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CrpenbUOB B.H. 
Cnpaw11eaeTCA: COKpa14at0TCA 
11n11 YAfl11HAIOTCA 6b1CTpOAB11>KY1411eCA Macwra6bl? 

E2-91-249 

TpaA11U110HHOe onpeAeneH11e Afl11Hbl 6blCTPOAB11>KY14eroCA Macwra6a 11 
KOHuenu11A penATl1B11CTCKOIA Afl11Hbl pacCMOTpeHbl C T04K11 3peHl1A ycnoBl1A 
penATl1B11CTCKOIA KOBap11aHTHOCTl1. noKa3aHo, 'ITO JTOMY ycnoe1110 YAOBner· 
eopAer nocneAHAA K0Huenu11A, rorAa KaK rpaA11u110HHoe onpeAeneH11e eMy 
nporneope411r ("c11HxpoHHaA" An11Ha - He ecrb 4-eeKrop) . noA4epK11eaerCA, 
'ITO ceeTOBble 11 3ana3AbIBa101411e paCCTOAHl1A 11 BBeAeHHaA cpaKTl14eCKl1 Ha 11X 
OCHOBe penATl1B11CTCKaA Afl11Ha cny>KaT 6a311COM npocrpaHCTBeHHO•epeMeHHOIA 
KapTl1Hbl noKaU110HHOIA cpopMyn11poeK11 reop1111 OTHOCl1TenbHOCTl1. CneACTBl1· 
eM JToro nOAXOAa ABnAeTCA yeen11'leH11e (a He COKpa14eH11e) npoAOflbHblX 
pa3Mepoe penATl1B11CTCKl1X 061>eKTOB. OTMe'laeTCA, 'ITO 11cnOflb30BaH11e noKa· 
Ul10HHOIA Afll1Hbl (eMecro "MrHoeeHHOlii") B 113BeCTHOIA TpaKTOBKe onblTa 
MaliiKeflbCOHa-Mopn11 np11BOA11T K "cpopMyne YAfll1HeHl1A" AflA npOAOflbHOrO 
nne'la 11Hrepcpep0Merpa. 

Pa6ora BblnOnHeHa B na6oparop1111 BblCOKl1X JHeprnlii 0111 A 1,1. 

Coo6wefHe 06'1,e.ivmet1Horo KHCTHTyT& 11.a;epu1,1x Hccne..a;oaaHHH. ily6Ha 1991 
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The traditional definition of the length of a fast-moving scale and the con• 
cepr of relativistic length are considered from the point of view of the condition 
of relativistic covariance. 

It is shown that the latter concept satisfies this condition whereas the tradi • 
tional definition is in contrast with it ("synchronous length" is not a 4-vector). 
It is stressed that the light and retarded distances and the relativistic length in• 
troduced in fact on their base serve as the basis for the space-time picture of the 
radar formulation of relativistic theory. The consequence of this approach is 
lengthening (and not contraction) of longitudinal sizes of relativistic objects. 
It is noted that the use of radar length (instead of "instantaneous" one) in the 
known interpretation of the Michelson-Morley experiment leads to the elonga• 
tion formula for a longitudinal arm of the interferometer. 

The investigation has been performed at the Laboratory of High Energies, 
JINA. 

Communication of the Joint Institute for Nuclear Research . Dubna 1991 



. 1. INTRODUCTION 

Relativity theory is apparently the most fundamental one of all existing 
· physical th~ories. .According , to , Dirac's figure of speech: 11 / " .. ;Lorentz 
·. transformations dominat'e in physics."· · · 

Relativity theo~y reflects the remarkable fact that nature laws can, be 
· formulated irrespective of a concrete (inertial) reference system (the principle 
of relativity). This. concerns physical notions as .well; 'Such a:revolutionary 
theory of our ceritury as quantum mechanics and theri quantum field theory 
take into account requirements of relativity theory. 

. . Physical laws are written down by mathematical formulae.for quantities 
which can be finally expressed through space and time coordinated. It can be 
said that the space-time structure (picture) serves as the basis for physical 
the~ries. Interconnection of the corresponding pictures in different inertial 
reference systems is described by Lorentz transformations. 

Relativity theory has established that the united space-time (Minkowski's 
space) is physical reality, All physical quantities are geometrical objects in this 

.. space (for example, 4-vectors). 
The formulae written down through 4-quantities provide an automatic 

fulfilment of the mathematical covariance condition as a logic demand of non
contradiction of equations written in different coordinate systems. 

Further taking into account the principle of relativity (as a physical prin- · 
ciple) allows one to say already about relativistic covariance. 

Understanding has come recently that there are as a matter of fact two 
approaches to· the treatment of the space-time structure of relativity theory' 2 1 • 

Their difference is associated with the space part. A new "radar" approach only 
deals with light and retarded distances. The concept of relativistic length 
(CRL)' 3 1 based on the radar method of distance measurement can be'thought 
to be its most striking expression. 

Below we shall discuss these questions in detail and, in particular, show 
that just the CRL is in close interconnection with the logic structure of rela
tivity theory itself. We shall pay our main attention to comparison of the 
generally accepted (Einstein's) definition of moving scale length and CRL: 
for example, their attitude to the demand of relativistic covariance: Moreover, 
we shall touch upon the interpretation of the Michelson-Morley experiment. 



2. RELATIVISTIC LENGTH AS A "PHYSICAL BASE" 
OR RADAR FORMULATION 

As is known, the generally accepted (Einstein's} definition of relativity 
theory operates with instantaneous ( or synchronous} distances whereas radar 
formulation 14 1 deals with light or detarded distances directly observed in the 
experiment. Relativistic ( or radar} length plays a key role in this approach. 
Recall that the relativistic length (the length of a fast-moving rod) is called the 
half-sum of distances covered by a light signal in direct and opposite directions 
along the rod. Let for simplicity the rod be oriented and move in the direction 
of the x-axis (from left to right} with velocity v. The signal is sent at the ins
tant of flight of the left end. The light achieving the right end is reflected 
there and goes back to the left end. The 4-vector describing the process of 
light propagation, when. it is going in the same direction :with the rod ( "run 
down" its right end} takes the form: 

£! [ (1 + (3) £*-y, (1 + (3) Q*-y, o, 0]. (1) 

Here Q* is the length of the rod at rest, (3 = v/c and 'Y is the Lorentz-factor. 
When the light signal (after reflection) goes in the direction opposite to the 
motion of the rod (to meet the left end), we have for the corresponding 
4~vector 

Q~ [(1-(3)£*-y/c,- (1-(3)£*-y,0,0]. 

As a result, for the 4-vector of relativistic length 2: = (Q~ - Q~)/ 2 

2: (13 Q*-y/c, Q*-y, 0, 0). 

In this case in the rest system it is obvious that 

Q: * (0, Q*, 0, 0). 

On the basis of (3) we get for relativistic length (Qr= 2: ). 
Qr= Q*-y •. 

(2) 

we find 

(3) 

(4) 

(5) 

It is evident that at (3 ➔ 1 the relativistic length will be simply defined by 
the half of 2; . It should be stressed that the quantities Q~ and Q~ define 
initially distances between points taken at different time instants. They cor
respond exactly to two most typical modifications of retarded distances' 5 1 

2 

I 
I 
\ 

(otherwise, retarded and advanced distances}. Thus, one can say that CRL is an 
organic consequence of electrodynamics. However, the other could not be since 
the concept leans upon the radar method of distance measurement. 

3. LORENTZ-COVARIANCE OF THE DEFINITION 
OF RELATIVISTIC LENGTH 

3.1. Relativistic covariant definition is such a definition which can 
be formulated with the help of notions not concerned with a concrete refereri: 
ce system. Measuring . procedures, which can be finally reduced to the set of 
simple events, are kept is mind here. 

Let us consider from•. this viewpoint the generally accepted Einstein defi
nition of the length QE of a moving scale (rod}. As is known, it supposes16 1 

simultaneous (6 t = 0) position notches. of the rod ends*. It is evident that in 
all other reference systems these two events (notches) will be already non
simultaneous. Therefore, at least one of them cannot be used in another 
reference system, and it is necessary to make one more "own'' notch. But 
this means a direct connection of the generally accepted . definition with a 
specific reference system what is incompatible with the principle of relativity**. 

On the other hand, events of sending and arrival of a light signal in the 
radar method of relativistic length measurement can be used in any other 
reference system. 

Thus, the generally accepted definition does not satisfy the covariance con
dition whereas the relativistic length is a cov;iriante quantity. 

3.2. Geometric scale representation. At.first.sight it seems that 
this question ,is solved very simply. However, relativity theory has established 
that as a matter of fact a material rod represents physically not a spatial object 
and. a space-time configuration. This two-dimentional configuration is the 
world space-like strip in Minkowski's four-dimentional space. In the simplest 
case of· Minkowski's flat space presented.in the figure the world scale strip is 
vertical. 

As already. noted, in the frame of geometric representation the relativistic 
length is the value of a, spatial part of the half-difference (X~) of two 2-vectors 
(in this case} describing the processes of light propagation In the direct (Xt e) 

.I 

·* One' can say that we deal with "synchronous length''. 
** Compare with Fermi's remark111 that the usual approach (based on the condition 

t = const whence 6 t ~ 0) evidently contradicts the principle of relativity. 
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and opposite (Xet ) directions along the 
rod. In the figure these lines t

1 
e and et2 , t

1 

and t 2 are the moments of the sending and 
receiving a light signal. In the S*-system we 
have 

x/1: ( Q* /c, Q*), Xe\; ( Q* /c, - Q*) •(6a,b) 

where Q* is the proper length of the rod (at 
~est). As a result, we find for the quantity X~ 

X~* (0, Q*). ( 4,) 

In other words, the relativistic length cor
responds to the normal section R of the 
world rod strip*. 

Thus, there is a simple connection bet
ween the mutual positions of the world 

l 

/ 

/<( 
/ 

// R 

X 

Fig. World strip of a rod. 

strip W and the line R being a geometric set of events which satisfy the defini
tion of light simultaneity 1 8 

' relative to W: in any reference system the world 
lines W and the straight line R have equal Euclidean angles with the world line 
of a light signal. 

But if the normal section R depends only on the world strip of the space 
W and not on the choice of reference system, this means that the definition of 
relativistic length is really covariant. Moreover, we have a complete analogy 
with the definition of relativistic time. On the other hand, to the traditional 
definition of fast-moving scale length there corresponds .a number of sections L, 
each of which is defined by "its" reference system what is obvious. 

3. 3. "Synchronous length" is not a· 4-vector19 1 • The question 
on the length of a fast-moving rod by itself is not very simple as the distance 
between its ends depends on the fact what instants its positions are fixed at. 
However, the indicated demand that the set of difference coordinates* should 
be a 4-vector imposes rigid restrictions on the choice of definition of the notion 
of relativistic length. 

* Here we have a complete analogy with the definition of perpendicularity in Euclidean 
geometry which is covariant with respect to linear transformations. 

** Being a consequance of the measuring procedure. 
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· As to the generally accepted definition of this quantity, it supposes a simul
taneous (in the present reference system) notch of the position of the rod ends. 
For a moving (in a system S 1 ) rod with velocity v1 along the x-axes we have 

XE1 (0, £E1,0,0), s2 
= -£l1 = -Q*

2 (1- fJ/ ). (7a,b) 

Here QEl is the rod length in motion; £*,its length at rest;and s,an interval. 
From the point of view of another S2 csystem we find for this rod 

XE2 (0, QE2, 0,0), S
2 

= -£~2 = -Q*
2 

(1.:.. fJ/ ). (8a,b) 

Thus, the quantities s· calculated in these tw<? cases are found to be unequal, 
However, if XE 1 and XE 2 are 4-vectors, then their squares have to be invariable 
when passing from one inertial reference system (S 1 ) to the othe~ (S 2 ). The 
violation of this demand of inyariance means that the set of difference coordi
nates XE 1 and XE2 is not a 4-vector. In other. words, the considered definition 
does not satisfy the covariance condition. For the relativistic length instead of 
(7) and (8) we have respectively 

2 2 2 
~r1 ((3 t Qrl /C, Qrl ,0,0), S = - Qrl (1- (3 1 ), 

Xr2 (132 £r2/c, £r2,0,0), 
2 2 

S = - Qr2 
2 

(1- f32 ). 

(9a,b) 

(l0a,b) 

Taking into account "elongation formula" (5), we find easily that s2 is inva
riant and consequently Xr1 and Xr2 are 4-vectors. 

4. UNIQUENESS OF THE DEFINITION 
OF RELATIVISTIC LENGTH 

4.1. The existing ambiguity of definition of the length of 
a moving scale. If we are distracted from the demand of the principle 
of relativity (relativistic covarJance), we thus have two possible values of the 
length of a moving scale. In so doing, the relativistic length can be called 
"asynchronous" since ,,,t i O for it is in contradistinction to the traditional 
"synchronous length". But the!1 there arises a natural question: why is the 
condition 6. t = _O usually preferred over, say, the condition d = 1 ( which leads 
to the third definition) and so on? ' 

On the other hand, the quantity having the meaning of the length of a 
moving rod can be introduced in the framework of the two existing definitions. 
These are mean geometric (proportional) quantities QE and Qr 
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Q = v'-Q-~- = Q* 
P EJCr • 

(11) 

Thus, we retlirl} to the initial_ classical result: the rod length Q p does not change 
due to motion. The careless treatment of the principle of relativity can lead to 
such a thing. 

4. 2. Rationality (simplicity) of the notion. This criterion which 
exact formulation presents great difficulties plays an important role in physics. \ 
It concerns what can be briefly though not quite clearly called "nature" or ,

1 "logical simplicity" of the notion. In conformity with the case our interest i 

this can mean the following. ( 
. Since. the material rod is charecterized by a space-like vector, its time 

component is equal to zero in the only reference system. On the other hand, 
the proper reference system is also chosen among the set of inertial systems. 
Therefore, for reasons of rationality (simplicity) the definition should be cho
sen so that these systems might coincide' 101 • The definition of relativistic 
length just satisfies this condition. At the same time we are in fact guided by 
the experiment which serves as a natural basis and CRL. 

On the other hand, in the framework of the traditional definition it is 
nesessary to place and to synchronize the set of clocks. Then it is necessary to 
define at what points the beginning and the end of the measured rod (train) are 
at a definite instant of time. Further, the distance between these two points is 
measured by putting a standard scale. Of course, with this aim we use a radar 
now, since we. return again to the definition of relativistic length. In so doing 
we do not need the set of_ unnecessary clocks and tiring procedure of their 
synchronization. Moreover, the main of applications of the relativistic theory 
is microworld where measuring procedures underlying the traditional definition 
are simply impossible. At the same time interactions occuring iri microworld 
physics have a radar character. Therefore, the effective space sizes characteriz
ing these interactions have necessarily to be defined just by relativistic 
length 1 1 1 , 1 2 1 • 

Here we want· to dwell upon Coffman's discourses' 131 
· are based on that 

for light the fraction (covered distance)/ (spent time) must have the same value 
independently of the reference system. Then he discusses as foilows. Your 
clock is by a factor of 'Y slower than mine. However, I know that the value of 
the indicated fraction is equal to c. Consequently; if the "spent time" measured 
by your clock is "I times smaller, then the value obtained by me, I have·to i 
find out.how many times your passed the' distance, is smaller; If it i~ taken I'\ 
into. account correctly now that the indicated clock is connected· \vi th the \; f 
length at rest and I, an observer, measure the length in motion, then we come !~ 
just to formula · (5) but not to the Fitzgerald-Lorentz contraction as I 
asserted in 1 1 3 1 • 
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5. "ELONGATION FORMULA" 
AS POSSIBLE RESULT OF TREATMENT 
OF MICHELSON-MORLEY EXPERIMENT 

Considering usually this experiment (see, e.g. 11 4 1 ), the time of light pro
pagation along the longitudinal arm of the interferometer is calculated. When 
the light propagates in the direction of interferometer motion, we have for the 
corresponding time t 1 

ct1 = Q + vt1 or ti = ~_Q__ Q 
c-v--

Cl 

On· its way back (for time t 2 ) the light travels only 
we have now 

ct2 = Q - vt2 or t = Q Q 2 ----c + v--
C2 

Then the total time is 

t = t
1 

+ t
2 

= 2 Q/c • 
u 1- v2 /c2 

(12) 

Q - vt2 
and therefore 

(13) 

(14) 

Calculating the time of light propagation t 1 along another (perpendicular) 
arm, one considers that the light goes along the hypothenuse of a right-angled 
triangle. From here is follows that 

( ct.LJ2= Q2 + ( vt.L )2 
2 2 

(15) 

and 

2 Q/c 

t .L = v1--r::~v27~2 (15') 

To explain a negative result of the experiment indicating the equality of t 
11 

and t ..!. , the ha po thesis was proposed by Fitzgerald 11 5 1 and Lorentz 11 6 1 

according to which longitudinal sizes of material bodies change, i.e. Q should 
II 

be written in formula (14) instead of Q. As a result, we have · 

Q = Q v' 1 - v2 /c2 
II 

(contraction formula). (16) 

Here, however, we want to pay attention to the following. In fact, when deri
ving formulae (12) and (13) it is implicitly supposed that the quantity Q (and 
then Q

11 
) is an "instantaneous length". If we use the radar method of distance 

measurement, we shall get another result to define the notion of the length of a 
moving rod. 

. 7 



. . 
As is known, according to this method, the rod length 2r is defined by the 

half-sum of distances covered by ~ Hght (radio) signal along ~he rod (forward 
and backward) · · · · · · 

1 
2r = 2 (Qr+ Qb). (17) 

For the rod at rest distances 2r and Qb are equal. However, in the case o(a 
moving rod ~ongitudinal arm) the signal travels a longer distance in the direc
tion of motion. The difference of these distances (or the way of a glass plate in 
the discussed experiment) is vt

11 
• If a certain analogy between the radar (as a 

source of light signals) and the charge (as a source of electromagnetic waves) 
is taken into account, the indicated· distances can be rightfully treated as 
retarded (2red and advanced (Qadv) ones, respectively' 5 1 • 

Taking into account this, the radar length conformably already to the 
moving rod, is defined by the expression 

1 1 
1-!r = "J (Q ret + 2adv) = 2 ct 11 

and 

2ret - 2adv= vt 11 

Whence it follws that 

V 
2ret = (1 + ? 2r 

and 

V 
2adv= (1--)Qr 

C 

. (18) 

(19) 

(20) 

(21) 

On the other hand, it is obvious that 2ret = ·ct1 and 2adv = ct2 , and so taking 
(20) and (21) instead of (12) and ·(13), we have 

2r t --
1 - c2 

2r 
t2 =7 

and 

2r · - 2 
(c + v) = -- 'Y 

. C1 

· 2r - 2 (c- v) = - 'Y 
C2 

t . =2 2r ,, -. . 
C 

8 

(22) 

'(23) 

(24) 

Surely, for c -oo "the nonsimultaneity degree" 

1 V 
L'..t = 2 (t1 - t2) = c72r _. 0 (25) 

and both definitions are practically coincident. However, taking into account 
the terms of the order v2 /c 2 

, their difference becomes essential. Equating (15') 
and (24) (instead of (14)), we get the "elongation formula" (5). 

6. CONCLUSION 

The application of the relativistic covariance condition and, in particular 
the use of geometric scale repre_sentation, allows one to make an unambiguous 
choice between the two · existing definitions of the moving scale length in fa
vour of CRL. From the viewpoint of rationality the analysis of the indicated 
ambiguity of the notion also leads to the only definition, namely the definition 
of relativistic length. The relativistic (radar) length is expressed by light or re
tarded distances. All indicated quantities serve as the basis for the formulation 
of relativity theory. In the frame of this approach we have the increase of 
longitudinal sizes of relativistic objects. 

The use of radar length (instead of "instantaneous length") in the known 
treatment of the Michelson-Morley experiment leads t!) the "elongation formu
la" for a longitudinal arm of the interferometer. 
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