


1 Introduction

Though gauge theories are studied during more than sixty years there are still quite a number of
little secrets and unanswered questions in this branch of theoretical physics. Especially this refers
to the Yang-Mills theories which are much more complex than electrodynamics and are not so well
understood — after all physicists spent much less time for their study.” The difficulties root in the
problem of going beyond the perturbation theory, mainly at large distances.

Why does the study of non-Abelian gauge theories meet those difficulties? What makes them
so different from the ordinary (non-gauge) field theories? The answer is simple: it is the existence
of constraints: This circumstance, though trivial, is the very new property that in a considerable
degree invalidates efficiency of the old method (perturbation theory) and demands developing new
approaches. Constraints [1] are conditions on canonical variables; they do not contain the time
derivatives, only the space ones, so they presuppose some static nonlocal structures to exist. By
themselves the nonlocal excitations are not unfamiliar ‘objects in field theories. Introduction of a
static source (e.g. an interaction term jqp, @ja = 0,) leads to a nonlocal excitation of a scalar field
¢ in the neighbourhood of the source, The nonlocal structures due to constraints are of another type

~ they bear no dynamics and are a visible manifestation of gauge invariance.

Why is then electrodynamics, a typical theory with constraints, at the same time a pattern
for other local (non-gauge) field theories? It is the perturbation theory which being in fact the
only regular method in QED prevents from uncovering its nonlocal features. The typical nonlocal
object in electrodynamics is the physical electron, i.e. a charged fermion with its Coulomb field.
The constraint (the Gauss law (V,E) = j,) identifies the electric charge with the static electric
field (more precisely, with its flux through an enclosing surface). One attributes to the "physical
electron” a gauge invariant nonlocal operator (see Sec. 2) ¥ = exp(~ieA~Y(V, A)) (2] - [4] where
the exponential describes the Coulomb field, and in the zero approximation of perturbation theory
it coincides with the bare gauge non-invariant operator . It is just this local operator that is used
in the standard QED.

The éxample of QED teaches us that physmal objects are described by some nonlocal gauge-
invariant field configurations, and real dynamics should appear as motion and interaction of these
objects (including, of course, local fields too if they are, like E and H, gauge invariant). It suggests
that before turning to dynamics, one should first solve constraints, i.e. one has to find all gauge
invariant objects.

Such a strategy is, evidently, not necessary in QED because of smallness of its running coupling
constant a(@?) ( at all accessible energies) and absence of an asymptotic freedom in it. But it
seems inevitable in the Yang-Mills theories because there always exist physically important distances
at which the coupling constant a, is not small, and where the perturbation theory is inapplicable.
It means that before approximating dynamics one should take into consideration constraints, which
makes non-Abelian gauge theories so different from electrodynamics. The aim of the present articleis
to establish and to classify the gauge invariant structures. It is shown that a priori in electrodynamics
besides the above-mentioned nonlocal operator ¥ and the local fields E H there may exist ”charged”
objects with electric fields on lines and on two-dimensional planes. (We stress the importance of
knowledge of all such external fields because they are responsible for static interparticle potential,
see Secs. 2,4.) In the non-Abelian theories gauge-invariant field configurations are connected with
path-ordered exponents. The most important property, established and used in the paper, is that
the P-exponents are the only fundamental "gauge covariant” objects there. All gauge invariant
configurations of fields, though complex, are made of them,

This observation is tightly connected with the problem of confinement. By itself this problem is
pretty complex and has many different aspects. But one its feature ~ the existence of a linearly rising
with distance potential — can be established for some models in a relatively simple way. Moreover,
one can show that in gluodynamics between static quarks there could be no other forces. This comes
from the fact that the only proper gauge-invariant object consists of the P-exponent (i.e. of the
"string”) connecting two opposite charges.
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The paper is organized as follows.

In Sec.2 we choose a naive ( physical ) approach to the problem of finding and classification of all
gauge-invariant objects taking the Lagrangian as a starting point and a basis for the investigation,
Both Abelian and non-Abelian theories with the gauge group SU(n)are considered. Gauge-invariant
configurations in electrodynamics are listed; the theories with gauge groups SU(3) and SU(2) are
considered separately.

In Sec.3 this problem is investigated from another, pure geometrical point of view. The Yang-
Mills fields are treated in the framework of the principal fiber bundle approach. The only meaningful
geometrical element of the theory is by definition the path-ordered exponent (in an infinitesimal

form), so that every geometrical object is built of P- exponents. This conceptually quite different
approach confirms conclusions of the previous section. ‘

. In Sec.4 we study interparticle forces arising due to external static fields accompanying charges,
both in the Abelian and non-Abelian cases.

In Sec.5 we consider connection of these results with the problem of confinement. It is shown that
in pure gluodynamics interaction of the static quarks is given by a linear potential, i.e. in this case
one has "strong confinement”. Different forms of confinement depending on the physical parameters
of the system (such as masses, string tension etc.) are listed.

2. Invariant structures in gauge theories. A physical ap-
‘proach. ' '

Our aim is to "solve” constraints in classical gauge theories, i.e. to find all gauge-invariant configu-
rations of gauge and matter fields in the space-time. For simplicity we assume that the gauge group
Gis SU(n). One can easily construct a lot of different gauge invariants. They are local or nonlocal
composite fields, the latter being built with the help of ordered exponents. But knowledge of all
these constructions does not still exclude the existence of invariants of another type. For example,
in electrodynamics besides invariants with the P-exponents there is the above-mentioned nonlocal
field ¥. The factors made of gauge fields, entering into the invariants, represent the physical static
fields surrounding charges {2], so the knowledge of all the invariants is important for establishing
static forces between colored charges (and, hence, for the problem of confinement). For instance, in
electrodynamics the Coulomb field of a charged object given by ¥ is spread through all the space,
and as a result, there are no confining forces, while squeezing of an electric field in a tube leads to
the linearly rising potential. Proof of the absence of the other than string-like invariants would be
a major step in proving the existence of confining forces. Thus, listing of all gauge invariants is the
problem of highest priority both for understanding the most important features of a theory and for its
successful description. In’this and the following sections we shall study invariants of classical fields.
In the present section we choose a rather straightforward strategy [5) which nevertheless allows us to
elucidate the problem and makes the final answer almost trivial. In the next section we show that a
mathematically more elaborate consideration confirms the obtained results. ’

2.1 The Lagrangian and polylocal tensors

We are going to find gauge-invariant combinations of fields. To do this one has first to find all the
"gauge tensors” (g-tensors ), i.e. objects transforming homogeneously under gauge transformations.
The problem is not trivial due to the existence of inhomogeneously transforming objects (the gauge
fields A,). It is rather easy to find all the local tensors constructed of fields and, may be, of their
derivatives at a given space-time point. We shall mainly be interested in the nonlocal configurations
of fields depending on 2, 3, ... points of space-time (polylocal g-tensors). ‘

What is the information we have at our disposal? Suppose that the theory is given by the standard
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Lagrangian o
(21)

where F,,, = i(D‘.D,,—D.,D‘.), D,=0,—iA), =0,—iA,, D= 7"?"; Aas 2’7,, are the Gell-Mann
and Dirac matrices, respectively, Tri Ay = 8y, a,b=1,2,..., N = dlrfl.G' =n? -1 ( G' =SU(n))
and mg is a mass of the matter field 3 which may realize any non-trivial represex'l;tatloni of G; we
assume for certainty that 3 transforms according to an elementary one. 'I:he 'coupllng constant g is
put equal to unity in Eq.(2.1). If necessary it can be introduced by SubStltutlon.A” —gA,, Y—
g¥, L — L' =L]g% The Lagrangian (2.1) is invariant under gauge transformations
CA(z) =U(z)A U (z) +iU(2)3,U(z), U€eG, UUt=1, . ‘ “(2.2)

P(z) = Ulz)e(z), FL () =U(z)Fu(z)Ut(z), D,=U(z)D,U*(z). = (23)
We call homogeneously transforming objects local g-tensors if they change accordi.ng to rules a{lal-
ogous to Egs.(2.3). They may be composed of local fields tzf.ken at the same point of spa.ce-tu;le
(in this case they are local composed fields in the old sense like that ¥(z)i(z)); but they may be
built of fields taken at different points like elements of the holonomy group or the no.nlocal field ¥.
Therefore, a local g-tensor may be an essentially nonloca.l. field. We are interested in all nonloc?.l
homogeneously transforming fields. Tensors transforming like

(@1, Zntm) = U(21) 8+ @ U@a)T(21, 0 Znsm)U* (Zat) @+ @ U* (Tnim)

will be called polylocal tensors of rank n + m (or polylocal g-tensors). It is sufficient tlo; study
irreducible polylocal tensors, i.e. those which are not direct products of tensors of I?wer ran?s. o

What are the irreducible polylocal g-tensors in the theory given by .the Lagrangmn (2.1)? First,
let us answer a simpler question: ‘what are the g-tensors in the vicml‘ty of a point z7. We ht:we
no information about the system except that contained in the Lagrangian plus the transforma}tlx'oxli
laws (2.2), (2.3). Thus, any complex polylocal field may be composed only of those elements vg ic
enter into the Lagrangian. They are the local g-tensors 3, .1/), F,, a.nd D, ; the latter pne',; ellln%
a g-tensor, is not a genuine local operator because it contains a denvatlv.e (Tperator 3‘... N.o e tt); :.h
the transformation law (2.3) for D, is determined by Eq.(2.2):' we obtain 1t by multiplying o
sides of Eq.(2.2) by —i and adding to them an oper:?tor 0, (0, in Eq.(2.3) acts as an1 t(?p;er.ator.,t 1:.
3,U = [8,,U) +Ud, = (8,U) + U8,). We can rewrite Eq.(2.2) in another form: multiplying it by
+idz* and adding unity to both its sides we obtain_

P'(z + dz, z) = U(z + dz) P(z +dz, z) U+(z‘) 4 L (25)

m

L= _4lTr Fo 4 (iD= m)p

(24)

where P(z +dz, ) =1 +. iA,(z)ds* = Py, - (2.6)
Evidently, Py, is an operator of the inﬁnitesimd parallel tr.atnslation'along dz. Equation (2.2) tell:
us that in the neighbourhood of the point z there exists a bxlocz.n.l g-tensor P(z +dz,z). One clz‘mnof
construct other g-tensors in the vicinity of z except those. built of ‘P(z + dz,z). The full ist o
fundamental tensors at z reads: the local ¥, 1 and the bilocal o.ne_P(a: + dz,z). Tensors of any
rank can be constructed of them and only of them, i.e. they are building blocks of the the.ory.‘ ‘From
1, % one can construct local g-invariants, from Py, and %, 4 both local and polylocal ’mva.rlia.nts.

It is the latter ones, we are mainly interested in. A . L
Of two bilocal g-;;ensors P in the neighbourhood of z one can obtain the only non-trivial 1rreduc1ble

bilocal tensor . . :
P(z + dz; + dz;, z) = P(z + dzy + dz3, = + dz;)P(z + dz;, z). ' (2.7)
Therefore, only operations of this type give new interesting objects. Repeating the operation (27)
we obtain the well-known path-ordered exponent (P-exponent) :

Ple(z,z)] = 131_1:1010 ﬁ P(zi41,7i) = Pexp {i /; A”(z)dx“} ) (2.8)

=1
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where zi41 = z; + Az, c(z,z ) symbolizes a contour of integration in space-time. Thus, the P-
exponent P[c(z,z')] (= Pox in the standard notation) is the only bilocal building block in a gauge
theory. Note that this is true for an Abelian theory too. Any other polylocal tensors should contain
as substructures P-exponents, invariants, invariant tensors like the antisymmetric ones €,g.. , and
nothing else. All the local g- tensors made of D, (like those [D,, D,]) are contained in P-exponents.

2.2 Polylocal g-invariants

There are two types of nonlocal gauge-invariant objects: those made of D, and of P,.+. The non-
local tensors made of D, have the form f(D2) where f is a non-polynomial function. But they
are not genuine polylocal tensors and they are not specific for gauge theories. For example, con-
sider the nonlocal operator D;2. Tts action on tensors assumes integration over the whole space-
time: (D;?)y(z) = [d*a'(D;?)..0(2’). We state that the kernel (D;2)..+ is not a bilocal g-
tensor because a typical g-invariant constructed with its help involves fields at all space-time points:
Inv = [d*zd*z"(z)(D;?)z9(z'), and it has nothing to do with instantaneous field cofigurations
studied in this paper. The nonlocality of D}? is not specific for gauge theory — it is nonlocal cven
in the absence of the gauge field (A, = 0). We conclude that invariant structures with D;? cannot
appear as a result of "solving” constraints. In the following we shall not be interested in such objects
1

Tllus, we have to list all the invariants which could be constructed of the exponents Py, ficlds
¥, ¥ and invariant tensors €,g.. , €7, where €,p... is the unit fully antisymmetric tensor. The
irreducible invariants are: Tr P, — alocal invariant (P;; is an element of the holonomy group),
Pae, BoPrgipy, and all the invariants of this type made of 1, 4 and polylocal tensors constructed
-of strings P,, with the use of the invariant tensors €,g... For example, in chromodynamics the
simplest of them is the "nucleonic configuration” €Py,, Prr, Pozy¥(1)¥(22)9(23).

Besides these skeleton objects obtained by multiplying P-exponents, one may construct new .

- tensors by "implantation” of local invariants or tensors into strings. Examples:

P,y Fu(y) Py, , - (2.9)

' P-W F;w(y) Pyz Fuv(z) P, (2.10)
Fo(y) P, (2.11)

Py Tr(F2,)Pyor | (2.12)

We note that (2.9) is a tensor of a new type (it is the Lorentz tensor too); it may be obtaincd
from the string Plc(x,z')] by forming an infinitesimal loop at y on its contour ¢(z,z') { remember:
~Pexp(t § Aydz*) = 1+ i [ F,do,,). The same can be said about (2.10); besides, this object is
not a true scalar in general relativity — the summation runs over the indices of tensors taken at
different space-time points, so the small gravity destroys the illusion of its general invariance. The

- -.next configuration (2.11) suits for the construction of invariants. Note, however, that it is composed

of two objects of type (2.9), with 2/ = y and z = y. The last configuration (2.12) is reducible. We
conclude that all such objects are either unacceptable or contained in P-exponents.

In what follows we give a comparative analysis of simplest invariant structures in electrodynamics
and in the Yang-Mills theories with gauge groups SU(2) and SU(3) (chromodynamics).

2.3 Invariant structures in electrodynamics

Let us study the simplest gauge theory — electrodynamics in more detail. The analysis of the
“previous subsections is applicable to the case of the Abelian gauge group too. But we prefer to give

INote, however, that the kernels Dz? and (7,. Du)~! as well as Dy? and (veDe)™t
via the exponential line integral con51dermg D YuD, and D}, 7Dy as some Hamiltonians for quantum mechanical
systems [6].

, k=1,2,3, may be expressed

i L

e
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an independent consideration of the subject. It is easily seen that in electrodynamics there exist the
following linear in the electromagnetic field A, objects B transforming as B(z) — B(r) +A(z)if A,
transforms as A, —+ A, + 9,A (assuming ? A(:l:) — 0 when z — oo):

B = / A, dz* | ( ‘ (2.13)
B, = A;X(V_L,A_L ), Ay = (V_L,V_L) = 6,2 +B§, (214)
By = ATV (V,A), (2.13)-
B, = -0719,4, D =-8 =-8 + A (2.16)
Of them and of the matter field 1 we form local g-invariants (composite fields)
Vi(z) = eB@ () = Pi(x)p(z), k = 1,...4, (2.17)

assuming that 1 transforms as ¥(z) — exp(éA(z))y(z). Evidently, ¥x(z) are local g-invariants.
Their quanta correspond to charged particles with electric fields surrounding them.

In Eq.(2.13) the integration is done over a straight space-like line, so ¥, describes charged particles
with a static electric field on a line (a charge with the only line of force (see Sec.4)). A curved line is
attributed to the excited electromagnetic field. As is well-known, factors exp(—iB;) with time-like
lines of integration describe soft photons responsible for infrared divergences [8].

The composite field ¥, describes charges with static electric fields on the plane x3 = consi.
while U5 corresponds to the familiar case of charged particles surrounded by the Coulomb ficlds
[2] - [4]. The case of B, differs from the previous ones because it assumes integration over time:
0719,A,(z) = [diz' (071 )8, Au(z") = (2r)7* [ d'k k72 exp(ikz)ik,a,(k); for a static field we
have a,(k) = 6(ko)a,(k), and ¥4 becomes equivalent to ¥s.

We see that contrary to our expectations in the Abelian case there are much more possibilities
than we could expect from the general approach sketched in Sec.2.1. The resolution of the paradox
lies in the demonstration of composite nature of structures ¥ , k& = 2,3. Let us show that their
electric fields are composed of "elementary” strings made of B, given by Eq.(2.13). Take, for cxample.
Py(z) = exp(—iB;(x)); consider

N

Py(z,N) = [] exp (—ig [

j=1 e

A5;) dy;-‘) : (2.15)

hcre we introduce the coupling constant g explicitly. The integration contours in Eq.(2.18) are
straight lines in the plane (z;,z;) going from z to infinity, and angles betwcen neighboring lines
Ap; = 2x [N tend to.zero when N — oco. Introducing a new constant e = Ng and taking ¢ fixed
when N — oo we have

lim Py(z,N) =

T
ZA%/er(r,w;)

li
Jim - exp

(2.19)

te .
exp g/d&p/dr A, | = exp(iely).
) o

Here r = |x — y|, Audy? = Au(dyf/dr)dr = A.(r,p;,0)dr, i.e. A, is the radial component of the
2-dimensional vector A = (A;, A2); the plane z3 = 0 corresponds Lo § = 7/2 . The integral in the

2Incorporation of transformations with A(z) — const, z — oo, implies in fact inclusion into the gauge group of
global transformations (with 8,A = 0). Such an extension is possible and allows one of us to prove the supersclection
rule for the electric charge [7}; morcover, it leads to the conclusion that in the infinite Universe with all the matter
confined into a finite volume the total electric charge is zero 7).



exponent (2.19) can be rewritten in the form

2x

1 T 1 1 i} ‘ '
L =— dt,o/dr A, = o d*y(8,Inr)A, = —g/dzy Inr [r lE),(rA,)] . (2.20)
J .

2
)

The final expression is nothing else than —B; because (2r)~'In |x — y| = AZ'(x,y) is the kernel of
the operator AZ', and r~(9,rA,) = (V1,A}) (in polar coordinates (V,A) =r=Y(0,rA,) +7718,4,

i

; here by construction A, = 0, see Eq.(2.18)). We conclude that lim Py(z,N) = Py(z) when N — o00.

Analogous consideration can be performed for Py(z) = exp(—iBy(z)). Now there is a "2
dimensional” set of straight lines in the product substituting (2.18). Parametrizing it by two
spherical angles ¢;, 6; with dy* — dy};, so that to a line (i,j) there corresponds the solid angle
;17r/N(= sgx)n 0; AB;Ap; and taking e = Ng being fixed when N — oo, we obtain an analog of the
imit (2.1

00

. . ie N
Jim Py(z,N) = lim exp Ezsmaj A8;Ap; / dr A.(r,0i,0;)

: i 0
2r " ©o
ie . .
exp . dlp/ dé sm0/ dr A.| = exp(iely) ,
c o0 0 .

where A,dyf; = A,(r,;,0;)dr. The integral in the éxponent can be rewritten in the form

i
I

(2.21)

1 ) 1 _ 1 e
I = E/dsy r24, = ~4—;/d3y(3,r YA = Er-/day rt [r 2('3,(1'2A,.)] =—B;.. (2.22)

The last equality in Eq.(2.22) is due to the identity (~1/4x)[x—y|~' = A~*(x,y) and the formula for
the divergence in the spherical coordinates (V, A) = r~23,(r?A,) + (r sin 8)~*[Dp(sin 0 Ag) + 0,A,],
assuming that A, = A, = 0. It completes an anatomy of the Coulomb field. .

We conclude that according to the first principles a particle surrounded by the Coulomb field
is not the simplest charged object. Rather, it is a very complex object, the simplest one being a
particle with one line (see also Sec.4). The experimental consequences of the hypothesis that N in
Eq.(2.21) is large but finite has been studied in [9],[10].

2.4 Invariant structures in theories with gauge groups SU(3) and SU(2)

For an obvious reason it is important to know invariant structures in the theory with the gauge group
SU(3) (chromodynamics). As usual we are interested only in the field configurations of the lowest
rank and energy. The invariant tensors (besides the trivial one 67) are

Capyy  €PT. ' (2.23)

Of+, ¥, P, and these invariant totally antisymmetric unite tensors one can construct the following
non-trivial invariants

= PN (Peo)d (Pl) (Pi) ewrprys

Tr Ple(z,z)], ©(z,2") (2:24)
Mz::’ = 1/—)(1) Pz:’ Ys 1/)(1’) ] (2’25)
Brizgey = €P(Pos) (Pozy)f) (Pazy) Yar(z1)0pr(22)y(3) ,  (2.26)

etc.; P, P’ ,P" in Eq.(2.24) differ by contours. The fields (2.24) represent the simplest local and
bilocal physical configurations of a pure gluonic field. The configuration (2.25) is usually referred to
as a mesonic, while (2.26) — as a barionic fields. Existence of the antisymmetric invariant tensors
(2.23) implies that there are infinitely many topologically nonequivalent bilinear in 1, 1 invariants
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because strings in this case may branch. Such string configurations may be represented by graphs -
with directed lines. With the string P3(z,y) = P2 we associate a line connecting points z, y, an
arrow being directed from the upper index to the lower one (i.e. the ends of the line are associated
with indices too). Vertices with three outgoing or incoming lines correspond to the invariant tensors.
€apy OF €77, respectively. Some simplest zero- , two- and three-point configurations are shown in
Fig.1

The first two graphs represent the invariants (2.24). The third one corresponds to a bilocal g-
invariant composed of the string P, with a quark (the field ,, an open circle in the figure) and
an antiquark (the field $* , a black circle) at its ends. So, lines go from quark to antiquark fields.
Another graphs in the figure give examples of bilocal and trilocal structures. Note of caution: it
is graphs of a new type — they represent an instantaneous topology of strings connecting different
space points. The graph j , for instance, is senseless. ’

" Question: can a string change its topology with time? The string topology changes if and only
if strings can break or branch. It is easily seen that in pure gluodynamics (no matter term in (2.1))
strings in the fundamental representation preserve their topology. Indeed, strings cannot break
because in this theory there are no quarks, and open strings are forbidden by the gauge invariance
{7). Strings cannot branch either because, for example, transition from the loop a in Fig.l to the

- configuration b assumes the existence of a vertex trilinear in glue fields (to ensure transition A:— A A)

made with the use of the product of tensors (2.23) €*?Ye 5.y (see Eq.(2.24) for ©(z,z')). Such a
combination is absent in the gluonic Lagrangian and may appear only in the effective action as a
trilinear vertex containing the invariant symmetrical tensor d*** ~ Tr(A*{A%, A°}) (the sign ~ means:
equal up to a constant). This is easily seen from the equalities '
eaﬂvAg'Ag’Az,’ea,,,,,, ~ Tr(A{A, A}) ~ d*Pc A® AP A° (2.27)
(A is a certain matrix, A = A°A*, TrA = 0; in the first equality we used the identity e eqipiy =
5“:,52,5:, + permutations with proper signs). But effective vertices of this type never appear in
pure gluodynamics. The latter from the very beginning contains only the structure constants f*,
and from these constants one cannot construct the invariant symmetrical tensor 'd**¢ [11} because
Tr(Fe{F*, F°}) = 0, where (F®)s. = f*, i.e. in gluodynamics (d**¢A3(z) A} (y)AS(2))o = 0. Hence,
in pure gluodynamics strings in the fundamental representation cannot branch. We may expect the
appearance of effective d-vertices only after the introduction of quarks (QCD, Lagrangian (2.1)).
It turns out, however, that even in QCD they are absent, at least in lowest orders of perturbation
theory. Indeed, the simplest triangle Feynman graph a in Fig.2 does not give them because it is
accompanied by a graph with opposite directions of arrows, so that their sum is proportional to
Tr(A°[A%,A]) ~ f2%. This is the case for more complex graphs too (e.g. for graph of order g”
with six y-vertices). In local limit such vertices vanish identically in all order of perturbation theory
simply ,because d“"cF“"yF,',’pF;" = 0. They appear only in the presence of some other vector fields
interacting with quarks.. For example, 'effective d-vertices arise from graph b in Fig.2, as it has an
even number of - vertices in the fermion loop; the extra line there represents a photon. Due to this
circumstance the string branching is accompanied by emission of a photon, and each vertex in Fig.1
enters with the factor g%/%¢}/? ~ a,(a/a,)"/*, where a is the QED fine structure constant. Note that
a certain function of momenta also enters there (square root of the corresponding vertex function).
The theory with the gauge group SU(2) differs drastically from chromodynamics, because the
complex conjugate representation of the 2x 2 U-matrices (Ut = 1,det U = 1) is unitary equivalent
to the original one. The invariant antisymmetric tensors €8, ¢€,p transform spinors with the lower
indices into those with the upper ones and vice versa. As a result, strings are not directed here.
Furthermore, the tensors ¢, ¢,s have rank two , so the strings cannot branch. We concl,udevthat a
non-Abelian SU(2) gauge theory differs strongly from any other theory with group SU(n), n > 2.
Rather, it is closer to electrodynamics, because strings there also do not branch.
A few words about more complex objects composed of strings. Till now we considered only an
elementary representation which is sufficient for modern hadron physics - all the observed strongly
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interacting particles are assumed to be made of quarks realizing the fundamental representation of
the gauge group SU(3). However, strings can be taken in any representation. If, for instance, there

is a matter field ¢ in an adjoint representation, one can construct invariants either bilinear in ¢

with the aid of a string in the adjoint representation, or the linear ones but with two strings in the
fundamental representation and a quark and an antiquark at their ends. Generalization to higher
representations is trivial.

In Sec.2.3 we observed that besides objects with the ”1-dimensional external field” there are
also those with 2- and 3-dimensional ones, the latter corresponding to the ordinary charged particles

surrounded by the Coulomb fields. They can be considered as complex objects composed of infinitely -

many strings. It is important to prove or disprove the existence of such objects in chromodynamics
(see Sec.4). Fortunately, no objects of this type are admissible in non-Abelian gauge theories: the
corresponding source would realize in this case a certain very high representation of the gauge group,
indefinite in the limit of an infinite number of strings. But we know from experiment that in QCD
colored objects realize the lowest representations of the SU(3) group. Thus, quarks and antiquarks
are connected by ”strings” with two ends and more or less rich topology (see Fig.1, c, d, e).

3 Invariant structures in gauge theories.
~approach

A geometrical

As is well known [12], gauge fields are nothing but connections in the principal fiber bundle theory,
i.e. they admit a natural geometrical interpretation. In the present section we analyze the problem of
invariants (or polylocal g-tensors) from this quite different point of view. Though all the statements
of this section are rigorous, we avoid the style admitted in mathematical literature [13]. Rather we
simply introduce the needed objects and describe their properties to elucidate the geometrical nature
of gauge field theories. All the considération can be made rigorous, though much more lengthy.

3.1 Gkauge fields as georrietrical objects

Let P(M,G) be the principal fiber bundle over base M with a semisimple compact group G. The
space P may be considered as the base space M- (it may be the Minkowski space) with a group
manifold G attached to each its point z (the fibre over z) so that M = P/G, P being a differentiable
manifold. Locally, i.e. in an open set U/ C M, a point u € P may be considered as a pair u = (z,g)
where £ € U, g € G. In other words, we may always introduce locally a coordinate system so that
z are coordinates in the open neighbourhood U and g are coordinates in corresponding fibers (the
group manifolds). If a covering of M by a system of open neighbourhoods is defined, then one may
determine local coordinates for all the manifold P. The principal fiber bundle P with thus defined
coordinates on it is called a principal coordinate bundle in the sense of Steenrod [12]. The existénce

* of this coordinate bundle is part of the definition of the principal fiber bundle. The group G acts on
P as a group of right translations: ug’ = (z,99"), ¢’ € G, i.e. G translates points along the fiber
which is isomorphic to G. The existence of a group action on the bundle space P gives rise to other
possible coordinate bundles [12]. ‘

Further, we need the notion of a local cross section o which may be considered as a surface in P
isomorphic to some open set U C M, which crosses each fibre only once, i.e. ¢ = o(z) = (z, g(z)).
The existence of a global covering of base M by a system of open sets {U/} allows to define a system
of local cross sections on the whole space P. .

G acts on P as a translation along the fiber so at any point u € P one can define a tangent space
G, to each fiber. It is linearly isomorphic to the Lee algebra A(G) of the group G (a tangent space
to a group manifold is a corresponding Lie algebra); G, is called a vertical linear space. We denote
this isomorphism by £ : A(G) — G, ; the operator £(A) € G, (A € A(G)) is called a fundamental
vector field.

———

Introduction of the connection in P is equivalent to introduction at each point u € P of a space Q,
which is an orthogonal complement to G in the total tangent space T,atu€ P,ie. T, = G ®Qu;
G.. and Q, are called the vertical and horizontal subspaces, respectlyely. ) '

A gauge field A, in this approach is a component of the connection form pro_|ecte'd on a cert_am
cross section o-in P. The connection form w (for a given connection) has the following properties:
w(X) = 0 if and only if X € Q, — the horizontal space (by definition w(X) = w.-X'. for any X € T,:,
where index i numerates components (coordinates) of the 1-form w and the field X in a certau'l'ba'.sxs ,
3), and w(Z(A)) = A for any A € A(G). The I-formw is defined on the whole space P. Its projection

to a cross section o is 4.

(3.1)

0" (w) Sw, = Audz” .

This projection may be determined in a local coordinate system as a formal replacement of di: by

do(z) in w and u by ¢ in its coefficients. _ ) ;
Gauge transformations in P are locally (i.e. in a neighbourhood U C M) defined with the help

of functions g : U — G so that a local cross section changes according to the law o — 0g, ¢ = g(z).
The gauge transformations in P induce the transformations of the 1-form w, components, 1.e. of
the fields A,. Indeed, the transformation ¢ — og = (z,9'(z)g(z)) induces the translormation
Wy — Wag = ASdz*, AS are [12]

A, A= g'Ae + 7' . (3.2)

For this reason the coefficients .A, are identified with the Yang—Mi“s fields and are called gaugc:

potentials. : A ) S
A local tensor (matter field) ¢ in the bundle P may be defined as a function on P realizing a ;

linear representation 7 of the group G, which should satisfy the following condition {14]
_tl)(u_(]) = Ty"d’(u)a

where T, is an element g € G in the representation 7. The conjugated field ¥~ is analogously defined
as an element of the conjugated representation 7°

P*(ug) = * ()T, ,

Functions #(c(z)) = ¥, (2) and "(a(z)) = ¥;(z) are tensors.on a cross section g. Th'cltransfor-
mation law for these tensors induced by the transformation ¢ — og follows {rom the relations (3.3)

and (3.4)

geG (3.3)

g€C. (3.4

P, — Plog) = Ty-1vs , ¥, — P (og) = ¢, T, . (3.5)

The scalar product

(Borib) = $o(@)(0) (3.6)

where a enumerates components of the field ¢ in the representation T, is the simplest gauge-invariant.

Thus, we see that, as in Sec.2, the description of invariants dcpendin‘g on A# is rcducedml,o the
description of polylocal tensors in P which realize the tensor rcprcscnta.tlon (I eT)e (I oT) ’
of G, i.e. to finding tensors T' which transform under gauge transformations (3.2) as

T(019s v OnG3 0195 -y Timd) = (H ®Tg-n(1:;)) T(O1y s Oni Oy o1 Ong) (H ®Tg(:r:-)) (3.7)
. =1 ' j=1

where 0; = o{z;) and o} = o(2}). The law (3.7) is the general transformation law for polylocal
tensors depending on A, and ¥,,%;.

3Let M be a manifold, Ty be a tangent space to M at a point y € M. Then in a local coordinate system, in any
open neighbourhood of y one may define X = X*9/0y' € Ty an<.i w= widy'; by deﬁum'on w(X) = o.-J,',\ .
11n this section, following the notation accepted in mathematical literature we substitute A4, — i,



3.2 Polylocal tensors

The connection form w is the fundamental geometrical object in the bundle P containing gauge
potentials. All other structures depending on its components A, have to be expressed via w, because
there are no other objects in the bundle P. Therefore, tensors depending on A, must be also

built of w,. However, the l-form w, transforms non-homogeneously under gauge transformations. -

Consequently, one has to find homogeneously transforming functions of w,. Using (3.2) we find that

1 —w, = P(o(z + dzx),0(z)) = P,(x + dz, z) (38)

is a bilocal tensor

Pyy(z +dz,x) = g"(z +dz)P,(z + dx,x)9(z) . . (3.9)

The infinitesimal bilocal tensor P, is the only (up to a factor) linear function of w, transforming

homogeneously. Therefore, any finite tensor (functional of A,) should be constructed of F,, and we
may simply repeat the reasoning of Sec.2, beginning from Eq. (2.6).

Remark. In building tensors of bilocal tensor (3.8), one should take into consideration the repre-
sentation under which the matter fields transform. It can be done by the substitution

w, = wE = N(A,)dz* ~ (3.10)

in (3.8), i.e. the fundamental field £(A,), a linear operator in the representation space 7, substitutes
for the element A, of Lie algebra in A,. To determine the action of the field £(A,) on a local tensor,
we use the definition of £(A,) according to which £(A4,) € G, so the field £(A,) is a generator of
the parallel transport along a curve belonging to G,. We may take such a curve passing through a
point o(z) in the form u, = o(z)exp(rA.n*) = o(z)g,(An*) where nyn* =1, g, € G and 7 is
a parameter of the curve. Apparently, n,X(A,) is a tangent vector field for the curve and, hence,
its action on a local tensor may be defined as its variation under the infinitesimal parallel transport
along the curve g,. Let ¥ be a function on P satisfying the condition (3.2), then ( see also [12])

(A, = 11_1}(1) ! (Tg:n/; Y} o = =T(A)Yl, = =T (AN, (3.11)
where T} -19, gives a tensor 1, transported along the curve g, and T(A,) is an element of the Lie
algebra A(G) in the representation 7. Using the relation (3.11) one may easily show that under
gauge transformations the field £(A,) changes according to the law (3.2) where A, — E£(A,) and
g — T,. Therefore, any tensor built of P¥ = 1 — w” has the gauge transformation law coinciding
with (3.7).

Constriction of invariants is based on the gauge transformation law (3.2) induced by the projec-
tion of w on o. Question: does there exist another projection of w, &, with coefficients A, which
are nonlinear functionals of A, and undergo the same gauge transformation law (3.2)? According to
the reconstruction theorem [12],[13] the connection form in P may be reproduced from local forms
@,. However, the should correspond to the same (given) connection in P. Hence, the forms w,
and @, may differ only by a coordinate system in fibers, i.e. by a cross section choice. Therefore,
@, = wyy Where ¢ € G depends on A,. It follows from the obvious equalities @,; = Wygg = Wogy
where ¢'(A) = ¢(A9) that ¢ transforms homogeneously, #(A) = ¢(A9) = g~1¢(A)g. Thus, $(A)is a
local tensor and may be represented as a series over the covariant derivative D, = 8, — £(A,) since
it is the only linear in A, local tensor. D, are generators of a horizontal transport orthogonal to
fibers [12]. However, ¢ € G and consequently, acting on any local tensor, ¢ translates it along a fiber.
Hence every term of the ¢ series should be composed of such combinations of D, which generate the
vertical transport, i.e. they must belong to the Lie algebra A(G) [13]. Thus

oo

¢$5(A) =) CHr (2) Dy Dy, -+

n=0

-D, E(F,,) + const (3.12)
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where X(F,,) = [D,, D,] is the vertical field .
According to the Ambrous-Singer theorem [13] (see also [15}), Dy, D, « -+ D, E(Fu),n = 0,1,.
so ¢*(A) should be an element of the holonomy group and there should exist a closed contour C (:L')
such that
¢(A) = Pexp f A,,d::“ . (3.13)
C(=)
We see that ¢ is built of P, (or Py.).
We come to the following conclusion. All invariants can be built of the path-ordered exponents

PE =Pexp|— / 24N, ‘ (3.14)
. (o)

the matter fields ¢ and ¥* and of invariant tensors (like €,5...) independent of A, and ¥* in the
representations T and T*.

4 Static interparticle forces. Calculations

We have already mentioned in the previous sections that external fields surrounding charged objects
appear as a manifestation of the first-class constraints and are responsible for the static interparticle
forces. In the present section we study this aspect of the problem in detail both in classical and
quantum theories. In the Abelian theory besides the familiar Coulomb forces there may also exist
logarithmically and linearly rising static potentials. In pure gluodynamics we find confinement for
external classical sources, i.e. their static interaction is given by a linear potential. We start with
electrodynamics which serves as a pattern for study non-Abella.n models

4.1 Electrodynamics. A classical theory

As is well known, in electrodynamics there are two first-class constraints

7o =0, ‘ (4.1)
(V,E)~jo=0, o (4. 2)
where 7# = aﬁ/aA is canonically conjugated to A, momentum = E’" a.nd Jo is the zero com-

ponent of the electric current of charged fields (j, = —3L/3A,). The constraint (4.1) is trivial
(it says that the component Ao is an unphysical variable), while (4.2) contains important physical
information. It involves a number of physical variables and states that one of them is unnecessary
for description of the dynamical system. In the integral form Eq.(4.2) identifies the flux of lines of
electric forces through some closed surface with an electric charge inside it, stating that these two
notions are physically equivalent (i.e. indistinguishable). Analogous statement about fields can be
made addressing the local Eq.(4.2) - one of the fields can be eliminated. Usually it is called "unphys-
ical”. But which of the fields entering into Eq.(4. 2) is unphysical? For instance, rewrite Eq.(4.2) in
the forms

E; = A™'Vj, E=Ej+E;, (V,E;)=0, (4.3)
Ey = A;'Vi(jo—3Es), E=E,+n3E;, (4.9)
Es = 8'Go— (VL,Ex); (VoL,Vi)=8+8=Ay (4.5)

in the last two formulas n} =1, (n3,Ey) =0, i.e. Ey is a "planar” vector. According to Eqs.(4.3)-
(4.5) one can eliminate as an unphysical variable either Ejj or Ey, orelse E3. What is the criterion
for the choice?

5As is above-mentioned, the linear isomorphism T preserves the structure of the Lie algebra A(G) in Gy therefore
[£(Ag), 2(A))] = E([Ay, Av]), hence, the strength tensor Fuy = 8,4, ~ 0, Ay +[Ay, A)] € A(G) and Z(Fy,) € Gu.
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We know from Sec.2 that in eIectrodynam1cs there are three types of static gauge invariant objects
given by ¥ (Eq.(2.17)), i.e. charged particles in principle may possess different exterior static fields.
In the case of ¥3 the electric field component Ejj (Eq.(4.3)) is attached to a "charge”, so it can be
eliminated from dynamics, because its evolution is determined by the motion of charged matter. Only
the other two components E; can propagate independently. Hence, we can describe the dynamics
in terms of matter fields and the field A;, (V,A;) = 0 ("radiation gauge”, i.e. the radiated
field is Ay ). On the contrary, in the cases ¥, and ¥, the field components Ey(E, Ez) and Ey
- respectively (Eqs.(4.4), (4.5)) are attached to charges. They also can be eliminated because their
future is predestinated by equations of motion of charged matter. Of course, the elimination gives
rise to some additional terms in the Hamiltonian Hy = [ d®z[E? + H?]/2. For example, substituting
Ejj given by Eq.(4.3) into Hy we obtain the familiar expression

1 [ a1 .
Ho = E/dsz [Ei + I‘I2 '—]oA l]o] y (46)
where the last term describes the Coulomb interaction. Analogously, we obtain the following static

interactions for the cases (4.4), (4.5) when the components Ey;, E3 are eliminated (for simplicity we
take ”plane” jo — §(3)o(x 1) and linear” jo — &, (x)jo(zs) sotirces respectively).

3 [ 2 (9.87%5,V.875)
l‘/‘dal'a;ljoaz;ljo R

where 81(x) = 6§(z1)6(z2), and (6"‘),3,' = 0(z3 — z3). For two point sources [10] in the latter case
Jo = 8(z3 — z4) — 8(2s — z37), O5%50 = 6l(x)[0(:c3 —z4) — €(z3 — z3")], one rewrites Eq.(4.8) as
(1/2)6.(0)|z% — z3"|, thus obtaining a linearly rising potentlal '

We conclude that static interparticle forces depend on the configurations of static external ﬁc]ds,
which appear as a consequence of the secondary first-class constraints.

=360 [ 535, (4.7

1 “ a_gx R
~§51(0)/d131063 Yoy (4.8)

4.2 Electrodynamics. A quantum theory

In this subsection we calculate the mean value of electric field E for the static configurations given

by Eq.(2.17), k = 1,2,3 and.the corresponding interaction energies of a couple of point-like sources.

Using the canonical commutation relations for Aj, E* : [A;(x), E*(y)] = 1656(x — y) we find the
following commutation relations for operators E and B (Eq.(2.17)), writing however for future usc.

P,,/ instead of P1

B b = P |Biy) + / &6z - y)| | (4.9)
Ey)Pe = P [E:‘(y); / dzz(viA;f)xzs(z-y)], ’  (4.10)
Eiy)P = Py [E"'(y)} / d3z(viA-l)xzs(z—y)] (@)

(all the times are equal yo = zo = z(). Then one gets for the mean values of E7 in the states ¥,
assuming (E7)o = 0

T

(PLE(y)Pr)o = / dz36(z — ), (4.12)
(PLE(y)Pro = / (& AT bz — ¥), (4.13)
12

(PLE(Y)Poc)o = (FA7V)yy = ——4;’|y ——IXP . (4.14)
We observe that the average (4.12) is zero everywhere except the integration line, where it is (in our -
units) a constant equal to 6(2)(0) (the factor §()(0). appears because the radius of the line is zero).
Thus, we have a single line of the electric force; it is identical with the electric field of a point-like
charge in 1-dimensional electrodynamics. Further, one easily recognizes in (4.13) and (4.14) the
electric fields of point-like charges respectively in 2- and 3-dimensional theories. The former behaves
as the electric field of a charged straight line, while the latter is the standard Coulomb field. These
formulae establish correspondence between structures (2.17) and the average electric fields.

The forces between any two point-like charges can be easily found from expressions (4.12)-(4.14)
(by the formula F = ¢E), but we prefer to obtain the interaction energy directly, calculating the
energy of the external electric field. Consider configurations 9 (z) Prertp(z'), Wi (z)¥i(2’), & =2.3.
We are interested in the energy of excited (i.e. “induced” by charge) electromagnetic field, so we
omit the matter fields ¢ in these expressions to avoid unnecessary complications. Using the fonnulac
Pt Pu: =1, P,qu, =1 and Eqgs.(4.9)-(4.11), one has

zz!

(Pr HoPry)e = C°+-;-/dz{/dz§6(zl—zg)=Co+%6(2)(0)|x—x'|, (4.15)

(P PEHOPPy)y = Co+ E/dzzld2z2 [((')j_A;‘),,1 + (61A2")I,,l] 6(zy — z2) x

x [(a" A7 eny + (0,07 )2] (4.16)
(P PEHo Py Py = Cot / F2d®z; [(VA™),., + (VA )0, ] 8(2) - 22) x
X (VA )z, + (VA ] | (4.17)

where Ho is the electromagnetic field Hamiltonian, Cy = (Ho)o, the effect comes from the term
(P+E2P) For.the linear structure P, one obtains the potential (4.15) linearly rising with distance
(opposite charges). It justifies identification of the P-exponent with a string. Subtracting from the
rhs.’s of Eqgs.(4.16) and (4.17) self-energies of sources (infinite constants) one gets the intcraction
energies (Az")z = (1/27) In [x —X'| and (A™),pr = (~1/47)|x~x'|"}, the latter being the Coulomb
potential.

- Thus, as it should be, the static interaction of charged objects depends on their exterior static
fields, and in the case of P-exponent Pe. it is given by the linearly. rising potential (4.15). If the
integration contour in Eq.(4.9) is not the straight line, then the length of the contour substitutes for
the distance |x — x’| in Eq.(4.15).

Remark. The above analysis elucidates connection between the configuration of external ficlds
and the corresponding gauge conditions.The Coulomb (radiation) gauge (V, A) = 0 is natural for
studying electrodynamics of charged objects of type ¥3, Eq.(2.17). The Coulomb field Ay (A=
Ap+ A, (V,A;)=0)is not an independent variable and is attached to . The ficld component
A propagates independently and describes a radiation, i.e. by writing in this case (V,A) = 0 one
identifies in fact A = A ;. On the contrary, for objects of type ¥; with the integration contour along
the axis "3” the component A3 = n3A is attached to the charged field (A =n3A3+A,, nzA; =0).
so Aj is eliminated from dynamics as an independent variable, and the physical field A (= Ay)should
satisfy the condition n3A. It is the axial gauge. Note that in the latter case the choice of the axis
depends on the problem, i.c. on the direction of the straight line connecting charges. Of course,
in both the cases one can choose any other gauge but it will not be natural — it compluatcb the
description.
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4.3 Non-Abelian gauge theorles

As it was shown in Secs.2,3, in non- Abellan gauge theorles for any fixed representatlon of a charged -

matter field there exist structures only with a fixed number of "incoming” or ”outgoing” strings
attached to the "charge”. Let us find static forces between charges in the simplest case of excitation
born by the operator (2.25) (3 realizes an elementary representation of SU(n), n > 2). The answer is
almost evident, nevertheless, we give a short derivation of the potential for the sake of complcteness
Only quantum theory is con51dered

The equal-time canonical commutators in this case are

[A?(x), Ej(y) ] =isteb(x—y). , (4.18)

The commutation relation (4.9) for a path-ordered exponent changes its form. Introducing parameter-
dependent A-matrices one rewrites the P-exponent in the form

Prow = Pexp |i / Ab(2(0))M(0)2(0)do (4.19)
0

where 2#(0) = dz*/do, and 2(0) = 2', z(1) = z. Now one can ignore noncommutativity of the
matrices [16], and instead of (4.9) we have

Ez(y)Pzz’ = Pz:"éi(y)','

+P |exp [ i / A (2(0))Mu(0) 3 (0)do / M(r)5 ()6 (2(r) - y) dr | . (4.20)

Path ordering in the last term refers both to operators A; and all the matrices A. For calculation of

the average of the gluonic field energy 7 = [ &Pz[E? + H?]/2 in the state My |0) (see Eq.(2.25);
|0 is the physical vacuum) one needs the equal-time commutation relations (zo = yo) for %:

[0 Boly) ], = bupbx~y) S

where a, 8 stand both for spinor and color indices. To simplify formulae, we again neglect irrelevant to
the problem factors 2n[6(}(0)]* appearing when my — 0. Appearance in Eq.(4.21) of the Kronecker
symbol §op allows us to represent the final expression for the gluonic average energy as a trace. We
have in the limit my — oo: o

O] M HE Mo 0)= (1o +

1

+ élz(Tr P /dsyexp / (")) Ac(0)2(0)da" //\ (Tl)ZJ(TI)6 (z(r) —y)dr'| x

[}

x P lexp i//i;(z(a))/\c(a)z"‘(a)da /An(r)éj(r)ﬁ(z(r)—y)dr Yo . (4.22)

Here the equality = means: equal up to the normalization factor 2n[§®)(0)]%. In Eq.(4.22) we

={+ .
used the limits $(j0) — 0, |0) — 0, my, — oo, where $H) (s ) contains the quark
(antiquark) annihilation operators, and omitted the self-energy term. The symbol P there indicates
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an antiordering (relative to P). Due to this circumstance the last term in Eq.(4.22) (i.é. the
interaction energy of charges) takes the extremely simple form

1 1
Vegr = -LTT/\Z/ dr/ dr'# (1) (r")6(z(r) — 2(7")) =
2n o o
1 , '
= é—n-Tr,\Zcﬂ(O)lx —x'], (4.23)

the last equality being valid for the straight line contour. We conclude that in the non-Abelian
gauge theories the string-like external gluonic field given by the P-exponent (4.19) also leads to the
linearly rising potential. As is clear from the previous sections, for elementary representations a
single (possibly branched) string is the only allowed external field configuration; structures analogous
to the Coulomb field are forbidden.

5 The problem of confinement

In this section we study consequences of the previous analysis. It is instructive to consider "pure
gluodynamics” and the corresponding theory with matter separately. It is also useful to compare
theories with different groups, as we did it in Sec.2.

5.1 Static interaction in gauge theories. Discussion

A Pure gluodynamics
Under pure gluodynamics we understand any gauge theory without matter, including the Abelian
case (e.g. electrodynamics). We discuss static interactions of classical sources (static quarks, i.e.
massive particles, my — oo, realizing the elementary representations of the gauge group).

1.Abelian theory (electrodynamics). According to Sec.2, a priori there are three possible config-
urations of static electric fields of charged objects, when the field is non-zero (i) on a straight line,
(ii) on a plane, and (iii) everywhere (the Coulomb field).

In the case (i) two external sources with opposite charges are connected by a string, and accordmg
to Eq.(4.15) their static interaction is given by a linearly rising potential. Note that the string cannot
break here, however long it be, because there are no charged particles of finite masses, and a string

_ without charge at the end is nonsense (it is not a gauge-invariant object). Further, the strings in

the Abelian theory have no structure (they do not branch). We call it an "absolute” or strong
confinement. The problem of the existence of objects of that sort in Nature remains open. Dirac [17]
seriously considered this possibility.

The case (ii) is presumably of an academic interest because one should expect that such a field
configuration is unstable. Ignoring this circumstance, one obtains for (ii) a potential logarithmically
rising with distance; the situation is intermediate between the case (i), corresponding to the string,
and the case (iii) when one has the Coulomb potential. The latter potential is not confining though
one can still show that the total electric charge of the Universe should be zero [7]. Evidently, this
statement should be tfug for charges of the other two types too.

2.Gluodynamics. a) The gauge group SU(2). This theory is analogous to electrodynamics with
strings (case (i)). Here strings also neither break nor branch; the existence of a llnearly rising
potential completes snmllarlty of the two cases, i.e. we have strong confinement.

b) The gauge group SU(3). This theory does not differ in fact from the previous one. It is evident
that strings do not break but they do not branch either because in chromodynamics without matter
{gluodynamics) strings cannot change their topology (Sec.2; in building invariants we can use only
those entities which enter into the Lagrangian, but the gluonic Lagrangian does not contain invariant
tensors (2.23)). So, the sources (heavy quarks) are connected by a simple string, and the situation
is identical with that in the case a), i.e. we have static potential (4.23).
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c) The gauge group SU(n). It is evident that the situation here is identical with thosc in the
cases a), b).

B. Gauge theories with matter
Introduction of matter changes dynamics radically; now (i) strings can break, (ii) they can branch
(in theories with G = SU(n), n > 2).

* 1. Electrodynamics (case (i)) and theories with the gauge group SU(2). The only effect of matter in
this case is the possibility of string breaking. A sufficiently long string can break, the critical length
depending on its tension and on the masses and spins of neutral particles. Passing from sources to
quarks at the ends of the string does not change the principal features of the picture. It is just what
one usually expects to occur in reality (in chromodynamics) - a long enough string breaks, and at its
newly born ends opposite charges are set, so that these objects are also gauge-invariant. We conclude
that in this case one has a standard situation ("normal” confinement). In electrodynamics, cases
(ii),(iii), the effect of matter depends on the particle masses and the ”string” tension (see Subsec.5.2).

2.Chromodynamics. In contrast to these theories in chromodynamics, strings can branch. This
complicates the description of static interaction. Now one has to calculate the interaction energy
for every bilocal multistring configuration, some of which are represented in Fig.1(d,e). The sum of
these functions of distance with proper weights gives the needed potentxal V. The general formof V

in the case is ‘
V) =) wkE(r), (5.1)

where

Eo(r) =3 culi (5.2)

is the energy of a multistring configuration with v vertices, and I; are the lengths of the strings
connecting vertices. The weights w, are positive and normalized, 3, w, = 1, while some coefficients
€ in (5.2) may be negative. This complicates the problem of eva.luatlon or estimation of the quark
potential.

5.2 The variety of confinements

Evidently, the term ”confinement”, in view of vnriety of physical situations connected with this phe-
nomenon, is too general.. Indeed, there are at least three different types of field theories exhibiting
confinement: (i) an Abelian theory, (ii) a non-Abelian theory, (iii) a gauge theory without matter.
One should also distinguish qualitatively different pictures, arising as a result of interplay of phys-
ical parameters, such as the string tension, the lowest particle masses. We observe the following
possibilities: o

1. Weak confinement. Confinement in its weakest form states that only colorless field excitations
are physical. The statement refers both to Abelian and non-Abelian theories. As for the latter, it
seems trivial because a colored object is always accompanied by a string (Secs.2.3), and a string
should always be finite with charges at the ends — infinite strings are unphysical objects (they are
not gauge-invariant, they have infinite energies). The Abelian case is more. tricky though, as we
already mentioned, the total electric charge of the Universe in this case should also be zero [7]. We
conclude that weak confinement takes place in every gauge theory. But in contrast to confinement in
the strict sense, the static forces in electrodynamics may decrease with distance (quasiconfinement).

2.Strong confinement — when static forces between opposite charges (colors) are described by
linearly rising potentials, i.e. when charges are connected by a string which cannot be broken. It is
the case of pure gluodynamics with classical sources (heavy quarks). This possibility is not forbidden
in the Abelian theories too (Secs.2-4).

3.Normal confinement — when strings break at a certain finite distance as it is'the case in the
hadron physics. Evidently, this presumes the existence of colored particles of finite masses.. Of course,

normal confinement does not prevent from observation of confined colored objects. It is evident for
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electrically charged particles, but even being neutral they still interact with gravitons, th'ey may
have nonzero magnetic moments and hence, may be detected (in principle:) by macroscopic tools.
Confinement prevents only from independent propagation of qaurks. ) )
4.Screening. There are two scales in these theories: the critical length of the string r. at wh.xch
it breaks, and the hadron size r,. The former depends on the lowest masses of quarks, on the str'mg
tension, and on the spin of the hadron in question, while the latter comes as a result of dynamlc.s.
If r. — 0, strings do not exist, and all the charges are screened; this phenomenon tal«?s pl'ace in
the Schwinger model [18],{19]. Analogous behaviour should be expected for the QCD strings in the
adjoint representation. o
5.0ther possibilities. All other possibilities result as an interplay of parameters r,, r in the
framework of normal confinement and the vacuum characteristics. For stable hadrons it should be
re > 14 (in the hadron physics they are of the same order). An opposite inequality Te < T leads
to a contradiction. Indeed, it implies that hadrons are unstable, but they decay again into hadrons
(colors connected by strings), so either there are stable hadrons of lower masses with r, < r, or the
theory is inconsistent. .
Another possibility r. >> rj looks more interesting, especially when r. is of a macroscopic scal‘e.
In this case colors can be separated at macroscopic distances still being confined. This occurs in
the case of small tension, such that macroscopically long strings have insignificant energies (”soft”
confinement, contrary to the hadron physics r. > ry, (hard confinement)). .
Still another possibility gives the model of electroweak interactions; but in this theory the ground
- state plays a principal role, so this phenomenon demands a special investigation. B )
Remark.Tension o plays an important role in these theories (E(r) = or, where E is the string
energy and r is its length). In Sec.4 we obtained (Egs.(4.15), (4.23))

E(r)=%—2Tr/\Z 5§@(0)r | ' y (5.3)

(introducing g explicitly). According to this equation, in gauge theories given by Eq.(2.1) the tens_}on
is infinite. It means that chromodynamics by itself is not a closed theory. In standztrd fom}ulatlon
(the Lagrangian (2.1)) it deals with infinitely thin strings, i.e. with strings of inﬁm.te tension. Of
course these strings cannot be physical objects. Hence, to make the theory mfeanmgful one has
to introduce (by hand) a new parameter — the radius of the strings.r,. Expenmentall)zr one ‘has
2r0 = 1/a’ ~ GeV?, where a(s) is the Regge trajectory. Substituting §)(0) - cfzr?, cisa
constant, and passing to the standard A-matrices A — MV2, g— a/v2, we gbtam

2
A 5.4)

==Tr\ — (5.

Y Trda xr?’ ,

ie r2 = cg®Trd? o'/12 = (4 - 107)?cm? for ¢ ~ 1 and ¢*/4r = a, = 0,2. This new length 7,
completely changes the theory. At distances less than r, the Lagrangian (21) is nof. applicable, and
one has to go into the problem of the string structure. We know, however, that the interquark for?gs
are not due to a simple string. In fact the estimation (5.4) gives an average radius of an effective

string.

6 - Conclusion

The main statements of the paper are: 1) the P-exponent (string) is the on‘ly fundamental structure
of the gauge theories (i.e. all the gauge-invariant structures are bui!t of strings ar:,d local”g-.tensors);
2) in every gauge theory there exists a kind of confinement, i.e., in a sense, a "charge is alvyays
confined; 3) in pure gluodynamics, the interaction of static external sources (‘he:-avy quarks)‘ls given
by the linear potential. All the investigation is based on the following (trlvx_al) ass'umptlox‘ls: in
the classical theory only gauge-invariant configurations of fields are p‘hyswally meamngf.ul; in the
quantum theory physical operators and state vectors are gauge-invariant. The gauge invariance
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manifests itself in constraints. The existence of the first-class constraints is the very feature of gauge
theories that makes them so different from the standard non-gauge ones. Constraints do not contain
time derivatives of canonical variables (in contrast with the equations of motion ), they are conditions .
on instantaneous configurations of fields. Asa result, the gauge field excitations may appear only
in the form of some 1-dimensional structures with more or less complex topology - depending on
the rank of the gauge group, and every "charge” is accompanied by a static external field. It is
due to these external fields that the instantaneous interaction of static charged objects takes place;
the Coulomb interaction in electrodynamics is a well-known example of the forces. In some theories
(in those with gauge groups SU(2) and (for some models ) U(1), and in pure gluodynamics) this
immediately leads to linearly rising potentials, i.e. to confinement. It implies that confinement is a
pure kinematical effect appearing as a consequence of the gauge invariance of a theory, i.e. following
from the existence of the (secondary) first-class constraints.

"Confinement may exhibit itself in quite different forms depending on parameters specifying the
theory.  These are the string critical length, or its tension o and the lowest mass m of a charged
(colored) particle (r. ~ m/o). When r, — 0, one speaks about screening (or dechromatization) of
charge [18],[19]. The string does not exist in this case, i.e. it is not stable, it collapses into neutral
infinitely small sections. On the contrary, when r, — oo, one has in fact an absolute confinement.:
There are still two possibilities: (i) o — 0, m is fixed, (ii) o is fixed, m — oo. In the case (i) charges
can be moved aside from one another at an arbitrary large distance at the expense of a finite cnergy,
while in the case (ii) this procedure takes an infinite energy. The Coulomb force is again a special
case. According to Sec.2 opposite charges are connected by infinitely many strings, so we should
expect that the case (i) takes place (see Sec.2: e = gN = fiz, g—0,N - 00). In models of the
charge with a finite number of strings N {91,(10] one has very small (though finite) o and very large
Tc, 50 that at distances r = r, one should expect a modification of the Coulomb potential (it should
be close to the linear one and very small). ' R

Unfortunately, the above analysis says little about the real interquark potential. We learned that
in QCD it cannot be a simple linear function of distance. To find the potential, one has to sum
contributions of all the multistring graphs discussed in Sec.2 (like those c,d,e in Fig.1). This aspect
of the string physics is usually omitted in the hadron model construction.

A standard tool in the study of confinement is the Wilson P-exponent (Py, the Wilson loop
[20]). There is a principal difference between Py and the P-exponents P, used in the text. The
Wilson gauge-invariant P-exponent emerges from the QCD Lagrangian for massive quarks, and its
integration contour has time-like sectors, while the path-ordered exponents P, are universal objects
of g‘e'fx;uge field theories irrespective of the masses of quarks and the orientation of the integration
contour — time-like or space-like. Physically these two cases differ considerably. For instance, in the
Minkowski space the space-like loops correspond to some instantaneous gluonic excitations, while the
"time-like” ones are meaningful only for heavy quarks ( external sources); of course, in the Euclidean
approach these differences disappear. We state also that the open space-like P-exponents with
quarks at the ends are responsible for the static interquark forces giving in pure gluodynamics lincar
potentials. Hence, P-exponents in the Wilson criterion and in the present paper differ physically and
play different roles. .

One may find in literature statements that "in five and higher dimensions we have no confinenient™
[21]. We see from the above consideration that linear potentials appear in gauge theories in any space
of non-zero dimension. ’

The point of view that strings in QCD are built of chromoelectric lines of force squeczed into a
tube due to the special structure of vacuum ("the monopole - antimonopole vacuum” [22]) is rather
popular among physicists [23]. We see (Secs. 2,3) that gauge theories do not necd this hypothesis for
getting string-like objects. They are inborn entities of the gauge ficld theories. We have scen that
the existence of strings follows from the first principles. Nevertheless, the vacuum structure plays an
important role in QCD, partly because the theory is not closed, and some its physical parameters

specifying the hadron physics (like quark masses) depend on the ground state of the real dynamical
system. :

19



References

[1] P.A.M. Dirac, Lectures on Quantum Mechanics (Yeshiva University, New York, 1964).

[2] P.A.M. Dirac, ThevPrincipl&s of Quantum Mechanics (Clarendon Press, Oxford, 1958}, Sec.80.
(3} L.V.Prokhorov, Yad.Fiz. 35 (1982) 229 (in Russian).

[4] L.V.Prokhorov, Sov.Phys.Usp. 31 (1988) 151.

(5] L.V.Prokhorov, Vestn.Leningr.Univ. N 18 (1990) 3.

(6] N.V.Borisov, Yad.Fiz. 36 t1982) 1030 (in’ Russian); P.Windey, Acta Phys.Pol.B 15 (1984) 435;
A.A Migdal, Nucl.Phys.B 265 (1986) 594.

{7 L.V.Prokhorov, Lett.Math.Phys. 19 (1990) 245.
[8] N.Papanicolaou, Phys.Rep. 24 (1976) 229.

[9] L.V.Prokhorov, Problems of High Energy Physics and Field Theory, Proceedings of the X Work-
shop, Protvino, July 6-12, 1987, Moscow, Nauka,1988, p.131 (in Russian).

[10} L.V.Prokhorov, The String Model of Electric Charge, Carleton Univ.. preprint OCIP-89-04,
Ottawa 1989. '

[11] P.Carruthers, Introduction to Unitary Symmetry (Interscience Publishers, New York, 1966)
p-74.

{12] M.Daniel and C.M.Viallet, Rev.Mod.Phys. 52 (1980) 175.

[13] S.Kobayashi and K.Nomizu, Foundations of Differential Geometry (Interscience Publisher, New
York, 1963), v.1. '

[14] M.B.Mensky, Group of Pathes: Measurements, Fields, Particles (Nauka, Moscow, 1983) (in
Russian).

[15] H.G.Loos, J.Math.Phys. 11(1970) 3258. "
[16] R.P.Feynman, Phys.Rev. 84 (1951) 395. ()
17} P.A.M Dirac, Scient. American 208 (1963) 45.

[18] G.S.Danilov, LT.Dyatlov and V.Yu.Petrov, Nucl.Phys.B 174 (1980) 68.

[19] A.N.Tavkhelidze and V.F.Tokarev, Fiz.Elem.Chast.Atom.Yad. 21 (1990) 1126 (in Russian).

[20] K.Wilson, Phys.Rev.D 10 (1974) 2445.

{21] J.Ambjorn, Non-perturbative Field Theory / Field Theory on a Lattlce Dubna, Lectures E2-

88-655, 1988, p.32.
[22] Y.Nambu, Phys.Rev.D 10 (1974) 4262.

[23] M.B.Voloshin and K.A.Ter-Martirosyan, Theory of Gauge Interactions of Elementary Particles
(Energoatomizdat, Moscow,1984) (in Russian).

Received by Publishing Department
on April 25, 1991.

20

ﬂpoxopoa n B., WaGaros’ C B. o : : E2-91-195
HHaapuamHue CTPYKTYpu 8 Kanuﬁpoaounux TeopHHx ol et :

' KonwauHMeHT

PaccnanuaaeTcn npoGnena NOCTPOEHHA BCEX Kanvispoaotmu'x m«aapuawros‘ B

"CBH3H [+ npoﬁneMOM KOHPAMHMEHT3 .BBOARTCR M M3Yy4aoTCA nonnnoxanbnue Kanubpo-".

BOUHHE TeH30ps.floKasaHo /B M3MUECKOM W UMCTO reoMeTPUUECKOM NOAXOAax/,uTo:
YNOPAROUEHHAR JKCNOHEHT3 eCTh EAMHCTBEHHWH DYHAAMEHTaNbHUA CMNOKaNbHLN Ka=
AMBPOBOUH - TEH3OP ,NOCNeAHEE O3HAYAET,uTo MOGOA HepeAyUMPYeMui NOMUNoKanb=-
HbI Kannﬁposo-mun TEH30D MOWET GuTb NOCTPOEH M3 P-3KCNOMEHT W NOKANbHHX -~

.. TeH3opos /nonei Matepun/. 0TAENbHO PaccMaTpusanTcA npocreuume MHBAPUAHT =
HHE CTPYKTYpu 8 3NEKTPOAMHAMMKE , XPOMOAMHAMHKE 1 Teopuu ¢ Kanu6poBOYHOM

rpynnoit SU(2). Kak cneacteue KanuBpoaouHoii’ uHBapuaHrHocm noboi ''snemeH~ .

',TapHuﬁ" 3apAQ "OKPYMEH BHEWHWUM CTaTUYECKNM nonem, ‘ IOKAMM30B3HHLM - Ha KOHTY =,

pe MHTerDMDOBaHMﬁ P-3KCnOMEHTH, T.e. CTPyHOW, C 3TOW TOUKM' 3PEHWA aHanu-,

. 3upyeTcA’ KynoHoBcKoe none ;  AEMOHCTPUPYETCA, - HTO .OHO MOKET Takke GuTh no-
~'CTPOEHO . M3 yNOPAZOUEHHHX BAOAL NMHMM uHTerpanos. B KXA CTPYHH MOTyT BET~-"
. BMTBCA ‘= 3TO 03HAWaeT, YTD MEXKBAPKOBOE CTATUCTUUECKOE MOfie. HE MOXeT’ EuTo
: CBA3aHO C- NPOCTOM P-axcnonenrou Hanpotus,: B -mcron rmoommaunxe CTDyHu
. He BETBATCA, 3TO. No3eONAET NoKa3aTs, . uTo .8 3TOM cnyuae CTaTHUECKOE - MeX -

KBapKosoe B3aHMOAEMCTBHe AaeTcAa NUHeRHo DaCTymHM nOTeNunanon, T €.:8 3TOM

. CNY4ae ANA M3CCMBHHX KBApKOB mMeeT MecTo Kom»aunuenr KpaTKO DaCCManu—’ .
-sanTcA paanuqnue dopmbi Konoaunnenra Sl :

Paﬁo‘ra abmonHeHa B ﬂaﬁopaTopm Teoppfuuecxou onauxu OHFIM

npenpmu- OG‘LEAHHEHHOI‘O m-lcrmyra nnepnux Hccnenoaaﬂmx 11y6Ha 1991
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Prokhorov L.V.  Shabanov S.v. o E2-91-195 e
Invariant Structures in Gauge Theorles and Confinement - o

The problem of finding“all gauge invariants is consndered in connec~ -
tion with the problem of confinement. Polylocal gauge .tensors are intro- -
duced and studied, .It is shown /both ‘in phystcal and pure geometrical
approaches/ that . the path-ordered exponent is the only: fundamental .bilocal’
gauge, tensor, which means that any irreducible polylocal gauge tensor :is:
built of P-exponents and local tensors. /matter fields/. The snmplest in-."
variant structures in electrodynamxcs, chromodynamics and’a theory with

i the gauge group SU(2) are considered separately As a consequence of. gau-.-
_ge invariance any ''elementary' charge is accompanied by an external static

"~ field ‘located on the integration contour of. a P-exponent, i.e.bya string.
~“The Coulomb field is-analyzed, from this point-of view; it is. demonstrated

that it can be also considered as made of exponential.line integrals.
In QCD strlngs can branch - it means that the lnterquark static field can-

ans ‘ot be associated with a simple P-exporient. On the contrary, in"pure’ -
AN gluodynamlcs strlngs do notibranch. It allows to show that in .this. case.

the static: quark interaction is given by a“linearly rising potential, i e,

that in-this case massive quarks are: conflned Dxfferent forms of confme-'
; ment are brnefly revnewed ‘ : v . R

“The mvestﬁgatlon has been performed at the Laboratory of Theoretncal




