A.T.Filippov and A.P.Isaev, Mod. Phys.Iett.A5 (1990) 325.
4.A.T.Filippor, D.Gangopadhyay and A.P.Isaev, Discrete "Stringg" and Gauge Model of Three Confined Relativistic Particles, Univ.of Minnesota preprint, TPI-MIN-90/61-T (1990).
5.A.T.Filippov, JETP.Lett. 46 (1987) 425;

Hod.Phys.Lett.A4 (1989) 463.
6.R.Casalbuoni, Nuovo Cimento 33A (1976) 115
F.A.Berezin and M.S.Marinov, Ann. Phys. 104 (1977) 336.
J.Sohwinger, Quantum Kinematics and Dynamics (W.Ben,jamin,1970).
7.L.D.Faddeev and A.A.Slavnov, Gouge Fields, Introduction
to Quantum Theory (W.Benjamin,1980).
8.L.Mesincesou, R.I.Nepomeohie and P.K.Townsend, Nucl.Phys. B 322 (1989)127.
9.L.D.Faddeev, Teor.Mat.Ftz.1 (1969) 3. .
10.E.S.Fradkin and G.A.Vilkovisky, Phys.Lett.55B (1975) 224.
I.A.Batalin and G.A.Vilkovisky, Phys.Lett.69B (1977) 309. 11.A.Neveu and P.West, Nucl.Fhys.B293 (1987) 266.
A.P.Isaev, On Quantization of Relat tvistic String, Serpukhov preprint IHEP 82-193 (1982) (unpublished).
12.F.A.Berezin, Introduction into Algebra and Analysts with Ant commuting Variables (Moscow State University Press, 1983). S.Kobayashi and K.Nomizu, Foundations of Differential Geometry, vol. 2 (Intersoienoe Publishers, N.Y.1963).
13.A.P.Isaev and E.A.Ivanov, Non-abeltan $N=2$ Superstring, IOTP preprint IC/90/97 (1990).
14.S.Mandelstam, Phys.Rep. 130 (1977) 259.
J.Scherk, Rev. Hod. Phys. 47 (1975) 123.
W.Nahm, Nucl.Phys.Bi14 (1976) 174.
15.D.Bessis, C.Itzykson and J.B.Zuber, Adv.Appl.Math. 1 (1980) 109. M.L.Mehta, Comm.Math.Phys. 79 (1981) 327.
16.D.Gross and A.Migdal, Phys.Rev.Lett. 64 (1990) 127.
E.Brezin and V.Kazakov, Phys.Lett.236B (1989) 144.
M.Douglas and S.Shenker, Nucl. Fhys.B335 (1990) 635.
F.David, Matrix Models and 2D Gravity, Prooeedings of Trieste

Spring School on String Theory, Trieste, Italy (Worla Scientific 1990).
A.Bilal, $2 D$ Gravity from matrix models,

CERN preprint CERN-TH -5867/90 (and referenoes therein).
17.S.Aoyama, Phys.Lett.228B (1989) 355.

Received by Publishing Department on June $10,1991$.

