


1. Introduction

’

Recently it was recognized [1] that the generalization of the notion of supersymmetry called para-
supersymmetry can be achieved by using nontrivial polynomial relations between generators as the
dynamical symmetry algebras. The manifestations of parasupersymmetry in different physical sys-
tems were studied [1, 2, 3]. It was shown [1], in particular, that the hamiltonian of one-dimensional
nonrelativistic particle with spin J moving in oscillator or Morse potential and magnetic field re-
lated to these potentials possesses parasupersymmetry of order 2J. The special case J = 1/2
corresponds to ordinary supersymmetry quantum mechanics for one half spin particles.

In the present paper we search for parasupersymmetry in the relativistic theory by considering
first-quantized relativistic particles. It is well known [4, 5, 6, 7] that there is close relation between
relativistic quantum mechanics of point-like spinning or spinless particles and quantum field theory.
In particular, the wave function of spinless particle whose action is invariant under worldline
reparametrizations is described after quantization by quantum scalar field whereas Dirac fermion .
field appears as a wave function of spinning particle [4, 5]. In the last case, the action of massless
spinning particle in the D—dimensional euclidean space-time is invariant under reparametrizations
and has local supersymmetry. The generators of these transformations coincide with the Klein-
Gordon and Dirac operators, respectively:

H=1pl, Q=p'Y.=(p-9) (1.1)
Here, p, is momentum (s = 1,...,D) and ¥, is “spinning” coordinate of a particle obeying after
quantization the following commutation relations:

(B9} = Yuths + Db = L0, (1.2)

The supersymmetry algebra has the form

Qi = %’H 1.3)

The action of a spinning particle is invariant under Lorentz rotations and the corresponding
integral of motion is the total angular momentum [6)

E;w = PuTy — Py + i[¢p, ¢u] (1.4)

equal to the sum of orbital and spin parts.

The generalization of the above correspondence to higher spin fields was achieved [8] by quan-
tizing the action of spinning particles with extended local worldline supersymmetry. It was found
[8, 9, 10] that the resulting physical space of particle is described by massless antisymmetric
quantum fields.

However, the imposing of the extended local supersymmetry is not the only way of enlarging
symmetry. In the present paper, we propose the action for spinning particles which possesses
nontrivial dynamical symmetry different from extended supersymmetry. The corresponding sym-
metry algebra is not Lie algebra and is known [1, 3] as polynomial algebra. It contains ordinary
supersymmetry algebra (1.3) as a special case and it is this property which allows us to refer to
the resulting symmetry algebra as to parasupersymmetric one.

In sect.2 we define commutation relations between dynamical fields and parasupersymmetry
algebra. Here, the hamiltonian and action of the spinning particle are specified and the definition




particle possessing parasupersymmetry of order R = 2 is determined in sect.4. The generalizations

2. Parasupersymmetric spinning particle

TIn the D— dimensional euclidean space-time the parasupersymmetric spinning particle is described
by D bosonic coordinates z, and by D real parafermionic variables v,,.

2.1. Commutation relations -

Instead of imposing commutation relations (1.2) between the operators ¥, we postulate that the
total angular momentum of the particle has to be equal to (1.4)." This condition allows us to
establish’ commutation relations for parafermi operators 1, as follows. The operators %, are
transformed as vectors under rotations of the D—dimensional space

6¢I‘ = w;w¢u = _illf/);n %waﬁzaﬂ}

with w,g and 3,4 being angle of rotation and angular momentum, respectively. After substitution
of (1.4) into this relation one finds the parafermionic commutation relations [11)

[¢u7 [¢v7 ¢p]] = g;w’l’p - gyp’/’y (21)

where the remaining commutation relations

[zm Py] = iywn [‘Tu’ ¢u] =0, [p;n ¢'v] =0 (2'2)
are imposed.

The resulting commutation relations being trilinear contain (1.2) as a special case. In the
algebra (2.1) and (2.2) the operators ¥, and z, can be thought of as odd and even elements,
respectively. :

It is well known [12] that algebra (2.1) is isomorphic to the SO(D + 1) algebra and, hence,
matrices 1, belong, in general, to the reducible representation of SO(D + 1). If one chooses ¥, in
the irreducible representation (irreps) of this algebra, then for an arbitrary D—dimensional vector
Pu the matrix (p- 4)/|p| has cigenvalues —1 R, -iR+1,..., iR-1, 1R with R being an integer
positive number and satisfies the following characteristic equation [12]):

(P 9) = ZRIP((2 - %) = GR~ D)lpl) - ((p- ) + 3RIpl) =0 (2.3)

For R =1 Dirac matrices are the solutions of this equation: % = 37, For R = 2 it follows from
(2.1) and (2.3) that matrices ¥u belong to the Duffin-Kemmer algebra [13, 14]

¢u¢v¢’p + ¢p¢v¢u = guu¢p + gu,ﬂbu (24)

So Duffin-Kemmer algebra is the simplest nontrivial example of trilinear parafermionic commu-
tation relations. For R > 1 among its solutions one can find matrices satisfying the analogous
equation for smaller R as well as the set of irreps parametrized by the same number R!

Only irreps of the S0(3) algebra are uniquely fixed by the parameter R.

Instead of fixing “by hand” the representation of t}.le SO(D+1) algel:ira vfsi/e :;sumebhinlgef;;:;i};
that the matrix (p- ¥) obeys equation (2.3) for an arbitrary Yt?ctor pu and a fix tl;lum et ic;s .
condition is not a consequence of (2.1) and expresses an .addlt.lonal constraint on the tr_nla r oos ¥ ,a,_ .

The wave function of a spinning particle has to be lnva:rlal{t under the l?ctlon o ocztof;s i
supersymmetric transformations and worldline repa.ra.metnzatlon.s. (?ne. c oos? lgem’:lfhen o
these transformations in the same form (1.1) as for supersymmetric spinning particle. ,
operators ‘H and Q form the parasupersymmetric algebra

[QH] =0, Q(Q°-2H)---(Q*—1R*M)=0, foreven R _ (2.52)

and [QH] =0, (@ —1H)---(Q*~1R*H)=0, forodd R, (2.5b)

with positive integer number R called [11] the order of paras(lip;)rsymmetry. For R =1 the
try algebra (1.3).
arasupersymmetry algebra reduces to supersymme ) .
’ Thg transformations of dynamical fields are generated by the following operators:

=3, =4 DDl b&=-il aH=—i[ ,ap’] (2.6)

Here, parameters of parasupersymmetric transformations X are the generalized grassman numbers
[11] z;nd have nontrivial commutation relations with the operators ¥,

[¢'u1 {‘pw ’\H = guu/\, [’\) {’pm ¢'v” =0, [’\1 [’\,’ ’/’u]] =0, [¢u1 [A’XH =0, [A’ [’\I‘ X,H =0 (2'7)

Some of these relations are a consequence of the Jacobi identity: The reason for the choice (2.6)
originates from the fact that the operators §, and &, form the Lie algebra:

= 2.8
[6,\, JA'] = 6n=_%[,\',\,]a [Jz\a 60] =0, [6“’6“'] =0, ( )

sations
where the relations [A, [V, Q]] = 0 and [Q, [}, Q]] = ~2 \H were 1.1sed. So.under reﬁararer;etazza ions
and local parasupersymmetry transformations states of a spinning particle are chang

10) % exp(iat)[0),  10) 3 exp(—1[), Q])I0)

The invariance of the wave function of a spinning particle under these transformations implies

thot H|0) =0, (A Qo) =0 (2.9)

for arbitrary A. This is the deﬁnition of the physical space of a spinning particle. Olr.le ?ot:czsfi;};ﬁ
as distinct from the standard supersymmetric case the parameters A cannot be eliminate

the above equations.

2.2. Hamiltonian of the spinning particle

The hamiltonian of the spinning particle whose wave functions satisfy (2.9) is equal to

H=eH+ i Q= tep + 1A, (p- ¥)]



where worldline parasupergravity gauge fields ¢ and X play a role of the Lagrange multipliers,

Using commutation relations (2.1) and (2.2) we find equations of motion for the spinning particle
as

i.ll = Bp“ + %[’\1 1/’#]
Bu =0 (2.10)
Yo = _%’\Pn

}Nhere dot denotes the derivative over proper time. Let us demonstrate that these equations are
invariant under reparametrizations and have parasupersymmetry.

Under unitary transformations ¢ — ¢' = UtgU of an arbitrary field ¢ the equation of mlotion
changes as i¢’ = [¢, H'] where H' = UtHU +iUtU. Now we don’t put the restriction U'HU = H
which will imply conservation of the charge corresponding to the transformation on the full space
f)f states. It is enough to require UtHU — H = 0 only on the physical subspace (2.9). The remain-
ing term iUtU takes into account nonconservation of the charge and the dependence of parameters
of tr-a.nsforma.tions on proper time. For reparametrizations and local parasupersymmetry transfor-
mations this term can be compensated by proper transformations of gauge fields e and . Indeed
under reparametrizations when U = exp(iaH) and dynamical fields transform as bap = —1[d a'Hi
we get H = U'HU and iUtU = —aH. The shift of the hamiltonian H' — {e—a)H + £[r ,Q] is
compensated by transformation of the gauge field e. Thus, equations of motion (2.10) are ?nv;.ria.nt
under worldline reparametrizations provided that :

bie = @
boty = ap, : (2.11)
62’\ = 6app = u¢p =0

We r.xotice that unlike diffeomorphisms, reparametrizations in the hamiltonian approach form the
abelian group [7].

It turns out that the parasupersymmetry charge Q satisfies the equation
Q= —i[Q, H] = 1[Q,[), Q]| = —\H

and is cons?rved (.)nly on the physical space (2.9) where H = 0. Then, under local infinitesimal
transformations with U =1 — e, Q] + O(e?) and 6.4 = 1[¢.1e, Q]] one gets

H'~ H + §[e, JH - §[¢, Q).

The shift f)f the hami!tonia.n is compensated by transformations of both gauge fields e and A. Thus,
the equations of motion are invariant under the following parasupersymmetric transformations:

e = —%[e, A

b A = ¢
bezy = %[5’ Yal (2.12)
Setpu = -—%EPI‘
6¢pll = 0

z; <8:é)m easily be checked, by using (2.11) and {2.12), that the operators 6, and 6. form algebra

e

In eq.(2.12) the generalized grassman numbers ¢ are parameters of transformations. However
they are not in general completely arbitrary. The restrictions on e follow from the property
that the operator 6.1, has to belong to the same algebra (2.1) and (2.3) as the operator #,. In
particular, commutation relations (2.1) are fulfilled provided that the parameters € obey (2.7).
Let us turn to relation (2.3). In the simplest case R = 2 the variations of both sides of the relation
Q3% = 2HQ with 6,Q = —e’H and §,;H = 0 lead to

1/)“1/1-»5 +ePp, = Juv€, I/J“EI/J., + '/’ve'pu =0, EI/J“E =0, 52'/"“ + '/"u":z =0, =0 (2‘13)

where (2.7) was used. Thus, the parameters ¢ turn out to be consistent with the Duffin-Kemmer
algebra (2.4). Moreover, ¢ can be included into this algebra by introducing new additional coor-
dinate M = (g, D + 1) and the corresponding operator ¥p4; with the properties

Ypy1 =€, goan =0 (2.19)

Then, for R = 2 the operators t, and parameters € form the (D + 1)—dimensional Duffin-Kemmer
algebra

VMY OE.+ YrONYM = gMNPR + gvrd (2.15)
These relations admit natural generalization to higher orders R > 2. Indeed, the inclusion of
the additional coordinate (2.14) into (2.1) allows us to satisfy simultaneously the commutation
relations (2.1) and (2.7) but relations (2.3) preserve their form under parasupersymmetry trans-
formations Q LA Q+6.Q=(p-9)—ecH=pMypand H Sn+ 8H = gunpMph = pf‘ provided
that one identifies ¢pyy = € and pPH = —H = —,:—,pz. Thus, for an arbitrary order R parameters ¢
are additional elements of the algebra of the i, operators. In particular, for p, = 0 and ppy1 #0
we get from (2.3) that ¢™*! = 0. The same restrictions are to be put also on the gauge field X
since under transformations (2.12) they are shifted by €.

2.3. Action of the spinning particle

Let us define the action of the spinning particle whose quantization will reproduce trilinear com-
mutation relations (2.1) and definition (2.9) of the physical space as

1 . 1 . - .
§= /0 dt(p”.’i” + %['pm 'r/)u] - II) = /0 dt(P#i'u + %['pm'pu] - %epz - %[’\1 (P ° d')]) (216)

Here z, and p, are independent variables, and before quantization i, and A are generalized
grassman numbers: [, (¥, P,]] = 0, [#4, (b, A]] =0 and [A, [, A]] = 0.

The variation of the action over z,, p, and over e, A leads to the equations of motion (2.10)
and to definition (2.9) of the physical space, respectively. The integral of motion corresponding to
the invariance of the action under rotations of the vectors z,, p, and ¥, coincides with the angular
momentum (1.4). The invariance of the equations of motion (2.10) under reparamctrizations and
local parasupersymmetry transformations implies the invariance of the action (2.16) only on-shell.
Picking out in (2.16) the form quadratic over p, we eliminate this auxiliary ficld from the
action -

S= /0 dt (;—eiﬁ + %[%#&] - 218[/\,@ )] - sle['\’d’“][’\"p"]) (2.17)

where e and A are gauge fields.



Let us demonstrate that the quantization of the action leads to trilinear commutation relat:ions
(2.1). To this end, it is sufficient to restrict ourselves to the kinetic term for odd coordinates

- pl
So=5 [t (i

and consider the following correlation function:

() -t = [ D i (0)tuntem) o0 (=3 [ bl

where Y = v, (tk), t € [0,1] and the integration measure over generalized grassman numbers is -

invariant under translations and rotations of 1, in the D—dimensional space. Rotating the field
Yu(t) = A (). (t) with A, (0) = A, (1) = 0 and using invariance of the measure we find the
Ward identities )

N
(¥r(tr)... ¢N(tN)dit[¢m Bl) + D60 = 1) (a(tr) - e Yulte) — GunnBut2)) ... ¥ (tn)) = 0

k=1

Integrating both sides of this relation over f:j’joo dt with [te(te), [u(2), ¥, (t)]] = O for t # t,
one gets the trilinear commutation relations (2.1). In an analogous manner the Word identities
corresponding to the invariance of the integration measure under the shifts Pu(t) = ¥u(t) +pucl(t),
f(O))= €(1) = 0 with an arbitrary vector p, and generalized grassman numbers ¢ lead to relations
2.7).

The spinning particle with the action (2.16) and (2.17) is essentially massless since the mass
term fol dt eM? breaks parasupersymmetry (2.12). Nevertheless, it is possible to introduce mass
as follows. Note that momentum p, satisfies the equation of motion Pu = 0 and is not changed
under transformations (2.11) and (2.12). As a consequence, we can put the constraint

pp—M 0 : (2.18)
and don’t spoil (2.10), (2.11) and (2.12). After replacement pp = M in (2.16) the Lorentz indices
runas g =1,...,D ~1 and the action acquires the addition

1 .
o5 = [ dt(iloo,dol ~ 1eM? ~ MDA, po)
0
The equation of motion and the transformation properties of the parafermionic field ¥p are found
from (2.10), (2.11) and (2.12) as
Yp=—IM\ bp=0, Syp=—-IMe

After eliminating from S + 65 the dependence on p, the action of the massive spinning particle
reduces to

Yol 1 i . i i 1
§= /(; di (%IZ - EGMZ + §[¢m Y] + §[¢D1 ¥p] — %[’\v?ulpu] - EM[’\’ ¥p] — @[’\’ ALY I»bu])
and under its quantization the wave function of the particle obeys

(P2 + MH)|0) =0, [\ p"¥.+ Mppll0)=0, p=1,...,D—~1

Thus, starting with massless parasupersymmetric particle in the D—dimensional space we can
describe massive parasupersymmetric particle in the (D —1)-dimensional space by imposing (2.18).

e

3. Physical space of the spinning particle

3.1. Representation of the parasupersymmetric algebra

The operators 1, are elements of the representation of the SO(D -+ 1) algebra which satisfy
additional restrictions (2.3). To solve these relations for an arbitrary order R one notices that the
D~dimensional Dirac matrices are general solutions for R = 1. Then, the direct product of two
spinor representations gives the general solution for B = 2 and so on. Thus, for arbitrary R all
irreducible solutions of (2.1) and (2.3) are contained in the decomposition of the direct: product
of R spinor irreps. In this sense, the most general form of 1, matrices is [11, 12] -

R
% 1 o a
¢“:§§7‘(‘), '7‘(‘)=IX-~X'7,,X---XI (3.1)
and is called [12] the Green anzatz. By applying the standard methods this solution can be

decomposed over irreducible ones. Denote projectors onto irreps as P4. They have the following
properties:

1= Pa, %uPa=Pabu PaPp=0645P4 (3.2)
A
We conclude that solutions of (2.1) and (2.3) are
bu=Phu=hP, P=) Pa (33)

A€sS
where the choice of the set .S of irreps A € S entering into the decomposition of the projector P
is fully arbitrary. In fact, the set S is a free parameter of the spinning particle.

Let us suppose that one fixed the explicit form of the projector P. It turns out that the
projector does not conserve

P = —i[P, H] = }[P,[, Q)] = }[Q, [\, P]]| #£ 0

unless P = I and the operators 1, coincide with the Green anzatz. This relation implies that if at
the initial moment of time the operators 1, were defined in the representation with the projector
P # I, then evaluating the spinning particle will turn into the representation differing from P.
To conserve the condition (3.3) under evolution of the spinning particle one is enforced to put
additional conditions on the Lagrange multipliers [A,P] =0 or

A=PA= AP (3.4)

An analogous condition is imposed on the parameters € of parasupersymmetric transformations
(2.12) since variation &1, = —iep, has to satisfy (3.3). In the special case P = I relation (3.4)
reduces to identity but in general it is possible to define the projector P in such a manner that
the only solution of (3.4) will be the trivial one A = 0. It will mean that the spinning particle
cannot propagate in the representation of odd coordinates 1, thus defined.



N

3.2. Relation to the supersymmetric spinning particle

Suppose one fixed the order of parasupersymmetry and projector P in eq.(3.3). The physical

subspace of the spinning particle is defined by equations (2.9) and (3.4) together with the condition

[0)=710) (35)

which picks out the subspace where the operators 1, act.

We start with solution of (3.4) in the simplest case when the matrices t, are given by the
Green anzatz and P = 1. Relations (3.4) and (3.5) become identity and (2.7) is the only restriction
on M. The fields A being additional elements of the algebra of the 3, operators are expressed for
a fixed order R as [11]

R
A=),
a=1

where A(®) are arbitrary. After substitution into (2.9) we find, using [},%,) = =7 | M@~ the
following equations for the wave function [0)a,. 4y = Wa,..ap(p) of the spinning particle

NOND =0, (A4} =0, D00 =0, [N, =0, 0k p

pp'Yz,‘g,"‘pa,...Bk...aR(P) =0

well known as the Bargman-Wigner equations. The solutions of these equations describe a couple
of “spins”. One notices that the same relations were found [8] for the wave function of the spinning
particle possessing worldline N = R extended supersymmetry.? Therefore, the physical space
of the parasupersymmetric spinning particle with the operators 1, defined in the Green anzatz
representation and the physical space of the spinning particle with an extended supersymmetry are
equivalent. The difference between these particles appears when one puts additional restrictions
on the representation of the operators 1, by choosing nontrivial projector P in the definition (3.3).

For P # I both the parasupersymmetric parameters € and Lagrange multipliers A obey the
condition (3.4) and, as consequence, the tesulting equations (2.9) on the physical space become
less restrictive. Therefore, the physical space of the spinning particle with P = I when one uses
the Green anzatz is a subspace of the physical space of the spinning particle with P # I.

Thus, one connects novel properties of parasupersymmetric particles with nontrivial choice of
the projectors P s I in (3.3). To define P we have to determine the projectors P, onto irreps of
the algebra of the 1, operators for arbitrary orders R.

For R =1 the matrices 1, obey (1.2) and coincide with the D—dimensional Dirac matrices.
The only irreps are spinor ones® and the R = 1 parasupersymmetric particle is in fact an ordinary
spinning particle. g

For R = 2 the matrices 4, belong to the Duffin-Kemmer algebra (2.4) which has a set of irreps
(3.2) found in [14]. For instance, in the D = 4—dimensional space-time the algebra has only three
irreps [14, 17]: trivial (1, = 0), scalar and vector ones with dimensions 1, 5 and 10, respectively.*

2For extended supersymmetric spinning particle the internal O(N) symmetry is introduced to extract from
the wave function ¥q,..an(p) the field with maximum spin N/2 in the D = 4—dimensional space-time. After
quantization the internal symmetry turns out to be anomalous [15, 16].

3For odd dimensions D there are two spinor irreps differing by the sign of matrices.

“This notation goes back to the theory [17] of relativistic wave equations of the form ((p - ¥) + M)é(p) = 0.

These equations with the matrices 1, chosen in the scalar and vector representations describe massive scalar and -

vector fields,respectively.

/

4. Parasupersymmetric spinning particle of order R =2

The physical space of parasupersymmetric spinning particle of order R = 2 is defined by equations
(2.9) and (3.4) were matrices ¥, belong to the Duffin-Kemmer algebra (2.4). Before solving them
we find it convenient to introduce the notion of dual matrices ¥, and dual parameters A.

4.1. Dual operators

The dual matrices are defined as real solutions of the equation [18]
Yutby + Bt = g
Together with the identity (p- ¥)° = p*(p - ) this definition implies
(- ¥P =r(-¥) (P-¥)p-¥)=0 (4.1)

for an arbitrary D—dimensional vector p“ "Thus, dual matrices also belong to the Duffin-Kemmer
algebra and satisfy
W=1-9% Yube =0, Yub = —dab, b thd=0, (#v) (12

To understand the meaning of dual matrices one introduces operators ¥, = §(7u My (2)) P
148 - 21) and gets from (4.2): {3, %"} = 26, (12,47} = 26,4, [79”% )] = 0 It is easy
to recognize in the above expressions the Green decomposition of parafermi operators of order

R=2:

Yo=Y x T+ 1x%), Yo=Y x I =1 %) (4.3)
Dual parameters of parasupersymmetric transformations ) are defined analogously to (4.2) as
P A=A, A =0 (4.4)

If the ' parameter X is identified with the addltlonal element ¥p4; of the Duffin- I\cmmer algebra,
then X is an analog of the dual operator VD41

4.2. Representation of the Duffin-Kemmer algebra

Expression (3.3) for the operators 1, contains projectors P4 onto irreps of the Duffin-Kemmer
algebra. We define P, following [14]. Introduce the operator

D
N= M Nu=20% -1
u=1
where 7, form a commutative subalgebra with the properties
77#'1’# = 'l’uy 14 7& v

The eigenvalues of the operators 5, and 5 are cqual to £1 and =D, -D +2,...,D ~
tively. Let T4 be projectors onto eigenstates of the operator 7

(] =0, 77;2. =1, Nty = _'l’ungu

2, D, respec-

7]HA=7]AHA1 7]A=D—2A, A=0,1,...,D



with
D

I= Z s, Hallp = 848114

A=0
The explicit form of I14 in terms of the matrices ¥, is

Mo = $i%;--¥p, )
M = s gp+---+ ¥ ¥p

My = P Pidhy - vh (4.5)

and {...} denotes symmetrization over the vector indices with 242 = ¢Z42. Being combined with
the identities 1,92 = ¢, (1 # v) and AP = @:A the above expression allows us to establish
that

¢'uHA = HD—I—A¢’u1 ¢'MHD = 0,
¥uIl4 Ops1-aty, $ullo=0 (4.6)
All4 Mp_aX

The first relation prompts to define the projectors P, as -
Poy=lp, Pa=l4+Ilpg-s, 0<SALD (4.7

Indeed, for even space-time dimensions D it can be easily verified that the operators P4 do satisfy
(3.2). For odd dimensions there appears a problem with definition of P, for A = 251 when (4.7)
is not valid. It is well-known [14].that for D-=2Z +1 and A = 2% = Z “twin algebras” appear
as
1 _ 1 : -
P = 511z +w), PL) = 5z~ w), PHIPS) =0 (4.8)

where ’P(Zi) are projectors onto twin algebras and the pseudoscalar element w satisfies the condi-
tions {14}

W= e I oy, il = Law = b, =TIz, = wih,
Finally, the decomposition of the unity elefﬁent of the Duffin-Kemmer algebra looks like
I=P_1+Po+Pr+---+ Pz (4.9a)
for even dimensions D = 2Z and
I=Pa+Po+Pi+ - +Poa+ P+ P (4.9b)

for even dimensions D = 2Z + 1. The projectors P_,; correspond to the trivial representation

d’u = Pﬂ'/"u =0.

10
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4.3. Covariant projectors

Expression (4.5) for 114 contains the sum of (g) = FI_?-!-_A)! orthogonal projectors. Notice that
the number of items coincides with the number of the independent components of a totally anti-
symmetric tensor of rank A or D — A in the D—dimensional space-time. Therefore, it is natural
to represent Il4 as I14 = Z‘;PJI...“AP,,,.““ or Il = w_’—A)!P‘Lm“D_APm_.,,,D_A where P... are non-
hermitian operators totally antisymmetric with respect to indices. But the existence of vector
indices does not mean that P.. are D—dimensional tensors. Nevertheless, it is possible to define
P...in such a manner that they will transform covariantly (as totally antisymmetric tensors) under
rotations of space-time. ’
The covariant operators P.. are defined by the following recurrent relations:

P o= yig;--- 9,

Pm--~u2~ = Pm...uuv_; ¢'u2N = P"/"m d"uz T ¢’uzN‘—1 ¢’uzN (4‘10)
Pm...u”,“ = Pm...u;n¢ug~+1 = P'/’ux'/"uz cre 1/"uzN1/"u2N+1
These operators are antisymmetric with respect to indices due to the relation 1/;‘,1/;,, =P A

simple calculation yields
P:___2NP1...2N =] PIningg - ¥D, Plt,_,gN_IPl...ZN-l =l PIva¥in-¥h

and one identifies the r.h.s. of these expressions with one of the items in (4.5). However, a more
careful examination indicates that there is difference in constructing projectors Il 4 in terms of the
covariant operators for odd and even dimensions.

For the even dimensions D = 2Z projectors are given by

N,= ZIEP:I;...“PM:---MM for even A (4.112)
and by
Iy = (—D:—A)!P‘L_“MD_AP,,,",,,D‘_M for odd A. (4.11b)

At the same time, for the odd dimensions D = 2Z + 1 it is impossible to deﬁne I, for odd A
using the operators P.. since the r.h.s. of (4.11a) and (4.11b) coincide and

Iy = -;—!PL._.“P,,,,,,“ = mP‘LMMD_APMM,,D_M only for even A. (4.12a)

To overcome this difficulty, one introduces dual covariant operators differing from the original
operators by replacing the 1, matrices by the dual ones ¥, and vice versa
P = ¢'?¢'§ te 1L’zDv
P thu; - Yiw 1/"M2N
P¢’u1 ¢’uz tre ¢’uz~¢'uz~+1

il

PM: BN

P,

BLeB2N41

Then, the expression for Il 4 is

Ma= 5P Pussa = 50l sin_aPirupas only for odd A. (4.12b)
Moreover, in the odd dimensional space-time there is a special case A = 9-221 = Z when twin-

algebras appear. To define in an analogous way the projectors 'P(Zi), we define the operators

plE -1

iz
1
B1eBZ 2 (Pm---uz + (z+1)geu1--.uzuz+1~~-uu

P,

Mzumuu)

(4.12¢) .
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and after tiresome calculation get for D = 2Z + 1 and even Z°

t (-
(P,,) P, =0, (4.12d)

Bl..pZ B1..pz)?

§ P = £ (PY,,) P

Thus, projectors I 4 are given by (4.11a) and (4.11b) for even dimensions D and by expressions
(4.12a), (4.12b) and (4.12d) for odd dimensions D of space-time.

To find transformation properties of the operators P.. and to prove that they indeed are
covariant we notice that under rotations of the D—dimensional space with the angle w,g, the
operator P, ., is transformed as

Py un = ‘[Pm BN zwaﬂzaﬂ] ""aﬂ[Pm BN ['r/’a, 'r/’ﬁ]] (4.13)

where angular momentum ¥, was postulated in (1.4). Let us examine the action of P, ., on
the matrices 1,. The evaluation using (4.2) gives

Py, = P,
Pm---um-: 'r/’um 6u2~[u1 Pﬂ:--J‘zN—x] : (4'14)
Pm---um'r/"uwu = Py pansann

where [ - -] denotes antisymmetrization over indices and P, ,p,, = 0. The action of P,,. 4, on
the dual matrices ¥, is defined analogously

P_'r/;m =0
Puiania®uon = Purvwan_apon : (4.15)
-6

#7N+1[l‘1PI‘2-~-M2N]

il

Pm-nuzN'r/’u:NH

So the matrix 1, acting on the operator P,, ,, with an even (or odd) number N of indices
increases (or decreases) by one this number. The action of dual matrices on P, _,, has an
opposite effect. The above relations can be generalized for the dual operators as

Pl‘l"‘l‘N"l)l‘N«H = (Pm"'uN'r/:uNu)’ i)m--'mv'rl’unu = (Pur"un"plmu)

Using properties (4.14) together with the identity ¥,1,1, = 0 for ¢ # v we obtain

N
['r/’a, '/’B]Pmmmv =0, Pm--~u~ ['r/’a, 'r/’ﬂ] Z(‘sau.sﬂu. 60#-6[’#-)Pu1---u----u~

i=1

and after substitution into (4.13) we conclude that the operators P,,. ., possess transformation
properties of a totally antisymmetric tensor of rank N

Pyuy = Z“’u-#. B1 i (4-16)

It is evident that the same statement is valid for the dual operators P, ..

5For odd Z operators P... are to be replaced by the dual operators P..
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4.4. Physical subspace

The physical space of the spinning particle is described by equations (2.9), (3.4) and (3.5). Let [0)
be an arbitrary vector from this space. After insertion of identity decompositions (4.9a) and (4.9b) °
as |0) = 3, Pal0) and substitution of the explicit form (4.7) and (4.8) of projectors expressed in
terms of the covariant operators P.. and P.., we find using (4.11a), (4.11b), (4.12a), (4.12b) and
(4.12d) that in the subspace of irreps of the Duffin-Kemmer algebra the states |0) are described
by the set of orthogonal vectors
{Ausein) = Puysn|0) : (4.17)
and by the dual vectors |A,, . ,.,) = P,,...x]0) for both odd D and N. The properties of covariant
operators imply that A, ,, are totally antisymmetric tensors of rank V.

Thus, the physical space of the parasupersymmetric spinning particle is descrlbed by the
antisymmetric tensor fields A,,.. ... Eqs.(2.9) and (3.5) impose certain restrictions on these ficlds.
For instance, the condition (2.9) of worldline reparametrxzatlon invariance turns into the massless
Klein- Gordon equation for the tensor fields

14 Au;...un(P) = 0

As to the second equation (2.9), it can be rewritten using dual matrices and dual parameters’

(4.4) as R

' (A, QJ10) = [, Q]j0) = 0
where @ = p,i,. Multiplying these relations by A and X and tal\mg into account the identities
A =0, Apph = and /\z/)“ = 0 one gets

A2Qo) = A*Q0) = 0 (4.18)

with A and A being generalized grassman numbers. It follows from (2.13) that A2 and A? anticom-
mute with Q and Q and can be eliminated at first sight from (4.18). Iowever, the parameters
X and } are not really arbitrary and are restricted by condition (3.4) as only the projector P in
(3.3) differs from the unit operator. Suppose one has fixed the representation of the operators 1,
or, equivalently, specified the set S of irreps entering into decomposition of projector P in (3.3)

P=Y Pa= (Ma+Tpa)= Y M4 (4.19)
A€sS - A€ES A€sS’

Additional terms have to be added to the last expression if twin-algebras enter into the set S.
Then, the parameters A obey

A=PA=2P=1Y (I +Mpa) A =23 (M. +11p_.) (4.20)
a€s a€s
where the identity ;A = Allp_4 and reality condition At = A were used. Here, summation is
performed over such indices a € s C .S’ that PIl, # 0 and PIlp_,-# 0 simultaneously. n other
words, for a number a to appear in the set s both numbers a and D — a have to belong to the set
S'. 1f the set s turns out be empty, then A = 0. The factor 1 was added in (4.20) to avoid double
counting of indices a and o' = D — a.
After substitution of (4.20) into (4.18) the first equation is replaced by

NS (W + Tp_a)Q10) = A*Q Y (Tp-1-a + a—1)|0) = 0

ags ags
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and the second one in (4.18) is transformed as

38%0) = —AQAI0) = —2AQA S (1L, + Tp_0)[0) = §3*Q ) (e + Mp_0)[0) = 0

a€s a€s

These relations take into account all restrictions on A and X and therefore parameters A2 and
32 can be eliminated from them. The resulting equations on the wave function of the spinning
particle have the form

QY (Mp_ya + Maea)l0) = @ (Ha + Mp_o){0) =0 (4.21)

a€s a€s

or, using (4.6) )
Z(Ha + HD—o)Qlo) = Z(HD+1—G + Ho+1)Q|0) =0

a€s a€s

Here, the set s is uniquely fixed as soon as the set S is specified in (4.19) and vice versa, for any
set s one can reconstruct the corresponding sets S. The set S has the sense of a free parameter of
the parasupersymmetric spinning particle.

4.5. Antisymmetric tensor fields as wave functions of the spinning
particle

There is a variety of sets S leading to different physical models. In the following we will consider

in detail only two extreme cases:
(i) P = I and set S contains all irreps of the SO(D + 1) algebra labelled by the order R;

(ii) the set S contains the only irreps.

4.5.1.  Fully reducible representation

In the first case, the matrices 1, are given by (4.3) and the wave function satisfies
Q|0) = QJ0) =0 _ (4.22)

The wave function is described by the antisymmetric tensor fields (4.17). To get equations on
the fields A,,...y(p) following from (4.22) we multiply its both sides by projectors 114 and apply
relations (4.14) and (4.15). There appears a difference between odd and even dimensions.

For even dimensions after multiplication of (4.22) by the covariant operator F,...,;y one uses
(4.14) and (4.15) to get

Pusnir PI‘I"'I‘:NI‘ZN+1 |0) - —p[l‘xPuz"'MN]lO) =0
and after multiplication by Py, ..p3n_,
Pl J m—— PM:NPm---uzN—xumlO) =0

Recalling the definition of fields (4.17) we rewrite the above relations as

Pus Apynn (r) =0, Pluns Am"-mv](p) =0 (4.23&)
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The same equations in the coordinate representation have a simple form after introduction of the
external differential form

AN(z) = pApuy ()dz? - -dz?¥, dAn(z)=0, d*An(z)=0, 0SN<D (4.23b)

The solutions of these equations for 1 < N < D —1 are An(z) = dwpy_1(z) and describe massless
U(1) gauge antisymmetric tensor fields wy,..,y_, of rank N — 1. In the special cases N = D and
N = 0 the equations have trivial solutions Ao(z) = const and Ap(z) = dz*---dzP x const.

For odd dimensions the projectors (4.12a) and (4.12b) have a different form and one has to mul-
tiply both sides of (4.22) by the covariant operators P.. and P..The resulting equations on the dif-
ferential forms Ax(z) and An(z) are completely analogous to (4.23a) and (4.23b). The difference

from the above case is manifested as P} Puy,,.up 7 0 or, equivalently, (Au,.uy |Aunyiopn) #
0. Nevertheless, the difference disappears after one defines the forms Bl(f,b)(z) = Ay+iZ T Ap_y

for even N and B,(f,k)(::) = AN + iﬂ#) * AD_N for odd N and gets the equations
BEBFY =0, for N¥ M

and )
dBP =0, d+BP =0, 0SKN<D (4-24)

In the special case N = Z, the appearance of two fields B(Zi)(::) corresponds to two projectors
(4.12d) onto twin-algebras. Under parity transformations z, — —z, the fields B,(vi)(::) turn into
B,(f)(::). We conclude that equations (4.23b) and (4.24) coincide and have the same solutions.
Thus, for P = I and matrices i, given by the Green anzatz the physical space of the R = 2
parasupersymmetric particle is described by massless totally antisymmetric tensor U(1) gauge

fields.

4.5.2. Irreducible representation

The second case considered below corresponds to the opposite limit when the operators t, belong
to the irreps of the Duffin-Kemmer algebra and projector P is defined as

P=Pa=Na+1lp-1-4 (4.25)

where A labels one of the irreps in (4.9a) and (4.9b). The condition on the Lagrange multipliers
(3.4) looks now like

A= (s + Mp_1-4)APs = A(p-a + M144) (14 + Ip-1-4)
We conclude that A #0Qfor D~A=Aor1+ A=D—1-— A and in both cases
A =Tlpp) = Alp (4.26)

Two consequences follow from this relation. At first, for odd coordinates ¥, of the spinning
particle to be defined in the irreps of the Duffin-Kemmer algebra the dimension of space-time
must be even® and, at second, the irreps is uniquely fixed to be A = %

5This is why the twin-algebras was not included in (4.25)
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Comparing (4.20) and (4.26) we find that the set s in (4.21) contains the only element s =
{a = 2}, and equations (4.21) and (3.5) on the wave function reduce to

Qllg_,[0) = Gllgl0) =0, 0) = (TLg., +Tg)I0) (4.21)

For D = 2Z we use identities QH%_l = HgQ and éH_zq = HL}“Q, the explicit form of the
projectors (4.11a) and (4.11b) and charges (Q = (p- 1) and @ = (p- ¥)) to rewrite the above
relations as ~ _

Pz (p-P)0) = Pz, (P 4)|0) = 0, for even Z
and B

Prruz (P $)|0) = Pz (P 'Z’)IO) =0, forodd Z

Moreover, the last relation in (4.27) implies that the wave function |0) is described by two anti-
symmetric tensor fields satisfying

Puzsr Aprenizizar(P) = 0, PugAunz(p) =0, foreven Z

and
p[#zAI‘Jml‘z—:l‘z_l](p) =0, Pluzy: Am.__,.z](P) =0, for odd Z

In the coordinate representation these two sets of equations have the same form if for even Z one
replaces the fields A, ., (p) by the dual fields

dAz(:L') = 0, dAZ_l(l') =0 (428)

where An(z) = 75 Au..uy (z)dz# - - - dz#¥ are differential N—forms.
Equations of motion (4.28) possess gauge invariance. They are unchanged under the abelian
transformations of fields

AN(:C) - AN(x) + de—l(x)y or A;q...pn(x) i Apl.,.pn(x) + 6[,41X“2,,,“N]($) (4.298.)

where N = Z or N = Z — 1 and x,,..un() is an arbitrary totally antisymmetric field. To
understand the origin of gauge invariance, recall the property (4.1) of dual operators Q@ = 0.
Then, it can be easily seen that the equations of motion (4.27) are invariant under transformations

0) — [0) + (I1zQ + Mz, Q)|x) (4.29b)

with {x) being an arbitrary state. The relations (4.29a) and (4.29b) turn into each other after
decomposition of the state |x) over the antisymmetric tensor fields xz_;(x) and xz—2(z).

The gauge ambiguity of the wave function analogous to (4.29a) and (4.29b) did not appear
in the previous case. This effect is one of the manifestation of the restrictions one puts on the
representation space of the operators 1.

Thus, the physical subspace of the parasupersymmetric spinning particle whose spinning co-
ordinates belong to the irreps of the Duffin-Kemmer algebra is described by two antisymmetric
tensor fields satisfying (4.28). In the performed consideration relativistic quantum mechanics of
the spinning particle was the starting point. After the second quantization one deals with quan-
tum fields and treats the wave function of spinning particle as asymptotic state of quantum fields.
The natural question arises: what kind of action for the fields A,,..,,(z) and A,,..,,_, () allows
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one to justify equations of motion (4.28) and gauge invariance (4.29a). It is remarkable that such
an action exists [19, 20}

S= /de Eul.‘.uz“z““z“Aulmuz(z)auz“Auzuu-l‘D(I) E/ AZ(I) dAZ—l(x) (430)
RD

It is unique and coincides with the action of the D = 2Z—dimensional topological field theory [21].
Of course, it is possible to propose another form of actions by adding the corresponding Lagrange
multipliers to ensure equations of motion (4.28). But in that case the multipliers will be in thier
turn by additional antisymmetric tensor fields. The action (4.30) does not require introduction of
any auxiliary fields and is minimal and unique in that sense.

We conclude that after quantization of the parasupersymmetric spinning particle propagating
in the representation space of the irreps of the Duffin-Kemmer algebra the physical subspace is
described by topological gauge fields.

4.5.3. Generalizations to arbitrary representations

We have considered above only two extreme cases of the representation space of the Duffin-Kemmer
algebra: P = I and P = P,. To understand what will occur for an arbjtrary choice of projector P
in (3.3), one compares equations of motion (4.23b) and (4.28) for the fields Az(z) and Az..(z).
Note that after transition from P = P4 to P = I when the representation space of matrices
¥, is enlarged, the number of restrictions on these fields increases. Two additional equations
d x Az(z) = d* Az_1(z) = 0 appear that can be considered as conditions fixing gauge ambiguity
(4.29a). It is natural that for an arbitrary projector P # I one encounters intermediate situation
when the resulting set of equations on the antisymmetric tensor fields is a subset of equations
(4.23b). Among them one can find pairs of equations d Ax(z) = d * Any(z) = 0 and single ones
dAn(z) = 0 (or d * An(z) = 0). In the former case An(z) is the strength of U(1) connection
An(x) = dwny_1(z) but in the latter Ay(z) is a topological gauge field. The explicit realization
of this scheme depends on the specific form of the projector P or, equivalently, on the set S of
irreps. i )

Consider as an example the D = 3—dimensional spinning particle with the projector P defined
as

P=Po+ PN+ PV =M+ + 1L,

or § = {0,1%,17}, §' = {0,1,2} and s = {1,2} in (4.19) and (4.20). Solving (4.21) we get that
the wave function of particle obeys the equations

Pum(p- 'I’)lo) = Pm (p- 'I’)IU) =0, Pmuzm(l’ . 'i')lo) = Pua(p- 11.')[0) =0
or, applying (4.14) and (4.15)
Pus Aurnans(p) = 0, Puz’imuz(l’) = Plus ’imm](l’) =0, P[uz’im](l’) =0

Thus, the physical subspace of the spinning particle is described by the strength tensor A (p)
and abelian Chern-Simons gauge field A, (p).



5. Conclusions

We have considered the relativistic spinning particle with the action invariant under reparametriza-
tions and local worldline parasupersymmetric transformations. The corresponding symmetry al-
gebra being polynomial contains a set of nontrivial irreps. It is the property that allows for
parasupersymmetric particle to have properties different from supersymmetric particle.

The physical space of the massless spinning particle possessing parasupersymmetry of order
R was defined in (2.9), (3.4) and (3.5). For R = 2 the symmetry algebra reduces to the Duffin-
Kemmer algebra. Using properties of the irreps of this algebra we found that the wave function of
the massless particle is described by the strength tensors of U(1) antisymmetric gauge fields and
topological gauge fields. Generalization to the (D — 1)~dimensional massive particle is achieved
by putting the additional constraint (2.18) on the wave function of D—dimensional massless
particle, or in the coordinate representation d/8zpl0) = iM|0). It is convenient to decompose
the antisymmetric tensor field A, ..., (z) with g; =1,...,D — 1, D into two antisymmetric fields
Bay.ay (%) = Agyay a0d Bayeoy_y () = Apageay_, Witha; = 1,..., D—~1. If the field A,,...(2)
obeys dAy = d * Ay = 0, then for massive particle the above relations after imposing of (2.18)
are replaced by dBy_; — iMBy = 0, d * By — (=)ViM * By_;y = 0 and Bn(z) is the strength
of the massive antisymmetric tensor field By_i(z). The topological gauge field Ayx(z) satisfying
dAn(z) = 0 turns into dBy_1(z) — iMBn(z) = 0.

To define the wave function of the spinning particle for an arbitrary order R one has to specify
the projector onto representation of parasupersymmetry algebra in (3.3). For R > 2 we have no
detailed description of the irreps analogous to that for the Duffin-Kemmer algebra. If one chooses
the trivial projector P = T or uses the Green anzatz (3.1), then the wave function coincides with
the wave function of N = R extended supersymmetric particle found in {8, 9, 10]. Nevertheless,
there is a possibility to define the nontrivial projector as follows. The Green anzatz originates from
the direct product of R spinor irreps. We can define the “modified” Green anzatz by forming the
direct product of R/2 reducible representations of the Duffin-Kemmer algebra. The replacement
of 7,(‘0) operators in (3.1) by operators 3, from (3.3) corresponds to the nontrivial projector P # 1.
The resulting wave function of the parasupersymmetric spinning particle of order R is equal to
the product of R/2 wave functions of R = 2 parasupersymmetric particles. ’
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