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The massive N = 2 supersymmetric Yang-Mills theory is 
investigated. Its nonrenormalizability is revealed star­
ting from the fourth order of the perturbation theory. 
The N = 2 harmonic superspace approach and the Stueckel­
berg-like formalism are used. The Stueckelberg fields 
form some nonlinear sigma model. Nonrenormalizability of 
the latter produces nonrenormalizability of the N = 2 ~ 
supersymmetric Yang-Mills theory. 
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1 Introduction 

A lot of papers [1-7] were devoted to the investigation of the massive Yang-Mills theories. 
It was shown there that the mass term Tr( m2 A!) makes the theory either nonrenormal­
izable or nonunitary. 

As is well-known, supersymmetry-considerably improves the ultra-violet behavior of 
theories. From this point of view, it seems interesting to know the effect of the mass 
within the N = 2 super-Yang-Mills theory [8]. In the present paper we consider the 
massive Yang-Mills theory in the N = 2 harmonic superspace approach. As in [1-6], we 
use the Stueckelberg formalism which allows us to work with a transversal propagator for 
the Yang-Mills field without breaking the S-matrix unitarity. We give the appropriate 
Feynman rules and obtain the following result: The massive N = 2 super-Yang-Mills · 
theory is nonrenormalizable. The stumbling-block of nonrenormalizability is the self­
interaction of the Stueckelberg fields. This self-interaction is characterized by a coupling 
constant A2 of dimension [m-2] and form a nonlinear u-model. In the case of the ordinary 
massive Yang-Mills theory this u-model is well-known [6]: 

In our example the N = 2 supersymmetric extension of this u-model arises that differs 
from (1.1) by a change of the space-time derivative 8,. to the harmonic one n++, see below 
eq.(4.15). 

Nonrenormalizabililty of N = 2 Yang-Mills theory is revealed apparently in the fourth 
order of perturbation theory. 

It is proved that in the N = 2 supersymmetric Yang-Mills theory there is no renor­
malization of the mass of vector field {in the ordinary Yang-Mills theory (N = 0)[6,7] this 
mass has to be renormalized). · 

The plan of paper is as follows: In Sec.2 we begin with a brief review of the N = 2 
harmonic superspace and then the Stueckelberg formalism is developed for the massive 
N = 2 super-Yang-Mills theory. In Sec.3 we give the Feynman rules for our theory. In 
Sec.4 quantum calculations are performed. The results obtained are compared to those of 
the ordinary massive Yang-Mills theory [6;7]. Our notation and conventions in this paper 
are mostly the same as in Refs. [9] and [ll]. 

2 The Stueckelberg Formalism for the Massive N=2 
Super-Yang-Mills Theory 

As mentioned in the Introduction, we consider the massive Yang-Mills field in the N = 2 
harmonic superspace [9,10] which is obtained from the standard one by adding the sphere 
S2 = SU(2)A/U(I), where SU(2) is the automorphism group of the N = 2 superalgebra. 
The harmonics u; are coordinates on this sphere and have SU{2) index i and U(l) 
charge ±1, respectively. The analytic subspace of the harmonic superspace plays a very 
important role (see Appendix). 
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The physical composition of the off-shell N = 2 Yang-Mills hypermultiplet is well­
known: the vector field Aµ(x), scalar co,mplex field M(x) + iN(x), Majorana isodoublet 
1/,~(x),tf:S,;(x) and triplet of the scalar auxiliary fields Dii(x). The analytic superfield 
describing this supermultiplet is v++(z, u). The action for it ~as given in[ll-13): 

S, N=2 _ _!._T ~ (-1)" JdI2 o/d' d V++(z,u1) ... V++(z,u~) 
SYM - 2 r L ~ Ut·•· Un + +)( + + { + + g n=

2 
n (u1 u2 u2 u3 ) ••• unu1 ) 

It is invariant under the following gauge transformations: 

. (V++)' = eiw(v++ - iD++)e-•w, ' 

w = w((, u) = w((, u), 

v++ = v.,++Ta, 

W = WaTa. 

Here Ta are generators in the adjoint representation of the Yang-Mills group 

-[Ta', n] = ifabcTc, Tr(TaTb),:= 8ab . 

{2.1) 

(2.2) 

(2.3) 

. ·cai:igd t~a:;;sformations_ (2.2) copy those of the'ordinary Yang-Miiis theory (N = 0) 
· with the space-time derivative Oµ changed to the harmonic one n++. The symmetry 
parameters w( (, u) now are localized in the analytic harmonic superspace. Correspond­
ingly the number of gauge degrees of freedom now is infinite and w((, u) is a real analytic 
hyperrni:iltiplet [9,14] - · 

.. The mass term for v++((, u) that breaks gauge invariance {2.2) has the following form: 

. sr:,=2 = 2~2 J d(~-4lduTr[m2(V++)2
] {2.4}' 

where d((~4.>du = d4 xd20+d2iJ+du is, the integration measure over the analytic superspace. 
NO\y, as in the N =:= 0 case we construct the corresponding Stueckelberg formalism [6) 
for our theory. Let us substitute (2.2) into (2.1) and {2.4). Due to its gauge invariance 
the pure Yang-Mills part (2.1) of the action will not be affected. As for the massive term 
(2.4), after some algebra it can be written as ( er. [6]) 

sr:,=2' = ;: Tr/ d(<-4>du[eiw(v++ - ifl++)e++]2 = 

= ;: / d(H>duD++wp++(w, v++) ~ ;: Trj d(<-4>du(V++)2, (2.5) 

where.the expansion of P°'.+(w, v+~) in po\Vers of w.has the form: 

P ++c v++> - ~ . 2 - [- rv++· - ·1 .. I 
w, - ~ (n + 2)! ... w,w ... n 

- ' ' 

(2.6) 

with the covariant harmonic derivative 

v++ = n++ + iv++ (2.7) 

)~·.': : 
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Repeated commutators symbols in (2.6) are defined as 

[ ... [v++w,wJ ... J1 = rv++w,wJ, 

[ ... [v++w,w] ... ]2 = [[v++w,wJ,wJ, 

[ ... [v++w,w] ... ]3 = [[[v++w,wJ,wJ, 

Due to the trace in the expression (2.5), there are no terms containing an odd number 
of the Stueckelberg fields - w. This means that we have no vertices with the odd number 
of the Stueckelberg fields. 

The expression S = Sljylt + s~=2 is by construction invariant under the following 
gauge transformations: 

(V++)' .= eie(V++ _ ifl++)e-ie 

eiw' = eiwe-i( . 

(2.8) 

(2.9) 

We have to fix gauge and carry out the Faddeev-Popov procedure [ll]. We choose the 
Fermi-Feynman like gauge 

- n++v++ = o 
(see [ll] for details]). · 

Finally, our action takes the following form 

SN=2 _ sN=2 + sN=2' + sN=2 + sN=2 _ 
- SYM m . GF F.P -

l / I . = - 2 Tr d(H>du1du2v++((,ut)(Dt)4-( )
2 
v++((,u2) + 

2g · UtUi . 

1 T ~ (-i)" Jd12 d d v++(z,u1) ... v:t+(z,u.,) +2 r L -- z Ut••· Un ( + +) ( + +) + 
g n=3 n • U1 U2 •• • .un u.l 

+ m
2 

Trjd(<-4>duD++wp++(w, v++) + m
2 

Trjd(C-4ldum2(V++)2. + • 
2g2 2g2 ' . . ' ' 

+
2
\(1 + .!..)_Trjd(C-4ldu1du2V++((,u1)(Dt+)\ / +p v+.;((,~2) + 
g a · U1U2 

. + : 2 Tr J d(HlduFD++(n++ ~ iV~+)p (2.10) 

here a is the gauge fixing parameter. 
Now, let us consider the Feynman r~les. 

3 Quantization of the Massive N 
Mills Theory 

2 Super-Yang-

The Feynman rules are obtained in the usual way using the functional integral [11,12]: 

z = N j nv++ DwDFDPeisN•Z. (3.1) 
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Without going into details, we give the form of the propagators and vertices. 
The Yang-Mills field propagator< v++(1)V++(2) > in the Fermi-Feynman gauge is: 

o. r g 
<\/V\./\../V 
! .i 

~(Di)4i58( 01 - 02)0<2,-2)( Ui, u2)Dab 
p -m 

(3.2) 

while the Faddeev-Popov ghosts propagator < F0 (l)A(2) > and the Stueckelberg field 

propagator< Wa(l)wb(2) > are written as 

Q p g ----•---
-1( +)4 ( +)4 8 (0 ) u1u2 • - 2 Di D2 0 1 - 02 ( + +)J Uab 
p . U1 U2 

(3.3) 

!. .i 

and 

a. p t 
i ( +)4 +)4 8( 0 uj""u; " 

2 Dl (D2 D 01 - 2)( + +)3 Uab 
p U1 U2 

(3.4) 

l t 

respectively,where pis the momentum. 
The vertices are: integration is meant over the analytic superspace (2!)• J d4

pd
4
0+du, 

- igf°bc(Dti - Dtt)(27r)4i5(p1 - P2 - k) (3.5) 

11,i '.(8,1A)° r.,,c 

t
l(,O. 

Ii, t ce;u> t'.tA 
--➔- -+-

gj°bc DM(27r)4i5(p1 - P2 - k) (3.6) 

D
++~ t w w 

'>.<:: P n-6:)~ . , . wd Pii 
.i. 

-1 -Aabcd_x2 
6 ' 

(3.7) 

4 

'I-\ 

::0 

>.<
D~CI. Ult I; 

p4 
Co c..,d 

!Aabcd_x2(n++ _ n++) 
3 (rj (~ 

-1 A abed _x2 n++ n++ 
24 

(3.8) 

(3.9) 

where (Aabcd == Tr(TaTbTcTd)) . 
·Of importance is that there appears a coupling constant ..X 2 of dimension (m2). As 

mentioned above, we have no vertices corresponding to interactions of an odd number 
_of the Stueckelberg fields. Besides these vertices we. have an infinite number of vertecis 
correspon"ding to the Yang-Mills field interaction. Note that the configuration-space inte­
gral at such vertex is J d80du1du2du3 , so the Grassmann integration measure is already 
complete. For instance, the three-particle vertex is: 

igj°bc . 

( + +)( + +)( + +) (27r)
4
6(k1 + k2 + k3) • (3.10) 

U1 U2 U1 U3 U2 U3 

K1,0, 'U.i l<z, i, 'U.:i. 

We have also an infinite number of the vertices corresponding to the Stueckelberg field 
selfainteraction and their interaction with Yang-Mills fields. We. do not give them here, 
because for argumentation below the vertices (3.5-3.10) are quite enough. . . . 

Surely, in each vertex the integration is implemented over the analytic superspace 

(2:)4 Id4pd4o+du. 

We shall prove that the theory· is nonreriomalizable starting frorri the g4 order of 
perturbation theory. · 

4 Quant:um Calculations in the N 
Mills Theory 

2 Super-Yang-

It is a well-known fact that i11 tl\e massive N = 0 Yang-Mills theory quantum corrections 
appear in the 92 order of perturbation theory. They originate from the following diagrams 
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shown on Fig.I. and Fig.2. 

p p p 

o~v<-~>~~ 
K, -p I< - p K - p 
(o.) ({$) (c) K (cl) 

Fig.I. 
p 

K K 
Fig.2. 

t::-p 
Let us consider the corresponding diagrams in N = 2 supersymmetric theory. Accord-

ing to the above Feynman rules we have: · 

YM 2j d4kd4p . J8 8 . 
ra = 9 (2,r)8(p2 _ m2)[(k.....: p)2 _ m2t 8d r,du1du2du3dw1dw2dW3 

v/+v/+ 

(ut u!)(ut uf)(u-; uf )(wtw!)(wtwf )(w-;wf) 

(Dt( u2))46<2,-2l(u2, w2)(Dt(u3))4«58(8 - r,)bH•2>(u~, w3) . 

According to [11), this expression takes the form: 

rYM = 2 / d
4
kd

4
pd88du1du2 U1U2 v++(l)V++(2) 

a 29 (21r)4(p2 - m2)[(k - p)2 - m2) utuf a a . 

For diagram in Fig.l(b) we find: 

rF.P. = 292/ d
4
kd

4
p . d48+d48+du du v++(l)V++(2)(D+)4(D+)4 

b. (21r)8p2(k _ p)2 1 2 1 _2 a. a 1 ·• .. 2 

68(8 - 8 )n++ U1U2 (D+)4(n+)468(8 - 8 )n++ U1U2 = 
1 2 I ( + +)3 I 2 I 2 2 ( + +)3 U1 U2 U1 U2-

- 2/. d4kd4p 8 (utu;-)(ui"u+) ++( ) ++( ) 
- 29 ( )8 2(k )2d 8du1du2 ( + +)2 Va 1 V._ 2 . 2,r p - p U1 U2 

The contribution from diagram in Fig.l(c) has the following form: 

rsi = 292 J·-. d
4
kd

4
p d48+d48+v++(1)v++(2)·(n+)4(_D_ +)468(81 - 8;)' 

c (2ir)8p2(k _ p)2 I 2 a a I . _ 2 , . _ 

(n+)"(n+)"68(8 - 8 ) ui"ui" n++ n++ ui"u;-
1 2 1 2 (utut)3 1 , 2 (utu-;)3 

6 

(4.1) 

(4.2) 

I 
) 
· I 
I : 

f 

l 
j 

l 
,f 

·11 
: ,) 

' i_\ ~ 
'I 

I 

-n++ U1U2 n++ U1 U2 -
t (utu-;)3 2 (utu;-)3 -

2 J d4kd4p 2 V/+(l)V,,++(2) . 
= 29 ((2,r)8p2(k - p)2d88du1du (utu-;)2 .. 

Let us sum up the infinite parts of (4.1) and (4.2). Using the useful identity 

(utut}(u-u2 ) = 1 + (utu2)(u1u"f) 
we arrive at: 

rfafoo + r~-{c., = -292coo / d12zdu1du2 v,,++(l)V,,++(2) 
(utu-;)2 

(4.3) 

(4.4) 

(4.5) 

Here c00 contains logarithmical divergence. The result just cancels the infinite part of 
(4.2). Let us consider the diagram in Fig.2. The contribution of this diagram is equal to 
zero due to the N = 2 supersymmetry. In fact, according to the Feynman rules it contains 
the expression 68(81 - 82)(D+)'i68{81 - 82)that vanishes because Gras~mann 6-functions 
have the following property: 

68(81 ~ 82)(D+)m68(81 - 82) = 0, if m<B. (4.6) 

The contrib~tion of the tadpole diagram in Fig.l(d) is equal to zero for the same 
reason. Therefore we come to the following conclusion: Massive N = 2 super-Yang-Mills 
theory is finite in the 9 2 order of perturbation theory. The general nonrenormalization 
theorem [15,16) says: if theory contain dimensionless parameters only and if it is finite 
in one loop, then it will be finite in all loops. Therefore we should look for infinite 
corrections in diagrams which contain the dimensionfuLcoupling constant ,\2. The first 
possible lowest-order diagram containing the coupling constant .\2 is shown on the Fig.3. 

D~ _ _ w 

Fig.3. w 

According to the Feynman rules the _contribution of this diagram is 

'" J d4p1 .. ,d4p4d4k . 148+ J48+d d r( ) 
• f ~ A . (2ir)l6k2(p1 + P2 _ k)2)°~ 1 a· 2 U1 U2V Pt+ P2 - P:l - p4 

[( ++)2 ( U1U2 ) U1U2 ++ ( U1U2 .). · ++ ( U1U2 )] 
D2 - ·. (utuf)3 (utuf)3 + D2 . (utuf)3 . D2 (utuf)3 

. . . . 61 (01 ..:... 82)(Dt)4(Dtf. 

68(81 - 82)(Dt)4(Dt)4nt+w(p1, 81, u1)nt+w(P2, 81, u1)w(P3, 82, u2)w(p4, 82; u2). 
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Using the formula (11] 

58(01 - B2)(Dt)4(Df}458 (B1 - 62) = (utuf)458(B1 - 82) (4.7) 

and taking then into consideration the identity for generalized harmonic functions (11] 

++ 1 1 -- (n-1) (n,-n) 
Di ( + +)n = -( --)1(D1 ) 5 (u1,u2), U1U2 n-1. 

and the prop~rty of the harmonic 5(q,-q)(u1, u2) function 

(utut)5(q,-q)(u1,u2) = (u1u2)5(q,-q)(u1,u2) = 0, 

we transform ( 4. 7) to the following form:, 

,4 / d4Pt••·d4p4d4k s d ( . ) r ~ A (2i)16k2(P1 + P2 - k)2d {I u1du25 Pt+ P2 - Pa - p4 

[ ~:~:~~:] nt+w(pi, B, u1)Dt+w(p2,B, ui)w(pa, e, u2)w(p4, e, u 2) 

(4.8) 

(4.9) 

( 4.10) 

If the external lines are put on-shell ((n++)2w 
following useful formula: 

0), it will be pos~ible to prove the 

n++wn++w = .!:.n++ n--cn++wn++w). 
' . 4 

(4.11) 

(We use the algebra of the harmonic derivatives n++ ,n-- and D0 , see appendix) ' 
Let us use (4.8),(4.10) and (4.11) and transform (4.10) to the following form 

r ~ .!:_,\4 / . d4p1 ... d4p4d4k dsBdu 
4 {21r)ts~2(P1 + P2 - k)2 ·. 

w(pa, 6, u)w(p4, 0, u)(n--)2[D++w(p1; 0, u)D++w(p2, 6, u)] 

Now we pass to the analytic basis ~nd recall the formula (11]: 

-=-\n+)4(n--)2tft((:u) = □ip((,u) 
2 

( 4.12) 

{ 4.13) 

for any an~ytic superfield ¢. Finally, the infinite correction to the actioti"tak~ the form: 

r00 ~' c,,;,,\4 I d(Hlduw2□(n++w)2 {4.14) 

Obviously,-f00 differs from all the.terms of the initial action {2:10) and thus the theory is 
proven to be nonrenormalizable. · 

The diagrams of FigsA,5 gi~e a vanishing contributions. One -can easily check this 
statement" in thi; same manneras we used above when calculating of the diagram Fig.3 
contribution·; · · · · 

3 .. 

1)~ "D~1 

Fig.4. 

Fig.5. 

Note that diagram ·in Fig.3. describes the Stueckelberg field self-interaction in the g
4 

order of perturbation theory. As mentioned above, this Stueckelberg part of the action 
corresponds to the N = 2 nonlinear u-model: · 

,\2Tr J d((-4ldu(eiwn++e-iw)(eiwn++e-iw) (4.15) 

that is the N = 2 supersymmetrization of the remarkable ordinary u model ( l. I). 
Note that we can have proven also ;hat N = 2 sigma-model (4.15) is nonrenormalizable 

itself. 
In contrast to N = 2 theory, the mass of the Yang-Mills field in N = 2 supersymmetric 

case is not rP,normalized. This is direct consequence of the general nonrenormalization 
theorem (15,16]. According to this theorem, in N = 2 super-Yang-MiHs theory all two­
and more-loop quantum corrections can be expres·sed as integrals over the full N = 2_ 
superspace integration measure. Proceeding from the mass term for N = 2 supcr-Yang­
Mills field is the integral over the analytic superspace, the counlcrtc-rn.1 for mass should be 
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the integral over the same measure. It is forbidden by above mentioned general nonrenor­
malization theorem. As for the one-loop level, usually the tadpole diagrams corresponds 
to the mass divergences. _As we have proved above, such diagrams in N = 2 supersym­
metry are equal to 'zero (Fig.1.(d)). fn other words, the mass of the Yang-Mills field in 
the N = 2 supersymmetric case is not renormalized. 

5 Conclusion 

"Summing up the results, we can state that the massive N = 2 supersymmetric Yang-Mills 
theory is nonrenormalizable. As in N = 0 case, the properties of nonrenormalizable the­
ories in the N = 2 supersymmetric case become apparent in the g4 order of perturbation 
theory. Nonrenormalizability of the nonlinear u-model that ·appears in the Stueckelberg 
formalism is the stumbling-block of the nonrenormalizability of the massive N = 2 super­
Yang-Mills theory. The mass of the Yang-Mills field in the N = 2 supersymmetric case is 
not to·be renormalized. · .... 
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7 Appendix 

For convenien~.of reading we give the relations between central and analytic bases of the 
N = 2 harmoni~ superspace (9-11]: . 

• Central basis: 

fxm,Oo;,Oi,ut,u;J = [zM,ut,u;J i = 1,2 
. a -·· 

D' = -·+i~ -8"' 
a aor 00 ' 

~ . a 
D"' - _ ao&i - i0';,#00 , 

n++ - +i _!_ n-- - -'i _!_ 
. -_u au-i' - u au+•' 

D 0 = [n++,n--:-J = u+•_!!_; _ u-•_!!_; 
.. au+• au-• 

10 

Analytic basis: 

[X:1,0!,iJ,t,u;,O;,iJiJ = [((M,u;),0;,1t] 
x';;_=xm-2iO(ium.Oj}utu-;, O;=O~u;, O;=O~u;, 

. + + ;· /) + , + -; . /) 
Do = U; Do= ao-o'. Do, = U; Do,= ao-&' 

n- -ni a · 2·0--"';/l n-- -n-; , a 2·0-0 :11 
a = U; 0 = - ao+o + I \l'o&, & = ll; d, = - /)jj+& - t \l'o&, 

n++ = u+i_!!_; - 2i0+umo+ _!!__ + o+a_a_ + jj+0~, au-• ax~ ao-0 ao-0 

. a- - a · - a - .- a n-- = u-•-- -2i0-u"'O+ __ + 0-0 -- + 0- 0 __ _ 

au+i - . ax:' ao+cx ao+&, 
(7.16) 
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