


?‘:1 INTRODUCTION

Of course thxs artlcle would have to begm w1th one of the basm problems :
of relativistic electrodynarmcs namely, the " relativistic - covarxant defrmtlon :

» “of: momentum and energy of an electromagnetlc charge fleld (as a solutxon s

- of the famous problem 4/3). ‘ ,
T Paper publlshed at one tlme began in th1s way However thlS problem .
- has been recently looked into in- detail”?" Therefore ‘we are gomg to touch S
‘upon only its historical aspect” here,. - S
- In th1s case as . before, we shall have 'in mlnd Laues more recent me- 1
’thod based on- ‘relativistic transformatlons of an energy-momentum ten-,;
v sor of an electromagnetlc field and space volume, -~ - . 1

. Remined' that ‘the essence of the 1nd1cated problem hes in the appearan- i

ce, eg., \of a supplementary coefflcxent 4/3 in the expression for momen-

a ktum in: companson with the correspondmg relativistic formula At one time | :

-~ this difficulty was removed mathematically (in the frame of this- approach),
“in” Kwal’s article 74/ which remained absolutely annotrced just_in -this ar-

~ ticle another formula was proposed for the transformatxon of a space volume
’ element : o '~

| adV' = dV*(1—B2)'71, =dV* g
: mstead of the usual Lorentz squeeze S "‘;‘ e
- v - dV*(l--B )“52 _—

»Here dV* and dV _are the trme components of a covanant 4-vector of a vo E
“lume- element in the rest system S* of an object and motion (S)dV vy, &
Be=v s ‘the motion veloclty S*-system relatlve to S. As is seen, accordmg
“to (1) the space. volume of. a movmg Object should mcrease by a factor of y, :
, 'where y is the -Lorentz-factor. " , :
‘ In addrtxon for the other components dV we have

_-,Bd y/c,de -dV =0

However 1t should be noted that stlll earher as 1t seems for the fust t1me g




Fermi /% has drown his attention to a contradiction between the Abrahame
Lorentz theory of electromagnetic mass and the relativity theory. His solution
was based on the covariant formulation of Hamilton’s principle. This was due
to the variation connected with the normal section of the world tube of a char-

ge field, whereas in the frame of the usual approach the variation is due to- °

the demand t=const. Just the latter (Enstein’s) condition leads to the con- .
traction effect. .

Although the formula of space volume transformation was not considered
in Fermi’s approach, the introduction of a normal (non-simultaneous) section.

of the world tube was in essence an implicit introduction of the so-called asyn- - )

chronous formulation of relativity theory/ 6/ proposed much later which has

not been generally recognized up to now. Though, as Fermi noted, the usual - '
approach (based on the condition t=const) explicitly contradicts the prin-
ciple of relativity. We want to add Gamba'’s article’?/ to these papers, in par- - -

ticular, the generally accepted procedure of calculation of the energy and

momentum of an electromagnetic charge field in different system of refe-
rence (S and S*) related to integration over volumes at t=const and t*= const,
respectively,is criticized.

As integration is performed over different hupersurfaces,then, as noted
by the author, calculation results should concern different totalities of phy- =
sical events whereas Lorentz transformations deal with the same totality of .
events, L

The latter condition is naturally fulfilled in the frame of the radar for-
mulation of relativity (see, e.g. ,/8 ) which is based on light or retarded dis-
tances directly measured in an experiment*. -

The concept of relativistic length/g/ based on the radar method of mea-
suring distances leads just to increasing the longitudinal sizes of moving objects.
Below we shall cencern some aspects of electrodynamics directly connec-

- ted with the radar interpretation and also a relativistic covariant descriprion -

of the interaction of a charge and current system with an external field and
one elementary derivation of the known formula &= mc 2

II. LIENARD-WIECHERT’S POTENTIALS
AND RELATIVISTIC LENGTH

We consider the expression for Lienard-Wiechert’s 4-potential

A -8 )

*Finiteness of light velocity (electromagnetic interaction) is taken into account in a
direct way.




where u! is the 4-velocity of cha:ge e; R the 4-vector of a retarded distan-
ce R¥=[c(t—t’), R—R1; x'/ the charge coordinates; and x', the coor-
dinates - of an observation pomt W1th R Tlight vector”, i.e.,

k .
R,R = 0. _ (5)

Let for simplicity the charge moves along the x axis (S-system), and we are
interested in the value of potentials at a fixed point of the axis, i.e.,

= A =8B A A =0. (6)

X . ’ v z

R, (1 - B) R, A -8)

In so doing, in proper reference system (S*), where the charge is at rest,
we obtain

€ * * *
¢*=-—R'—;., AX=AY =AZ=0' (7)

)4
If we use the formulae of transformations for potentials, we get the expression

Ry =R}l +8)y ~ 8)

describing the law of distance transformation between charge and observa- .

tion point from the S*- to the S-system.

As is seen, equation (8) differs from the habitual formula of Lorentz
contraction. -

At the same time it is obvious that R, coincides with distance f; which
a light signal covers (in the radar method of measurement) when it runs after
the corresponding end of rod (forward). The rod is oriented and moves along
the x axis. At high velocities {; is simply equal to a double value of relati-
vistic length £, .

Remind that

P.r =f*y (“elongation formula”) 9
where £* is the length of a rod at the rest.

Following from (4), the formula for Lienard-Wiechert’s electrical poten-
tial ¢ in polar coordinates takes the form

= e, _ (10)
Rr (1 - BcosH) .

Ly Fig.1. Lienard-Wiechert’s equipotential ellipse,

B=0.75_Circle-Coulomb equipotential.
9*
\4
K

Based on (10), equipotential curves
X for relativistic charge can be drown, Evi-
dently, they will be given by equation

/
R -—2/¢
' 1-Bcosh

(11) -

being the polar equation of ellipse, (¢/¢) is a focal parameter and B ellipse .
eccentricity.
Such a curve is presented in Fig.1 for 8=0.75 (y =1.5), the circle cor-
responds to the Coulomb potential (charge at rest).
As we can see from the figure and from formula (11), with growmg charge
velocity its field stretches forward and affects greater distances . Such -

.a character of field behaviour is defined by the retardation factor

xk=1-pAn,
T
where ;, = I-i, /R ;. In particular, it is not difficult to see that
2
Ry =2y7. , (12)

So, one can say that a kind of “’relativistic long-range” takes place.

It should be also noted that at velocities of our interest (B8 ~1) for examp- .
le, the field component Alwill behave evidently in a similar way.

It is important to emphasize that the longitudinal size of a field is essen-
tially given by a characteristic retarded distance when a source runs after its
field which corresponds to quantity actually defining relativistic length. ,

Using, obtained on the basis of (4), the known formulae for a field crea- -
ted by a moving charge, one can draw the corresponding curves of equal -
intensity 711/ :

The field described by them will be stretched forward as illustrated in -
Fig.2, the behaviour of the field lines may be obvious and usual for us as pre- -
sented in Fig.3.

Of course, the most important thing here is that the transition from “’in-
stant” to retarded distances has substantially changed the first picture: as
in the case of the longitudinal sizes of objects, we have an increase of the
field longitudinal sizes in the direction of charge motion instead of squeeze.




Fig.2. Lines of an equal electric field of a ’

charge at rest (circle) and in motion (8=0.98).

Fig.3. Electric field (force lines) of a moving
charge B=0.75.

III. ON THE CHARGE OF A CURRENT-CARRING CONDUCTOR

Let us consider the element of a linear conductor at rest in the S*-system
directed along x* axis which current with density j*1= -j% flows along.

The densities of negative and rest positive charges p* and p) are equal
inside the conductor, and the total density is p*<0. :

Thus, from the view point of an observer from the S*-system the wire
does not take a charge:

AQ* =p*AV* = 0, (13)

where AQ* is the charge and AV* the volume of the considered element
of the conductor. _
Let us transit now to such reference system relative to which negative
charges creating the current with density j*1 are at rest.
Based on the formulae of transformation for quantities p and j and taking
into account that

p: = -p*, j*=-Bcp*y

and j_ =0 we have

o =(ors Bmymory (14)

) [+

p.=—0y, (15)

it oy == Bep*y. | | (16)
+ . - .

’ 6

From here on taking into account that the total density of charges
2

p=p_+p, =—B pry a7 -

we conclude that the product is

pAV £0 o

independently of the transformation form of space volume.

On the basis of the fact that the density of charges p is no longer equal
to zero in the S-system, it is often concluded (see, e.g.,‘/ma‘/ ) that a char-
ge appears in a moving current-carrying conductor.

However, it should be emphasized that in the frame of the relativity the-
ory a charge is an invariant quantity and does not have to charge when pass-
ing from one reference system to the other one. Therefore conclusion that
a neutral current-carrying conductor takes a charge as a result of motion
follows from the noncovariant definition of quantity AQ .

To solve the 'suggested question, we are going to calculate the charge

-AQ in the frame of dimensional representation based on the formula

AQ =§'AY . ' (18)

Here ji is the 4-current density and AV; the 4-vector of a volume element
defined according to %/ so that

AV;“ (AV*,0,0, 0), ie., Vi"= 0,
and so AQ* is indeed given by equality (13).

However, from the point of view of the S-system on the basis of (3),
quantity AV1 is no longer equal to zero and is defined by the formula AV, =
-B AVO* y . Asaresult for quantity AQ we find

0 : ,
AQ=j AVy +1' AV, =(=p*B%y) AV*y+ (~Bepy) -BAV*y) =0. (19)

Thus, in complete agreement with the demand of charge invariance we have
that the conductor is also electrically neutral from the view point of the
S-system*,

It should be noted that the considered example can in principle serve
as the basis of an indirect experiment on the control of the transformation

-
*Although we have that divE# 0 as p#£0 now.

7



formula of space volume since for another definition of AV, we have that
AQ¥ £ 0.

Let us dwell now on the physical meaning of formula (18) which can be
written in the form

aQ aQ -
AQ = =— At + .
gt Atray A% | - (18)

in the simplest case of one space dimension.

In accordance with our approach in the proper reference system, we
have At*= 0 and the charge of a conductor element is defined only by the
product of the density by the length of this element.

However, At is no longer equal to zero in any improper reference system
where the conductor is moving. '

Therefore, it also is necessary now to take into account the second term
describing the charge at a fixed space point. It is obvious that this term is
especially relativistic and it takes into account the relativity of simultaneity
(At*=0, but At £0). It is important to note that an arbitrary change of
the lines (hypersurfaces in the general case) of integration (in calculating,
using (187), the total charge in the S-system) say, transition to the straight
line t = const, leads to the disappearance of the second term, consequently,
to the noted violation of the demand of relativistic covariance. The previou-
sly obtained results should be also taken into account in other similar cases,
say, for consideration of the behaviour of an electrically neutal current-carry-
ing frame (e.g.,” 132/ ),

IV. ENERGY-MOMENTUM TENSOR OF ELECTRICAL MATTER

As is known, the energy of interaction of a system of charges and cur-
rents with an external electromagnetlc field, which potentials are ¢ and A
is defined by the expression (see, e. g 13b/ ): :

* = [(p* d* + j*A*) av*, (20)

where index ’*” shows that the used reference system coincides with the
rest system (S*) of the considered conductors with charges and currents.
In the frame of four-dimensional representation, equation (20) can be
rewritten in the form
0 00 1 500k
P, =fXi,A, -—8 J A¥)aV¥, (21)
whe;e Sik is Kronecker s symbol, or

0 00
=[5, av*. C(21)

—

The quantity §9 5o introduced can be interpreted as an energy density
in volume units. Moreover . it can be considered to be a co;r;gonent of the
symmetric energy momentum tensor of electrical matter taking the
form*: )

ik i k i k¥ ik £
S'=  JA +AJ -8 4 . (22)

The tensor S'* can be expressed only in terms of the 4-current density
if the solution of an inhomogeneous wave equation for gotentlal A' is used.

At one time this solution was found by Herglotz in an explicit co-
variant form ’

R
A - _1-2_ [ a0, (23)
Y R

where R® = RkRk is the distance squared between the fixed point and the
charge (current) element and dQ the 4-volume element.

Using (22), it is easy to obtain an explicit form of other components
sl and sO! describing the streams of the momentum and energy xX-compo-

nent, find:

S .01 1.0
S LYCL T LI L T L S I S Y (24)
We form divergence S'* now. In this case we get
LIk .k LAk
9 i OA k 6] alk :
—-f—-s-—-=F‘kijk+Ai—_-1-—+’jl —+ A (0 = ). : (25)
axk axk axk ox a‘xi

It is easy to see that the second and third terms (25) disappear on the basis
of the equation of continuity and the Lorentz condition.
In the case of the following equality ‘
! (26)
rot:k j=0
which, say, takes place for nonvortex currents, only the known expression,
called the density of Lorentz 3-force, is left on the right.

. : /15/
*At one time the nonsymmetric tensor was discussed in the reference .
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So, the following known equality

- ik
aT ik

- — F‘kj (27)
ox

can be presented as

R '
— =0, (28)
oxk
ik ik i ik |
where R =T —8 and T is the energy-momentum tensor of an

electromagnetic field.

It should be also pointed out that in the case of holding equality (26),
intensities obey a free wave equation.

Taking into account the equation continuity the components _] obey
such an equation too. As charges themselves cannot move with light velocity,
the noted fact should be considered as that the density of charges (currents)
can change from point to point with light velocity. An electromagnetic wave
is the agent causing this change.

For the wave equation for potentials, Lorentz calibration can be changed
for the condition

oa" dx
~—p— =¥, Where .o (29)
Jx . Ox ‘

However, it is obvious that in the general case instead of (28) we never-
theless have :
ik
dR
dx

£ i, .
=Arot21. (287)

In conclusion we should like to note that in the most general case accord- .

ing to the demand of covariance equality (21 ‘) has to be

0 Ok
B, =[S, V. , (30)

* *

Although in the general case sfk # 0 equality (21°) nevertheless holds on the
assumption (according to . sect.IIl) that dV* = 0

10

V. POWER-FORCE TENSOR
We consider the tensor of kinetic energy-momentum

=Jdu (31)

or in an explicit symmetric form
eik 1.1k ki ,
=-é—(Ju +J u) (31")
i,
where J  is the 4-current of mass density. In particular for

J =p*u , 7 (32)

where p* is the proper mass density, we lead to the usual expi‘ession 717/

ik ik
6 :u*u u . (31’1)

Ok
Note that, e.g., components 0 can be easily obtained from the formula
for the 4-vector of energy-momentum

k k ' '
p =mu (33)

in which in the case of contmuous material distribution mass m is simply
replaced by mass density Jo and SO on.

As the relativistic force F* (Minkowski’s forse) as well as p is a 4-vector,
then the density of 4-force should be defined by the 2nd rank tensor on the
same basis. Taking into account that power is expressed by FO, we designate
the inproduced quantity as the power-force tensor “18/. For a "kinetic modi-
fication” of this quantity, i.e., proceeding from the expression

k k ‘
F =mw, § (34)

where w ¥ is 4-acceleration, we obtain

ik i k :
P =Jw 7 (35)
or in an explicit symmetric form

ik 1 it k. ki
P =-2-»(Jw +Jw), i (35%)

11



On the other hand, in particular, P can be introduced from the kine-
tic tensor 6
ik
2 dr

: (36)

However, we are interested in the electromagnetic power-force tensor.
In this case we have to proceed for Lorentz 4-force.

k k £ .
=‘el~'z‘ u . 37
Using the density 4-vector of electncal current j ! for the tensor of Lorentz’
relativistic force density, we find

ik i k€ :
P=eru. (38)

or in an explicit symmetric form

ik k€ kil .

P =1—.(j’r~‘eu s Fu). (38°)
2

It should be noted that now we can get the known equality (27) only fulfilling

the condition j1 =p #y! , Which means the equality of 4-velocities of system

elements and all the system as a whole.

VI ON ONE ELEMENTARY DELBIVATION
" OF THE FORMULA &

An elementary derivation of the theorem of equivalence of mass and
energy, in particular connected with the proof that the inertial mass kS/c2
should be ascribed to the energy of electromagnetic radiation &, is given
in Einstein’s paper 719/ and also in a series of monographs and text books
(see, e.g., /12b, 20/ ). For this a hollow cylinder at rest is considered. Inside
the cydinger near the wall of one of the bases (A), there is a device which
sends a certain amount of radiant energy &. Since the radiation pressure on the
wall is equal to the density of radiant energy, then the cylinder gets, inder
the action of radiation, the velocity, equal to {';/Mc, where M is the cylinder
mass. The cylinder covers the distance x = uoL/Mc for the time which is
equal (accurate to the terms above the first order) to L/c, where L is the
cylinder length, needed for a light to cover the way along the cylinder. Then
the cylinder stops after light absorption, If light had no mass, the movement
- of the cylinder would mean the displacement of the mass centre without the
action of external forces. This contradicts the basic principles of mechanics.

12

Therefore it is necessary to attribute some mass to hght (m). In this case the
following condition should be fulfilled :

Mx -mL =0,

From here it follows that
©
m = -—-é— . . (39)

Although formula (39) obtained in this way is true, the above discussions
obviously contain an inaccuracy /21~23/ Namely, these papers suppose
that all the cylinder acquires a velocity at the instant of radiation. But this
would be possible only in that case if pertrubation would propagate from one
end of cylinder to its other end instantaneously. However, as we known, the
last fact is in contradiction with the basic statement of relativity theory that
no interaction can be conveyed with velocity larger than the light velocity*.
At the same time one cannot also agree with the notion’ that the motion
of the cylinder basic B towards electromagnetic momentum should be also
taken into account in the considered experiment.

Thus, Einstein’s mental experiment is not strict, and the elimination of
nonstrictness due to taking into account the cylinder deformation and the
following restoration of its form, deprives experiment of simplicity and clear-
ness.

The principal and foregoing reasonings can be kept if instead of the consi-
dered mental experiment (in Born’s modification), one uses, for example,
such an experiment in which the object A (of mass M/2)** is at a distance
L,=L[1+ (M/2)c?/ €171 from the left end of the cylinder at the instant of
light radiation (see Fig.4). In this case only the indicated object acquires a ve-
locity v = 2&/(Mc) as a result of radiation. The proposed experimental setup
does not demand to take the cylinder
deformation into account since light
and the object A will achieve the corres-
A . ponding cylinder bases simultaneously.

Fig.4. Illustration of one elementary deriva-

tion of the relation &= mc .

*Indeed, light achieves the other end of the cylinder much earlier than perturbation does.
**We consider that the cylinder mass is small in comparison with the masses of the
objects A and B, the thickness of which is disregarded as well.

1 13



" VII. CONCLUSION

At one time electrodymanics served the basis for the creation of relati- -
vity theory. However, later on the application of this theory, especially its

four-dimensional representation, allowed one to relativize electrodynamics.
In particular, for continuous distribution of -matter taking into account the
demand of relativistic covariance allowed one to introduce energy-momentum
tensor of electrical matter and the power-force tensor. Moreover, the appli-
cation of the radar formulation of relativity theory permitted some available
difficulties of relativistic electrodynamics to be removed. Among them are
the problem 4/3, charge appearance in a moving (neutral) current-carrying
conductor and so on. ’
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'C'rpe.nbuoaBH DU CEAT L E2-91-184'

HeKO‘I‘Opble BOI’!pOCbI pe.rm‘maucrcxou 3J'leKTp0ﬂHHaMHKH

Hexoropble BOI’!pOCbl 3nemponHHaMuxu pacha'rpm;tuorcn C TOUKH 3pe|~mn noka-
_LIMOHHO} d)opMy.rmpoBKn TEOpHH OTHOCHTENBHOCTH. - T8 GOopMyIHMpoBKa onupaerca
Ha. CBETOBbie HIH 3aMa3AbLIBAOIIME PAaCCTOAKHA, ee CNeNCTBHeM ABJIAETCA yBelHYeHHe

7 NPONONEHEIX pa3MepoB HBIKYUWXCA 061eKTOB ("dopmyna ymeeHHﬂ") Ha ocHose

NOTeHI{HANOB J'IHeHapa-Berp‘ra IIOXa3aHO, YTO B TepMHHax 381’183)15!8310me pacCTon-

: HH IKBHNOTEHUHANTEHbIE nosepxﬂocru HMelOT ¢0pMy 3MHHCOH.!IOB Bpam&mn. BBITA- - :
) HYTBIX B HanpaBeHHH JJBPDKGHHH INeKTpHUYECKOro 3apsana. Yc*rpaHeHa 'rpyzmoc‘n:, CBH-

3aHHaA C. noABmeHHeM sapaga B RBHXYlIeMen (Hen'rpa.anoM) NPOBONHHKE C TOKOM.
Paccmorpelu TEHIOp SHEPrUU-HMITY/LCA IMEKTpHYecKoli MaTépuit (Bo BHelHeM none) .

... H . TeH30p MOLIHOCTH-CUNbI. Y Ka3aHo Ha He’TOllHOCTb B OJIHOM lBBeCTHOM 3HEME{TBPHOM'
- Bbmone COOTHOlLleHHH 31€BHB3HE{‘I‘HOCTH Maccu H 3Heeru

PaGora Bbﬂ]onHEHa B JIaGopa‘ropuH BBICOKHX 3Hepruu OHHH

1 Strel’tsovVN L e - ,k.'E2.§1..1’84‘,"
P SomeProblemsofRelatwlstxcElectrodynamxcs LA e e e L

Some problems of electrodynamws are considered from the pomt of view of the rada.r :

formulatlon of relativity theory. This formulation is based on light or retarded distances, "
-} . the increasing of longitudinal sizes of moving objects is its consequence (elongation for:
“-mula”). Based on Lienard-Wiechert’s potentials it is shown that in_terms of retarded dis-
~“tances equipotential surfaces take the form of _rotation ellipsoids, stretched in the direc-

- tion of electric charge motion. The difficulty connected w1th the appea.rance of charge "
‘ina movmg (neutra.l) current-carrymg conductor is overcome

‘The mvestxgat.lon has been performed at t.he Laborat.ory of ngh Energxes, JINR

i ’ : Cdeqnﬁéatibn of'the".lai:rit Institute for Nucléé; ﬂR.e"s;érCh.'rl‘)ubha 1991 P S




