





1 Introduction.

A lot of papers [1-7] were devoted to the investigation of the massive Yang-Mills theories.
It was shown there that the mass term Tr(m?A2) makes the theory either nonrenormal-
izable or nonunitary. )

As is well-known, supersymmetry considerably improves the ultra-violet behavior of
theories. From this point of view, it seems interesting to know the effect of the mass
within the N = 2 super-Yang-Mills theory (8]. In the present paper we consider the
massive Yang-Mills theory in the N = 2 harmonic superspace approach. As in [1-6], we
use the Stueckelberg formalism which allows us to work with a transversal propagator for
the Yang-Mills field without breaking the S-matrix unitarity. We give the appropriate
Feynman rules and obtain the following result: The massive N = 2 super-Yang-Mills -
theory is nonrenormalizable. The stumbling-block of nonrenormalizability is the self-
interaction of the Stueckelberg fields. This self-interaction is characterized by a coupling
constant A? of dimension [m~2] and form a nonlinear o-model. In the case of the ordma.ry
massive Yang-Mills theory this o-model is well-known [6]:
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In our example the N = 2 supersymmetric extension of this o-model arises that differs.
from (1.1) by a change of the space-time derivative 3, to the harmonic one D, see below
€q.(4.15).

Nonrenormalizabililty of N = 2 Ya.ng-Mllls theory is revealed appa.rently in the fourth
order of perturbation theory.

It is proved that in the N = 2 supersymmetric Yang-Mllls theory there is no renor-
malization of the mass of vector field (in the ordinary Yang-Mills theory (N 0)[6,7] thls
mass has to be renormahzed)

The plan of paper is as follows: In Sec.2 we begin with a bnef review of the N = 2
harmonic superspace and then the Stueckelberg formalism is developed for the massive
N = 2 super-Yang-Mills theory. In Sec.3 we give the Feynman rules for our theory. In
Sec.4 quantum calculations are performed. The results obtained are compared to those of
the ordinary massive Yang-Mills theory [6,7]. Our notation and conventions in this paper
are mostly the same as in Refs. [9] and [11].

2 The Stueckelberg Formalism for the Massive N=2
Super-Yang-Mills Theory

As mentioned in the Introduction, we consider the massive Yang-Mills field in the N = 2

- harmonic superspace [9,10] which is obtained from the standard one by adding the sphere

- 8% = SU(2)4/U(1), where SU(2) is the automorphism group of the N = 2 superalgebra.

The harmonics uf are coordinates on this sphere and have SU(2) index i and U(1)

* charge %1, respectively. The analytic subspace of the harmonic superspace plays a very

important role (see Appendix). L
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The physical composition of the off-shell N = 2 Yané—Mills hypermultiplet is well- -

known: the vector field A u(x), scalar complex field M(z) + iN(z), Majorana isodoublet
¥ (z),Ph(z) and triplet of the scalar auxiliary fields D‘J(z) ‘The analytic superfield
= -describing thrs supermultrplet is V**(z,u). The action for it was given in [11-13]:
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It is 1nvar1ant under the followrng ga.uge transformatrons

VY = Y D,
W= “’(C,U) = u—-’((,u),~" :

o ‘Here T are genera.tors in the adjoint representatron of the Yang-Mrlls group

VH = V++Ta,

[To, Tb] = Zfabc cs

“'Gauge. tranéformations (2.2) copy those of the ordinary Yang-Mills theory (N:=.0)
‘with the space-time derivative 8, changed to the harmonic one D**. The symmetry
h para.meters w({,u) now are localized in the analytic harmonic superspace. Correspond-
. ingly the number of gauge degrees of freedom now is infinite and w((, u) is a real analytic
‘hypermultlplet [9;14]

The mass term for V++(( ,u) that breaks gauge invariance (2 2) has the followmg form:

Sﬁz = /d(( 4)duTr[m V++) ] : (2.4)

‘where d(( 4)du = d4a:d20+d20+du is the mtegratron measure over the analytrc superspace.
Now, as in the N = 0 case we construct the corresponding Stueckelberg formalism [6]

for our theory. Let us substitute (2. 2) into (2.1) and (2.4). Due to'its gauge invariance .

the pure Yang-Mills part (2.1) of the action will not be affected. As for the massive term
(2.4), after some algebra it can be written as (cr. [6]) . .
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where the expansion of Pt*(w, V") in powers.of w:has the form:

(o) » 2 . N E w R
++ Y -
Ptt(w,Vtt) = Z(n+2,[ [D ww] ],, - (2.6)v
wrth the cova.rrant harmomc derivative ) _
- ptt D+++1V++ . SR T A(2.7)
2 .

w = w,T. a (22)

'Tr(TaTb.);,: 6‘ub . V : (2.3) ’

Repeated commutators symbols in (2.6) are deﬁned as
[[Pw,w]..), = ['D w, w],

[-[Dw,w]..], = [[DTHw,w],w],
[-[D"w 0] ]; = [P w,0],0),

Due to the trace in the expression (2.5), there are no terms containing an odd number
of the Stueckelberg fields - w. This means that we have no vertices with the odd number
of the Stueckelberg fields. '

The expression S = SY¥7L + SN=2% is by construction invariant under the followmg
gauge transformations:

(V++)l = e:E(v++ - iD++)c—'5 - B (2.8)
- ) eﬂ.:f = W . (2 9)
We have to fix gauge and carry out the Faddeev-Popov procedure [11]. We choose the

Fermi- Feynma.n lrke gauge

R D++ V++ =0

(see [11] for deta.lls]) '

F inally, our action takes the followrng form

SN_2 év]-;f[ + SN=2 SN-'-Z SN=2

. L
[ -TZFTT_/ C( 4)du1du2V++(C,u1)(D+)4

(w1 ) V++(§,“2) +
Vi (z,uy).. V++(z uy)

(u 1“2) (“+“1+)

2 .
+—"—'—Tr / d<<-4)duD++wP++(w, V) + —-Tr / d((‘”dum’(VH)’ s

1
+5Te S ’) / d”zdul du,
n=3

(1+ )Tr / d(( 4)du1dugV++((,u1)(D++) = +)2V (¢ ug) +
' ' “ —n / d<<-4>dqu++(D+++zV++)PW (210)

here « is the gauge fixing parameter.
' Now, let us consider the Feynman rules.

‘3 Quantization of the Massive N
Mills Theory

The Feynman rules are obtained in the usual way using the functional integral [11,12]:
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Without going into details, we give the form of the propagators and vertices.

The Yang-Mills field propagator < V++(1)V++ (2) > in the Fermx-Feynman gauge is:
Q- P ‘ g ’ I_ﬂ__—_(D+)468( 02)6(2 2)(1‘11"2)6116 (32)
L AVAVa W Waly ,
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whlle the Faddeev—Popov ghosts propagator < F,(1)P;(2) > and the Stueckelberg field
propagator < w,(1)ws(2) > are written as _

O; ) P 3 —(D+)4(D+ 458( _ 02)(u+1 "3)35«-» - (3.3)
Gun wmem - —' -— e =l
i 2
and . u' i ;
~(D})(DF)8 (0 — 0 2) 5ub (3.4)
o P 3 p .
h

respectively. where P is the momentum ' s
The vertjlces are: mtegra.tlon is meant over the analytic superspace (21)4 [ d*pd*0tdu,

K,a
| —igf (Dt — D )@m)'6(p —pa = k) (3.5)
(6w RS
P.‘L),’g 3\ 2
. e | |
af* D (27)'8(pr — p2 — k) (3.6)
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_ZZ_AubchZP++ D++ (3'9)

‘where (A%t = Tr(T T,T.Ty))

'Of importance is that there appears a coupling constant A% of dimension [m?. As
mentioned above, we have no vertices corresponding to interactions of an odd number
of the Stueckelberg fields. Besides these vertices we have an infinite number of vertecis
correspondmg to the Yang-Mills field interaction. Note that the configuration-space inte-
gral at such vertex is fd 0du,du,dug, so the Grassmann integration measure is already
complete. For instance, the three-particle vertex is: : :

abc
Kocus ¥ lg+f (T
(uyug Y(uf u Y (uzug)

(27)*6(ki +ky +ks) . (3.10)

Ky, 0, Us KZ.'%,ui

We have also an infinite number of the vertices corresponding to the Stueckelberg field
self-interaction and their interaction with Yang-Mills fields. We do not glve them here,
because for argumentation below the vertices (3.5-3.10) are quite enough. -

Surely, in each vertex the integration is implemented over the analytic superspace

—1— / dpd0* d.

We shall prove that the thcory is nonrenomalizable startmg from the g* order of
perturbation theory.

4 Quantum Calculatlons in the N =2 Super-Yang—
Mills Theory

It is a well- known fact that in the massive N = 0 Yaug-Mills theory quantum corrections
appear in the g2 order of perturbahon theory. They originate from the following diagrams
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shown on Fig.1. and Fig.2.

- Fig.2.

. K~ P
Let us consider the corresponding diagrams in N 2 supersymmetrlc theory. Accord-
ing to the above Feynman rules we have:

YM __ 2 ) ) d4kd4P
=g @ = mA(k =5 = 7]

d80dsr]du1 duzduadwldw;dw;; .

VYt

D)@l (afad)(wied)(wf wd) (i wi)

(Db*(uz))“ts"'_”(“z,wz)(DJ(Ua))“tss(o = 1)82 ) (us, w3)
According to [11], this expression takes the form:

Y™ _ o /’ d*kd*pd®0du, du, ujug
© T ) @ mk - - ufug
For diagram in Fig.1(b) we ﬁqd:
+ . . ddkd4
I‘!F.P. =2
T /(2«)8 (k)

Uy “2
(ufuf)?

dhd'D o o GRUD)EU)
. 4.2
-t f @ - pre et Gy e @ 0

V(1 )V++(2) (4.1)

d“0+d“0+du1du2V++(1 )V++(2)(D+)4(D+)“

ﬁl “2 .
(ufuz)®

8°(6, — 0,)DF* (DT (D7 )"58(01 - 02)Dz+ *

The contribution from diagram in Fig.1(c) has the following form:
o dikdp
I"St - 2 /
(2x)%p*(k — p)?

a8 Uy Uy ++ D+ "l
(Di*.) (D;) ) (01 02)( + +)3D s 2 ( )3

d40+d40+V++(1)V++(2)(D+)4(D+)468(01 - 02)

_D* Uy Uy ++ hYy
(uFuf)P? (ufuf)?
d"kd"p V++( )V++(2)
—og2 | ___Gkap FIAMOIAMO

(uf Uz 7)?
Let us sum up the infinite parts of (4. 1) and (4.2). Using the useful identity

("1 uf)(u"uz) =1 + (ufuy)(uTu )

VHOVH )
T i)

we arrive at: '
P(a)oo + P(b)oo = —2gZC°° /duzdulduz

have the following property

580, — 02)(D+)"‘68(01 —0,) = 0, if  m<8.

~The contribution of the tadpole diagram in Fig.1(d) is equal to zero for the same

theory is finite in the g2 order of perturbation theory. The general nonrenormalization
theorem [15,16] says: if theory contain dimensionless parameters only and if it is finite
in one loop, then it will be finite in all loops. Therefore we should look for infinite
corrections in diagrams which contain-the dimensionful coupling constant- A2. ‘The first
possible lowest-order diagram containing the coupling constant A% is shown on the Fig.3.

|
} reason. Therefore we come to the following conclusion: Massive N' = 2 super-Yang-Mills
!
|
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According to the Feynman rules the ‘corlxtribution of this diagram is
1" /\4/ dipy...dipsdik
- (2m)'k2(ps + p2 — K)7)

d*0F d*0F durduz8(py + p2 — p3 — pa)

@R @) ()

880, - 0)(DFMDF

8%(6, — 82)(DF)*(DF ) D tuw(p, 01,"1)D1++W(P2:91,u1)w(1’3, 02, u2)w(pa, 02,u2) «

Here ¢ contains logarithmical divergence. The result just cancels the infinite part of
(4.2). Let us consider the diagram in Fig.2. The contribution of this diagram is equal to
zero due to the N = 2 supersymmetry. In fact, according to the Feynman rules it contains
the expression §%(8, — 0;)(D+)46%(6, — ;) that vamshes because Grassmann é-functions



Using the‘fprmula [11]
' 8%(6: — 6:)(DF)N(DF )'6%(6: — 0) = (utui )'6%(6, — 65) (4.7)

and taking then into consideration the identity for generalized harmonic functions [1 1]

1 1 == \\n- .n—n V
ey = e P, w), (4.8)

and the propérty of the harmonic §(#~9)(u;, u;) function
(ufuf)6 D (ur, ua) = (uyuz )69 D (uy,us) = 0, (4.9)
‘we transfofni (4.7) to the following form:,

I‘N /\‘ d4p1...d4p4d4k

' (2n)19k2(p; + p, — k)2 daedulduzé'(pl +p2—ps —p4)
Wus )] Hi+ ++ R
(‘u'l"_‘u'{j; Dl’ w(pl,e,ul)Dl w(pz,e,u;)w(p;;, 9, u;)w(pha,‘u;)‘ - (410)

If the external lines are put on-shell ((D*+)*w = 0), it will be possible to prove the
following useful formula: L - S : . :

DHtuDte = %D**D“(D**wDHw). L @.11)

(We use the algebra of the harmonic derivatives D+, D=~ and DY, see appendix) :
Let us use'(4.8),(4.10) and (4.11) and transform (4.10) to the following form

1., [ . d*p...d*pyd*k s
T Gt
w(ps, 6, u)w(ps, 6, u)(D~ ") [D+*w(py, 6, u) Dt tw(ps, 6, u))] (4.12)
Now we péss to the analytic basis and recall the formula [11]:
1 ~ e o :
OO G =08y (413)

for any analytic superfield ¢. Finally, the infinite correction to the a;étion)takcs the form:
T~ o) /,1((—4)duw2D(D++w)’ T (4a4)

Obviously, I'* differs from all the terms of the initial action (2:10) and thus the theory is
proven to be nonrenormalizablq. ’ '

The diagrams of Figs.4,5 give a vanishing contributions. One-can easily check this
statement in the same manneras we used above when calculating of the diagram Fig.3

contribution:

Fig'.zi-.

Fig.5.

-

Note that diagram'ir;f‘Fig.Ii. describes the Stueckelberg field self-interaction in the' g!
order of perturbation theory. As mentioned above, this Stueckelberg part of the action
corresponds to the N = 2 nonlinear o-model:

ATx / d¢Vdu(e Dte ) (e D e™™) St (4.18)

that is the N = 2 supersymmetrization of the remarkable ordinary o model (1.1). '
Note that we can have proven also that N =2 sigma-model (4.15) is nonrenormalizable
ltseg; contrast to N = 2 theory, the mass of the Yang-Mills field in N = 2 supersym'met‘ric
case is not renormalized. This is direct consequence of the general n.onrenormallzatlon
theorem [15,16]. According to this theorem, in N = 2 su;.)g:r-Yang-Mxlls theory ag t.\_voé
and more-loop quantum correctians can be expressed as integrals Owir tl}e full / =2
superspace integration measure.” Proceeding from tbe mass term for N = 2 super-Yang-
Mills field is the integral over the analytic superspace, the counterterm for mass should be
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the integral over the same measure. It is forbidden by above mentioned general nonrenor-
malization theorem. ‘As for the one-loop level, usually the tadpole diagrams corresponds
to the mass divergences. As we have proved above, such diagrams in N = 2 supersym-
metry are equal to zero (Fig.1.(d)). In other words, the mass of the ‘Yang-Mills field in

the N = 2 supersymmetric case is not renormalized. :

5 Conclusion

Summing up the results, we can state that the massive N = 2 supersymmetric Yang-Mills
theory is nonrenormalizable. Asin N = 0 case, the properties of nonrenormalizable the-
aries in the N = 2 supersymmetric case become apparent in the g* order of perturbation
theory. Nonrenormalizability of the nonlinear o-model that appears in the Stueckelberg
formalism is the stumbling-block of the nonrenormalizability of the massive N = 2 super-
Yang-Mills theory. The mass of the Yang-Mills field in the N = 2 supersymmetric case is

not to'be renormalized. -
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7 Appendix

“For convenienge of reading we give the relations between central and analytic bases of the
N =2 harmonic superspace [9-11]: :

.- Central basis:
(2™, Oty B 7] = (M, ] i=1,2

. ad =
Di = 418, %
a 60:, 1ana0 y

. Da"' = _—agm ‘—ionsxaiady '
DYt = ¥ _ R I B
Rty D Y Gere
L D°=V[D++,D-ﬁ-]='y+i__a_; - 0 -

Guti %
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10. ,\:V.Si‘eg:el, Class.Quz{n};ﬁﬁl (V;rahv.‘, 2(1985) 439: :

Analytic basis:

(23,0808 ,uF,07,05) = (M, ), 67,031
gy =z — 22'0“0""9’4)11':'11]7, 0: =‘0f1u,~i, 6f = éz;u?:,
S S, Y
YouwtD = ——, . P=utDl = —
: Da u‘l Da ao_a 2 - D? ‘ul a aa_a
o SR ) e 3 -

D; = UFD; = —-%31-—0. + 2{0-()&05,, D; = u;’D"; = '—W — 20 aadn R
; .0 S, B a )
++ o +i 90t mo+ o gta__

D = G — AT e+ 0 g + 0 e
T =u? — %0 o™ —— 4 0 079 ——
D U ¥ 10" a ‘0: prn +0 ETIE + 555
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