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1. Introduction 

Recently it was recognized [1] that the generalization of the notion of supersymmetry called para­
supersymmetry can be achieved by using nontrivial polynomial relations between generators as the 
dynamical symmetry algebras. The manifestations of parasupersymmetry in different physical sys­
tems were studied [1, 2, 3]. It was shown (1], in particular, that the hamiltonian of one-dimensional 
nonrelativistic particle with spin J moving in oscillator or Morse potential and magnetic field re­
lated to these potentials possesses parasupersymmetry of order 2J. The special case J = 1/2 
corresponds to ordinary supersymmetry· quantum mechanics for one half spin particles. 

In the present paper we search for parasupersymmetry in the relativistic theory by considering 
first-quantized relativistic particles. It_ is well known (4, 5, 6, 7] that there is close relation between 
relativistic quantum mechanics of point-like spinning or spinless particles and quantum field theory. 
In particular, the wave function of spinless particle whose action is invariant under worldline 
reparametrizations is described after quantization by quantum scalar field whereas Dirac fermion 
field appears as a wave function of spinning particle (4, 5]. In the last case, the action of massless 
spinning particle in the D-dimensional euclidean space-time is invariant under reparametrizations 
and has local supersymmetry. The. generators of these transformations coincide with the Klein­
Gordon and Dirac operators, respectively: 

(1.1) 

Here, pµ is momentum (µ = 1, ... , D) and t/1µ is "spinning" coordinate of a particle obeying after 
quantization the following commutation relations: 

(1.2) 

The supersymmetry algebra has the form 

The action of a spinning particle is invariant under Lorentz rotations and the corresponding 
integral of motion is the total angular momentum [6] 

(1.4) 

equal to the sum of orbital and spin parts. 
The generalization of the above correspondence to higher spin fields was achieved [8] by quan­

tizing the action of spinning particles with extended local worldline supersymmetry. It was found 
[8, 9, 10] that the resulting physical space of particle is described by massless antisymmetric 
quantum fields. 

However, the imposing of the extended local supersymmetry is not the only way of enlarging 
symmetry. In the present paper, we propose the action for spinning particles which possesses 
nontrivial dynamical symmetry different from extended supersymmetry. The corresponding sym­
metry algebra is not Lie algebra and is known [1, 3] as polynomial algebra. It contains ordinary 
supersymmetry algebra (1.3) as a special case and it is this property which allows us to refer to 
the resulting symmetry algebra as to parasupersymmetric one. 

In sect.2 we define commutation relations between dynamical fields and parasupersymmetry 
algebra. Here, the hamiltonian and action of the spinning particle are specified and the definition 
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of the physical subspace is given. The representations of the symmetry algebra and the relation 
to the supersymmetric particle are investigated in sect.3. The physical subspace of the massless 
particle possessing parasupersymmetry of order R = 2 is determined in sect.4. The generalizations 
to massive particles and higher orders R are discussed in sect.5. 

2. Parasupersymmetric spinning particle 

In the fl- dimensional euclidean space-time the parasupersymmetric spinning particle is described 
by fl bosonic coordinates x,. and by fl real para.fermionic variables 'ljJ,.. 

2.1. Commutation relations 

Instead of imposing commutation relations (1.2) between the operators 'ljJ,. we postulate that the 
total angular momentum of the particle has to be equal to (1.4).- This condition allows us to 
establish commutation relations for parafermi operators 'ljJ,. as follows. The operators 'ljJ,. are 
transformed as vectors under rotations of the fl-dimensional space 

o'ljJ,. = w,,v1Pv = -i['ljJ,., ½w011I:a11] 

with w0 11 and I:a/1 being angle of rotation and angular momentum, respectively. After substitution 
of (1.4) into this relation one finds the parafermionic commutation relations [ll] 

['ljJ,., [1Pv, '!pp]] = 9µv1Pp - 9µp1Pv 

where the remaining commutation relations 

[x,.,pv] = ig,.v, 

are imposed. 
[x,., 1Pv] = 0, [p,., 1Pv] = 0 

(2.1) 

(2.2) 

The resulting commutation relations being trilinear contain (1.2) as a special case, In the 
algebra (2.1) and (2.2) the operators 'ljJ,. and x,. can be thought of as odd and even elements, 
respectively. 

It is well known [12] that algebra (2.1) is isomorphic to the SO(D + 1) algebra and, hence, 
matrices 'ljJ,. belong, in general, to the reducible representation of SO(fl + 1). If one chooses 'ljJ,. in 
the irreducible representation (irreps) of this algebra, then for an arbitrary fl-dimensional vector 
p,. the matrix (p · 'ljJ)/IPI has eigenvalues -½R, -½R + 1, ... , ½R-1, ½R with R being an integer 
positive number and satisfies the following characteristic equation [12]: 

((p · 1P) - ½RIPl)((p · 'ljJ) - (½R - l)lpl) · · · ((p · 'ljJ) + ½Rlpl) = 0 (2.3) 

For R = l Dirac matrices are the solutions of this equation: 'ljJ,. = ½,,.. For R = 2 it follows from 
(2.1) and (2.3) that matrices 'ljJ,. belong to the Duffin-Kemmer algebra [13, 14] 

'lpµ'lpv'lpp + 'lpp'lpv'lpµ = 9µv'lpp + 9vp'lpµ (2.4) 

So Duffin-Kemmer algebra is the simplest nontrivial example of trilinear parafermionic commu­
tation relations. For R > l among its solutions one can find matrices satisfying the analogous 
equation for smaller R as well as the set of irreps parametrized by the same number R. 1 

1
0nly irreps of the S0(3) algebra are uniquely fixed by the parameter R. 
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Instead of fixing "by hand" the representation of the SO( fl+ 1) algebra we assume henceforth 
that the matrix (p ·'Ip) obeys equation (2.3) for an arbitrary vector p,. and a fixed number R. This 
condition is not a consequence of (2.1) and expresses an additional constraint on the matrices t/J,. .. 

The wave function of a spinning particle has to be invariant under the action of local para­
supersymmetric transformations and worldline reparametrizations. One chooses generators of 
these transformations in the same form (1.1) as for supersymmetric spinning particle. Then, the 
operators 1-£ and Q form the parasupersymmetric algebra 

[Q, 1t] = 0, Q(Q2 
- 21-£) .. • (Q2 

- ½R21-£) = 0, for even R (2.5a) 

and 
[Q, 1t] = 0, (Q2 

- ½H) ... (Q2 
- ½R21-£) = 0, for odd R, (2.5b) 

with positive integer number R called [ll] the order of parasupersymmetry. For R = 1 the 
parasupersymmetry algebra reduces to supersymmetry algebra (1.3). 

The transformations of dynamical fields are generated by the following operators: 

O_x=½[ ,[,\,Ql]=}[ ,[,\,(p·tp)]], Oa=-i[ ,arl]=-f[ ,ap2] (2.6) 

Here, parameters of parasupersymmetric transformations ,\ are the generalized grassman numbers 
[11] and have nontrivial commutation relations with the operators t/J,. 

['ljJ,.,[t/Jv,,\lJ = 9µvA, [,\,[t/J,.,1PvlJ = 0, [,\,[,\',t/J,.l] = 0, [1P,.,[,\,,\'l] = 0, [,\,[,\',,\'1] = 0 (2.7) 

Some of these relations are a consequence of the Jacobi identity. The reason for the choice (2.6) 
originates from the fact that the operators 8.x and 8a form the Lie algebra: 

[8_x, O_x•] = Oa=-½[.x,_xi' [8_x, Oa] = 0, [8a, Oa•] == 0, (2.8) 

where the relations[,\,[,\', Q]] = 0 and [Q, [,\, Q]] == -2,\1-£ were used. So under reparametrizations _ 
and local parasupersymmetry transformations states of a spinning particle are changed as 

I0} !!. exp(iaH)I0}, j0} S exp(-½[,\, Q])I0} 

The invariance of the wave function of a spinning particle under these transformations implies 
that 

HID} == 0, [,\, Q]I0} == 0 (2.9) 

for arbitrary ,\. This is the definition of the physical space of a spinning particle. One notices that 
as distinct from the standard supersymmetric case the parameters ,\ cannot be eliminated from 
the above equations. 

2.2. Hamiltonian of the spinning particle 

The hamiltonian of the spinning particle whose wave functions satisfy (2.9) is equal to 

H = erl+ ½[,\, Q] = ½ep! + ½[,\,(p· t/J)] 
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where worldline parasupergravity gauge fields e and ,\ play a role of the Lagrange multipliers. 
Using commutation relations (2.1) and (2.2) we find equations of motion for the spinning particle 
as 

x = ep,, + ½(.X,ef,,,] ,, 
(2.10) f,,, = 0 

tb,, = -½.Xp,, 

where dot denotes the derivative over proper time. Let us demonstrate that these equations are 
invariant under reparametrizations and have parasupersymmetry. 

Under unitary transformations ,f>--+ </>' = Ut,f>U of an arbitrary field ,f> the equation of rrtotion 
changes as i¢' = [</>',H'] where H' = UIHU +iutci. Now we don't put the restriction UtHU = H 
which will imply conservation of the charge corresponding to the transformation on the full space 
of states. It is enough to require ut HU - H ::::i 0 only on the physical subspace (2.9). The remain­
ing term iUtci takes into account nonconservation of the charge and the dependence of parameters 
of transformations on proper time. For reparametrizations and local parasupersymmetry transfor­
mations this term can be compensated by proper transformations of gauge fields e and .\. Indeed, 
under reparametrizations when U = exp(ia?-i) and dynamical fields transform as 0

0
,f> = -i[,f>, a1i] 

we get H = utnu and iUlci = -arl. The shift of the hamiltonian H' = (e - a)1i + ½[.\, Q] is 
compensated by transformation of the gauge field e. Thus, equations of motion (2.10) are invariant 
under worldline reparametrizations provided that 

li.e = a 
li.x,, = ap,, (2.11) 
li.,\ li.p,, = li.ef,,, = 0 

We notice that unlike diffeomorphisms, reparametrizations in the hamiltonian approach form the 
abelian group [7]. 

It turns out that the parasupersymmetry charge Q satisfies the equation 

Q = -i[Q,H] = ½[Q,[.X,Q]] = -,\1-i 

and is conserved only on the physical space (2.9) where 1i ::::i 0. Then, under local infinitesimai 
transformations with U = 1 - ½le, Q] + O(c2) and li,,f> = ½(,f>, [c, Q]] one gets 

H! ::::i H + ½(c, .\]1-i - ½(i, Q]. 

The shift of the hamiltonian is compensated by transformations of both gauge fields e and ,\. Thus, 
the equations of motion are invariant under the following parasupersymmetric transformations: 

li,e = -½le,.\] 
li,,\ = i 

li,x,, = ½(c, ef,,,] (2.12) 
li,ef,,, = -½cp,, 
li.p,, = 0 

It can easily be checked, by using (2.11) and (2.12), that the operators li, and li. form algebra 
(2.8). 
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In eq.(2.12) the generalized grassman numbers c are parameters of transformations. However 
they are not in general completely arbitrary. The restrictions on c follow from the property 
that the operator 8,ef,,, has to belong to the same algebra (2.1) and (2.3) as the operator ef,,,. In 
particular, commutation relations (2.1) are fulfilled provided that the parameters c obey (2.7). 
Let us turn to relation (2.3). In the simplest case R = 2 the variations of both sides of the relation 
Q3 = 21-f.Q with li,Q = -€1-i and li,1-f. = 0 lead to 

ef,,.1/J.c + cef,.1/J,, = g,..c, 1/J,.c-ip. + 1Pvc1P,. = 0, ctp,,c = 0, c21/J,, + 1/J,.c2 = 0, c3 = 0 (2.13) 

where (2.7) was used. Thus, the parameters c turn out to be consistent with the Duffin-Kemmer 
algebra (2.4). Moreover, c can be included into this algebra by introducing new additional coor­
dinate M = (µ, D + 1) and the corresponding operator 1PD+1 with the properties 

1PD+I = €, 9D+J.N = 0 (2.14) 

Then, for R = 2 the operators ef,,, and parameters c form the (D+ 1)-dimensional Duffin-Kemmer 
algebra 

1PM1PN1PK-+ 1PK1PN1/JM = 9MN1PK + 9NKt/-'M (2.15) 

These relations admit natural generalization to higher orders R ~ 2. Indeed, tlie inclusion of 
the additional coordinate (2.14) into (2.1) allows us to satisfy simultaneously the commutation 
relations (2.1) and (2. 7) but relations (2.3) preserve their form under parasupersymmetry trans-

formations Q S Q + li,Q = (p · ip) - crl = l·' t/-•M and 1i S 1i + li, 1-f. = 9MNPM pN = P! provided 
that one identifies 1/JD+i = c and pD+I = -1-i = -½p2

• Thus, for an arbitrary order R parameters c 
are additional elements of the algebra of the 1/J,, operators. In particular, for p,. = 0 and Pn+1 cf 0 
we get from (2.3) that cn+i = 0. The same restrictions are to be put also on the gauge field ,\ 
since under transformations (2.12) they are shifted by i. 

2.3. Action of the spinning particle 

Let us define the action of the spinning particle whose quantization will reproduce trilincar com­
mutation relations (2.1) and definition (2.9) of the physical space as 

s = [ dt(p,,x,, + ½[i/J,,, tb,,] - JI) = [ dt(p,,x,, + ½[ij,,,, tb,,] - ½ev; - ½(,\, (p • I/•)]) (2.16) 

Here x,, and p,, are independent variables, and before quantization ef,1, and ,\ arc generalized 
grassman numbers: [i/J,,, (ip., 1/)p]j = 0, [i/J,,, (ip., .\]] = 0 and (.\, (ij,,., .\]] = 0. 

The variation of the action over x,,, p,. and over e, ,\ leads to the equations of motion (2. JO) 
and to definition (2.9) of the physical space, respectively. The integral of motion com•sponding to 
the invariance of the action under rotations of the vectors x,., p,. and ij,,. coincides with the angular 
momentum (1.4). The invariance of the equations of motion (2.10) under reparamctrizations and 
local parasupersymmetry transformations implies the invariance of the action (2.16) only on-shell. 

Picking out in (2.16) the form· quadratic over p,. we eliminate this auxiliary field from the 
action 

S = [ dt Gex; + ~[i/J,,,tb,,]- ;e[,\,(:i: · efJ)]- ;e(,\,t/,•,,l[,\,ij,,,J) (2.17) 

where e and ,\ are gauge fields. 
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Let us demonstrate that the quantization of the action leads to trilinear commutation relations 
(2.1 ). To this end, it is sufficient to restrict ourselves to the kinetic term for odd coordinates 

·t So = i lo dt [t/>,., ii,,.] 

and consider the following correlation function: 

(t/>i(ti) ... t/>N(tN)) = j Vt/>,. t/>,.,(t1) ... tf,,.N(tN) exp(-½ [ dt[tf,,.,ii,,.J) 

where t/>k = t/>,..(tk), tk E [0, l] and the integration measure over generalized grassman numbers is 
invariant under translations and rotations of tf,,., in the D-dimensional space. Rotating the field 
t/>,.(t) -+ A,.v(t)t/>v(t) with A,.v(0) = A,.v(l) = 0 and using invariance of the measure we find the 
Ward identities 

d N 

(t/>1 (tt) • • • t/>N(tN )dt[t/>,., t/>v]} + L ,5(t - tk)(t/>1( tt) • • • (g,,,,. t/>v(tk) - 9vµ• t/>,.(tk)) ... t/>N(tN )} = 0 
k=I 

Integrating both sides of this relation over .fi:':i dt with [t/>k(tk), [t/>,.(t), t/>v(t)l] = 0 for t i tk 
one gets the trilinear commutation relations (2.1). In an analogous manner the Word identities 
corresponding to the invariance of the integration measure under the shifts tf,,.( t) -+ tf,,.(t) + p,.e:(t), 
c(0) = e:(l) = 0 with an arbitrary vector p,. and generalized grassman numbers c lead to relations 
(2. 7). 

The spinning particle with the action (2.16) and (2.17) is essentially massless since the mass 
term f0

1 
dt eM2 breaks parasupersymmetry (2.12). Nevertheless, it is possible to introduce mass 

as follows. Note that momentum p,. satisfies the equation of motion p,. = 0 and is not changed 
under transformations (2.11) and (2.12). As a consequence, we can put the constraint 

PD -M ::::::0 (2.18) 

and don't spoil (2.10), (2.11) and (2.12). After replacement PD= Min (2.16) the Lorentz indices 
run as µ = 1, ... , D - 1 and the action acquires the addition 

.5S = [ dt(½[t/>D, !fD] - ½eM2 
- ½ M[,\, t/>D]) 

The equation of motion and the transformation properties of the parafermionic field t/>D are found 
from (2.10), (2.11) and (2.12) as 

• I 
t/>D = - 2M,\, 6at/>D = 0, 6,t/>D = -½Me: 

After eliminating from S + .5S the dependence on p,. the action of the massive spinning particle 
reduces to 

/1 ( 1 •2 1 2 i · i · i . i 1 ) 
S= lo dt 2ex,.-2eM +2[t/>,,,t/>,,]+2[t/>D,t/>D]-2e[,\,x,.t/>,,]-2M(,\,tf,D]-8e[,\,t/>,.l[,\,tf,,.] 

and under its quantization the wave function of the particle obeys 

(P! + M2 )J0) = 0, [,\,p"t/>,. + Mt/>D]I0) = 0, µ = l, ... , D - l 

Thus, starting with massless parasupersymmetric particle in the D-dimensional space we can 
describe massive parasupersymmetric particle in the (D-1 )-dimensional space by imposing (2.18). 
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3. Physical space of the spinning particle 

3.1. Representation of the parasupersymmetric algebra 

The operators t/>,. are elements of the representation of the SO(D + 1) algebra which satisfy 
additional restrictions (2.3). To solve these relations for an arbitrary order Rone notices that the 
D-dimensional Dirac matrices are general solutions for R = 1. Then, the direct product of two 
spinor representations gives the general solution for R = 2 and so on. Thus, for arbitrary R all 
irreducible solutions of (2.1) and (2.3) are contained in the decomposition of the direct product 
of R spinor irreps. In this sense, the most general form oft/>,. matrices is [11, 12] 

l R 
.7. = - ~..,,(a) 
Y,µ 2 L.., Iµ 7 

a=l 

-y(a) = J X • • • X '"(µ X • • • X J 
µ ..._____.., (3.1) 

a 

and is called [12] the Green anzatz. By applying the standard methods this solution can be 
decomposed over irreducible ones. Denote projectors onto irreps as 'PA. They have the following 
properties: 

I= L°PA, t/>,.'PA = 'PAt/>,,, 'PA'PB = ,5AB'PA (3.2) 
A 

We conclude that solutions of (2.1) and (2.3) are 

it,,.= Pi$,,= J;,,P, p = L'PA (3.3) 
AES 

where the choice of the set S of irreps A E S entering into the decomposition of the projector P 
is fully arbitrary. In fact, the set S is a free parameter of the spinning particle. 

Let us suppose that one fixed the explicit form of the projector P. It turns out that the 
projector does not conserve 

P = -i[P,H] = ½[P,[,\,Ql] = ½(Q,[,\,'Pl] i 0 

unless P = I and the operators t/>,. coincide with the Green anzatz. This relation implies that if at 
the initial moment of time the operators t/>,. were defined in the representation with the projector 
P i I, then evaluating the spinning particle will turn into the representation differing from 'P. 
To conserve the condition (3.3) under evolution of the spinning particle one is enforced to put 
additional conditions on the Lagrange multipliers(,\, P] = 0 or 

,\ = p,\ = ,\P (3.4) 

An analogous condition is imposed on the parameters c of parasupersymmetric transformations 
(2.12) since variation .5,t/>,. = -½e:p,. has to satisfy (3.3). In the special case P = I relation (3.4) 
reduces to identity but in general it is possible to define the projector P in such a manner that 
the only solution of (3.4) will be the trivial one ,\ = 0. It will mean that the spinning particle 
cannot propagate in the representation of odd coordinates t/>,. thus defined. 
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3.2. Relation to the supersymmetric spinning particle 

Suppose one fixed the order of parasupersymmetry and projector P in eq.(3.3). The physical 
subspace of the spinning particle is defined by equations (2.9) and (3.4) together with the condition 

IO)= p IO) (3.5) 

which picks out the subspace where the operators "Pµ act. 
We start with solution of (3.4) in the simplest case when the matrices tpµ are given by the 

Green anzatz and P = l. Relations (3.4) and (3.5) become identity and (2.7) is the only restriction 
on ..\. The fields ..\ being additional elements of the algebra of the tpµ operators are expressed for 
a fixed order R as [11] 

R 

A= I>(o), ..\("),\(<>) = 0, p<0 l,-yt")} = 0, [..\("),..\(/3)] = O, [..\( 0 >,-yt>J = 0, a=/= /3 
o=l 

where ..\<0 > are arbitrary. After substitution into (2.9) we find, using [A, i,&"] = ~:;1 >.< 0 >-yr0 >, the 
following equations for the wave function l0)01 .•. on = llt01 •.• an(P) of the spinning particle 

Pµ"f~•/3• Wa1 ... /J•-··"R(p) = 0 

well known as the Bargman-Wigner equations. _The solutions of these equations describe a couple 
of "spins". One notices that the same relations were found [8] for the wave function of the spinning 
particle possessing worldline N = R extended supersymmetry. 2 Therefore, the physical space 
of the parasupersymmetric spinning particle with the operators tpµ defined in the Green anzatz 
representation and the physical space of the spinning particle with an extended supersymmetry are 
equivalent. The difference between these particles appears when one puts additional restrictions 
on the representation of the operators tpµ by choosing nontrivial projector Pin the definition (3.3). 

For P =/= I both the parasupersymmetric parameters c: and Lagrange multipliers ..\ obey the 
condition (3.4) and, as consequence, the resulting equations (2.9) on the physical space become 
less restrictive. Therefore, the physical space of the spinning particle with P = I when one uses 
the Green anzatz is a subspace of the physical space of the spinning particle with P =/= I. 

Thus, one connects novel properties of parasupersymmetric particles with nontrivial choice of 
the projectors P =/= I in (3.3). To define P we have to determine the projectors PA onto irreps of 
the algebra of the 1/'µ operators for arbitrary orders R. 

For R = l the matrices 1/'µ obey (1.2) and coincide with the fl-dimensional Dirac matrices. 
The only irreps are spinor ones3 and the R = l parasupersymmetric particle is in fact an ordinary 
spinning particle. r 

For R = 2 the matrices tpµ belong to the Duffin-Kemmer algebra (2.4) which has a set of irreps 
(3.2) found in [14]. For instance, in the D = 4-dimensional space-time the algebra has only three 
irreps [14, 17]: trivial (t/Jµ = 0), scalar and vector ones with dimensions 1, 5 and 10, respectively.4 

2 For extended supersymmetric spinning particle the internal 0( N) symmetry is introduced to extract from 
the wave function Wa, ... aR(p) the field with maximum spin N/2 in the D = 4-dimensional space-time. After 
quantization the internal symmetry turns out to be anomalous [15, 16]. · 

3 For odd dimensions D there are two spinor irreps differing by the sign of matrices. 
4This notation goes back to the theory [17] of relativistic wave equations of the form ((p • ef,) + M)ef>(p) = 0. 

These equations with the matrices 'Pµ chosen in the scalar and vector representations describe massive scalar and 
vector fields,respectively. 
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4. Parasupersymmetric spinning particle of order R = 2 

The physical space of parasupersymmetric spinning particle of order R = 2 is defined by equations 
(2.9) and (3.4) were matrices "Pµ belong to the Duffin-Kemmer algebra (2.4). Before solving them 
we find it convenient to introduce the notion of dual matrices 'efJµ and dual parameters 5.. 

4.1. Dual operators 

The dual matrices are defined as real solutions of the equation [18] 

"Pµ"Pv + 'efJv'efJµ = 9µv 

Together with the identity (p. t/J)3 = p2 (p • t/J) this definition implies 

(p--efJ)3=p2(p·h (p·tp)(p·'efJ)=O (4.1) 

for an arbitrary fl-dimensional vector pJ'"Thus, dual matrices also belong to the Duffin-Kemmer 
algebra and satisfy 

2 ·2 • • - • • 
"Pµ = l - "Pµ, tpµtpµ = 0, tpµt/.•v = -t/Jvt/.1µ, 1/'µ'Pv + t/.•vtp1, = 0, (Jt =/= v) (4.2) 

To understand the meaning of dual matrices one introduces operators 'Ipµ = ½('Yr1> + -yr2>), J•µ = 
- .!.( (tl (2)) d f ( )· { (1) (tl} _ { (2) (2)} _ , [ (tl (2)] _ • 

2 
"(µ - "(µ an gets rom 4.2 . "(µ , "(v - 28,,v, "(µ , "(v - 2v,,v, "(µ , "(v - 0. It IS easy 

to recognize in the above expressions the Green decomposition of parafermi operators of order 

R=2: 
t/J,, = ½(-y,, XI+ IX -y,,), .(j,, = ½(-y,, XI - IX -y,,) (4.3) 

Dual parameters of parasupersymmetric transformations>. are defined analogously to (4.2) as 

t/J,,..\ = ->.{,,,, ..\). = 0 ( -1.-1) 

If the parameter..\ is identified with the additional element 1/'D+I of the Duffin-Kemmer algebra, 
then 5. is an analog of the dual operator 'efJD+t· 

4.2. Representation of the Duffin-Kemmer algebra 

Expression (3.3) for the operators tpµ contains projectors PA onto irreps of the Duffin-Kemmer 
algebra. We define PA following [14]. Introduce the operator 

D 

77 = L 77,,, 77,, = 2t/.•! - I 
µ;J 

where 77,. form a commutative subalgebra with the properties 

[77,., 77v] = 0, 77! = 1, 1/µ"Pµ = "Pµ, 1/µt/.•v = -t/Jv77~, JI =/= V 

The eigenvalues of the operators 77,, and 77 are equal to ±1 and -D, -D + 2, ... , D- 2, D, r<'spec­
tively. Let IIA be projectors onto eigenstates of the operator 77 

1/IIA = 77AIIA, 1/A = D - 2A, A= 0, 1, ... , D 
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with 
0 

I= L IIA, IIAIIB = 0ABIIA 
A=O 

The explicit form of IIA in terms of the matrices ip,. is 

Ilo 

II1 

IIA 

ipNi···ip1, 
-2 2 2 2 2 -2 

ip1 ip2 · · · ipo + · · · + ip1 ip2 · · · ipo 

-2 -2 2 2 
ip{1 ···ipAipA+1 ···ipo} (4.5) 

and{ ... } denotes symmetrization over the vector indices with ip;ip; = ip;ip;. Being combined with 

the identities ip,.ip; = ~;ip,, (µ f. v) and >.ip~ = ~~>. the above expression allows us to establish 
that 

ip,.IIA 

~,.IIA 
>.IIA 

IIo-1-Aip,., ip,.IIo = 0, 

II0+1-A~,., ~,.IIo = 0 
IIo-A>. 

The first relation prompts to define the projectors 'PA as 

'P_1 = IIo, 'PA= IIA + IIo-1-A, 0 <A< 0-2 
- - 2 

(4.6) 

(4.7) 

Indeed, for even space-time dimensions D it can be easily verified'that the operators 'PA do satisfy 
(3.2). For odd dimensions there appears a problem with definition of 'PA for A = 0;1 when ( 4. 7) 
is not valid. It is well-known (14] that for D = 2Z + 1 and A= 0 ;1 = Z "twin algebras" appear 
as 

'Pi+) = i(IIz + w), 'Pi-) = i(IIz - w), 'Pi+lpi-) = 0 (4.8) 

where pJfl are projectors onto twin algebras and the pseudoscalar element w satisfies the condi­
tions (14] 

w = Z!(1:t)!t:"1
···"

0 .ip,,, · ·· ip,.0 , wITA = IIAw = OAzw, w2 = IIz, ip,.w = wip,, 

Finally, the decomposition of the unity element of the Duffin-Kemmer algebra looks like 

I= 'P-1 +'Po+ 'Pi+···+ 'Pz-1 

for even dimensions D = 2Z and 

I= 'P-1 +'Po+ 'Pi+···+ 'Pz-1 +'Pi+)+ 'Pi-) 

( 4.9a) 

( 4.9b) 

for even dimensions D = 2Z + 1. The projectors 'P _1 correspond to the trivial representation 
ip,. = 'P-1-ifJ,. = 0. 

IO 

;\ ;i 
J 

,. 

1 
·l! ,_, 

i 

4.3. Covariant projectors 

Expression (4.5) for IIA contains the sum of (~) = A!jg~A)! orthogonal projectors. Notice that 
the number of items coincides with the number of the mdependent components of a totally anti­
symmetric tensor of rank A or D - A in the D-dimensional space-time. Therefore, it is natural 
to represent IIA as IIA = :¾rPJ, ... ,. .. P,., ... ,, .. or IIA = (O~A)!PJ, ... ,.0 _ .. P,,1 ... ,.0 _ .. where P. .. are non­
hermitian operators totally antisymmetric with respect to indices. But the existence of vector 
indices does not mean that P. .. are D-dimensional tensors. Nevertheless, it is possible to define 
P ... in such a manner that they will transform covariantly (as totally antisymmetric tensors) under 
rotations of space-time. 

The covariant operators P ... are defined by the following recurrent relations: 

P = ipNi···ip1, 

P,., ... µ,N 

P,.,.,.µ2N+1 

P,., ... µ2N-1 ~1'2N = Pip,,, ~1'2 ° 
0 0 ipl'2N-1 ~1'2N 

Pµ, ... µ,Nipl'2Ntl = Pip,,,~,,, ·--~1'2Nipl'2Ntl 

(4.10) 

These operators are antisymmetric with respect to indices due to the relation ip,.~v = -ipv~µ- A 
simple calculation yields 

Pi...2NPi ... 2N = ~: ... ~iNipiN+1 ... ip1, Pf ... 2N-1Pi ... 2N-I = ip: .. · ipiN-1~iN ... ~1 

and one identifies the r.h.s. of these expressions with one of the items in (4.5). However, a more 
careful examination indicates that there is difference in constructing projectors IIA in terms of the 
covariant operators for odd and even dimensions. 

For the even dimensions D = 2Z projectors are given by 

IIA = :¾rPJ, ... ,. .. Pµ, ... ,. .. , for even A (4.lla) 

and by 
IIA = (O~A)!PJ, ... ,.0 _ .. P,,, ... ,,0 _ .. , for odd A. ( 4.llb) 

At the same time, for the odd dimensions D = 2Z + 1 it is impossible to define IIA for odd A 
using the operators P ... since the r.h.s. of (4.lla) and (4.llb) coincide and 

II - .l.pt P. = _I _pt P. 
A - A! 1-'l•••JJ.A 1'1···1-'A (D-A)! 1-'1···1-'D-A µ1 ... µD-A' only for even A. ( 4.12a) 

To overcome this difficulty, one introduces dual covariant operators differing from the original 
operators by replacing the ip,. matrices by the dual ones~,, and vice versa 

- -2 -2 -2 
P = ip1ip2···ipo, 

P,,, ... ,,,N = P~,.. ip,., 0 0 0 ~1'2N-1 ip,,,N 

P,., ... ,.,N+l = P~µ, ip,,, 0 0 0 ip,,,N~1'2Ntt 

Then, the expression for IIA is 

II - .l.j,t p - _l_j,t j, 
A - A! µJ •.• µ.A 1-'1···1-'A - (D-A)! 1-'1···1-'D-A 1'1···1-'D-A' only for odd A. ( 4.12b) 

Moreover, in the odd dimensional space-time there is a special case A = 0 ;1 = Z when twin­

algebras appear. To define in an analogous way the projectors Pt>, we define the operators 

p!±l - ! (P ± _Lt: p ) ,., ... µz - 2 l'l•••l'Z (Z+l)! ,,, ... µzµz+•·••l'D l'Z+t•••l'D (4.12c) 
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and after tiresome calculation get for D = 2Z + I and even Z 5 

Pt>= ¼i (PJ~!.,.z)t Pt!.µz• (Pt!.,.z)t Pt!.vz = 0, (4.12d) 

Thus, projectors IIA are given by (4.lla) and (4.llb) for even dimensions D and by expressions 
(4.12a), (4.12b) and (4.12d) for odd dimensions D of space-time. 

. To find transformation properties of the operators P. .. and to prove that they indeed are 
covariant we notice that under rotations of the fl-dimensional space with the angle Wa/J, the 
operator P,., ... ,.N is transformed as 

fiP,., ... µN = -i[P,., ... µN, ½wa/JI:a/J) = ½wa11[P,., ... µN, [1Pa, TP/J)) (4.13) 

where angular momentum I:011 was postulated in (1.4). Let us examine the action of P,., ... µN on 
the matrices tt,,.. The evaluation using (4.2) gives 

Ptt,,., = P,., 

P,., ... µ2N-1 tt,,.,N 

Pµl•••JJ.2Nt/JJJ,2N+1 

/j1'2N[1'1 P,., ... µ2N-il 
Pµ1 ... µ,NJJ,2N+1 

( 4.14) 

where [· • ·) denotes antisymmetrization over indices and P,., ... µv+• = 0. The action of P,., ·•·l'N on 
the dual matrices ?fa,. is defined analogously 

PefJ,., = 0 

Pµ1··•1'2N-1 '¢µ,N PJJ,1-•·1'2N-1 JJ,2N (4.15) 

P,., ... ,.,NefJl'2N+t =: -li,.,N+t[µ,P,., ... µ,N] 

So the matrix t/,,. acting on the operator P,., ... µN with an even (or odd) number N of indices 
increases (or decreases) by one this number. The action of dual matrices on P,., ... ,.N has an 
opposite effect. The above relations can be generalized for the dual operators as 

P,., ... ,.Ntpl'N+l =: (P,., ... ,.NefJl'N+1), P,., ... ,.NefJl'N+I =: (P,., ... ,.Ntpl'N+I) 

Using properties (4.14) together with the identity tpµTPvTPµ = 0 forµ# v we obtain 

N 

[1Pa, TP/J)P,., ... µN = 0, Pµ, ... µN[TPa, TP/J) = I) Oaµ,fi/Jµ; - fia;.,fi/Jµ.}P,., ... µ; ... µN 
i=l 

and after substitution into (4.13) we conclude that the operators P,., ... µN possess transformation 
properties of a totally antisymmetric tensor of rank N 

N 

liP,., ... ,.N = :z=w,.,;.,P,., ... ;., ... ,.N 
i=l 

It is evident that the same statement is valid for the dual operators P,., ... µN• 

5 For odd Z operators P. .. are to be replaced by the dual operators P ... 

12 

(4.16) 

4.4. Physical subspace 

The physical space of the spinning particle is described by equations (2.9), (3.4) and (3.5). Let IO) 
be an arbitrary vector from this space. After insertion of identity decompositions ( 4.9a) and ( 4.9b) 
as ID) = I:A PAIO) and substitution of the explicit form (4.7) and (4.8) of projectors expressed in 
terms of the covariant operators P ... and P ... , we find using (4.lla), (4.llb), (4.12a), (4.12b) and 
( 4.12d) that in the subspace of irreps of the Duffin-Kemmer algebra the states ID) are described 
by the set of or.thogonal vectors 

IA,,, ... ,,N) = P,,, ... ,,NIO) ( 4.17) 

and by the dual vectors IA,,, ... ,,N) = P,,, ... ,,NIO) for both odd D and N. The properties of covariant 
operators imply that A,,, ... µN are totally antisymmetric tensors of rank N. , 

Thus, the physical space of the parasupersymmetric spinning particle is described by the 
antisymmetric tensor fields A,,, ... µw Eqs.(2.9) and (3.5) impose certain restrictions on these fields. 
For instance, the condition (2.9) of worldline reparametrization invariance turns into the massless 
Klein-Gordon equation for the tensor fields 

p2 A,,,,,.µN(p) = 0 

As to the second equation (2.9), it can be rewritten using dual matrices and dual parameters 
( 4.4) as 

[.\, Q]IO) = [X, Q]IO) = 0 

where Q = p,,efJ,,. Multiplying these relations by ,\ and X and taking into account the identities 
.XX = 0, .\t/,,,.\ = and XefJ,,X = 0 one gets 

.x2 Q10) = X2 Q10) = o (4.18) 

with,\ and 5; being generalized grassman numbers. It follows from (2.13) that .\2 and ,\2 anticom­
mute with Q and Q and can be eliminated at first sight from (4.18). However, the parameters 
,\ and 5; are not really arbitrary and are restricted by condition (3.4) as only the projector P in 
(3.3) differs from the unit operator. Suppose one has fixed the representation of the operators 1/,,. 
or, equivalently, specified the set S of irreps entering into decomposition of projector P in (3.3) 

p =: LPA = L(ITA + ITD-1-A) =LITA (4.19) 
AES AES AES' 

Additional terms have to be added to the last expression if twin-algebras enter into the set S. 
Then, the parameters ,\ obey 

,\ = P.\ = .\P = ½ L(Il., + IID-o).\ = ,\ ½ L(Ilo + nD-,,l (-1.20) 
<>E• <>Es 

where the identity IlA,\ = .\IID-A and reality condition _xt = ,\ were used. Herc, summation is 
performed over such indices a E s C S' that Pll0 ,f, 0 and PIID-o # 0 simultaneously. In other 
words, for a number a to appear in the set s both numbers a ~nd D - a have to belong to the set 
S'. If the sets turns out be empty, then,\= 0. The factor ½ was added in (4.20) to avoid double 
counting of indices a and a' = D - a. 

After substitution of (4.20) into (4.18) the first equation is replaced by 

. .\
2 L(Ilo + IID-a}QIO) = A2Q L(ITD-1-a + Ilo-illO) = Q 

<>E• <>E• 
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and the second one in (4.18) is transformed as 

>.Q2 IO} = ->.Q.,\10} = -½>.Q.,\ 'z)rro + IIv-a)IO} = ½>-2 Q I:(rr., + IIv-a)IO} = 0 
oE• oE• 

These relations take into account all restrictions on .,\ and >. and therefore parameters .,\2 and 
>.2 can be eliminated from them. The resulting equations on the wave function of the spinning 
particle have the form 

Q I:(IID-1-a + rr.,_i)IO) = Q I:(rr., + IIv-a)IO} = 0 (4.21) 

aE• aE• 

or, using ( 4.6) 
I:(rr., + IIv-a)QIO} = I:(IIv+1-a + II.,+i)QIO} = 0 
aE• aE• 

Here, the sets is uniquely fixed as soon as the set Sis specified in (4.19) and vice versa, for any 
set s one can reconstruct the corresponding sets S. The set S has the sense of a free parameter of 
the parasupersymmetric spinning particle. 

4.5. Antisymmetric tensor fields as wave functions of the spinning 
particle 

There is a variety of sets S leading to different physical models. In the following we will consider 
in detail only two extreme cases: 

(i) P = I and set S contains all irreps of the SO(D + 1) algebra labelled by the order R; 
(ii) the set S contains the only irreps. 

4.5.1. Fully reducible representation 

In the first case, the matrices tpµ are given by (4.3) and the wave function satisfies 

QIO) = QIO) = 0 (4.22) 

The wave function is described by the antisymmetric tensor fields (4.17). To get equations on 
the fields Aµ,•••µN(p) following from (4.22) we multiply its both sides by projectors ITA and apply 
relations (4.14) and (4.15). There appears a difference between odd and even dimensions. 

For even dimensions after multiplication of ( 4.22) by the covariant operator Pµ, ···MN one uses 

(4.14) and (4.15) to get 

Pµ2N+1 Pµ, •••µ2Nµ2N+1 IO} = -P(µ, Pµ,•••µ2Nl IO) = 0 

and after multiplication by Pµ,•••µ2N-l 

P[µ,Pµ,·••µ2N-illO) = Pµ,NPµ,·••µ2N-1µ2NIO} = 0 

Recalling the definition of fields (4.17) we rewrite the above relations as 

pµ,Aµ,·••µN(p) = 0, P[µN+lAµ,••·µN](P) = 0 

14 

(4.23a) 

The same equations in the coordinate representation have a simple form after introduction of the 
external differential form 

AN(x)=}tAµ,•••µN(x)dxµ'···dxµN, dAN(x)=0, d*AN(x)=0, 0$N$D (4.23b) 

The solutions of these equations for 1 $ N $ D-1 are AN(x) = dwN-i(x) and describe massless 
U(l) gauge antisymmetric tensor fields wµ,•••µN_, of rank N - 1. In the special cases N = D and 
N = 0 the equations have trivial solutions A0(x) = ccnst and Av(x) = dx1 • • -dxD x const. 

For odd dimensions the projectors (4.12a) and (4.12b) have a different form and one has to mul­
tiply both sides of ( 4.22) by the covariant operators P. .. and P. ... The resulting equations on the dif­
ferential forms AN(x) and AN(x) are completely analogous to (4.23a) and (4.23b). The difference 
from the above case is manifested as PJ,--•µNPµN+i·••µo =/ 0 or, equivalently, {Aµ,•••µNIAµN+1·••µo} =/ 
0. Nevertheless, the difference disappears after one defines the forms B~) ( x) = AN±i D(~-•l * Av-N 

(±) - D(D-1) -
for even N and BN (x) =AN± i , * Av-N for odd N and gets the equations 

(B~llBi7l} = 0, for N =/ M 

and 
dB~> = 0, d * B~> = 0, 0 $ N $ D (4.24) 

In the special case N = Z, the appearance of two fields B~±>(x) corresponds to two projectors 
(4.12d) onto twin-algebras. Under parity transformations Xµ-> -xµ the fields B~>(x) turn into 
s}J>(x). We conclude that equations (4.23b) and (4.24) coincide and have the same solutions. 

Thus, for P = I and matrices tpµ given by the Green anzatz the physical space of the R = 2 
parasupersymmetric particle is described by massless totally antisymmetric tensor U(l) gauge 
fields. 

4.5.2. Irreducible representation 

The second case considered below corresponds to the opposite limit when the operators tpµ belong 
to the irreps of the Duffin-Kemmer algebra and projector P is defined as 

P =PA= IIA + IIv-1-A (4.25) 

where A labels one of the irreps in (4.9a) and (4.9b). The condition on the Lagrange multipliers 
(3.4) looks now like 

.,\ = (ITA + IIv-1-A).,\'PA = .,\(ITv-A + ITi+A)(ITA + IIv-1-A) 

We conclude that .,\ =/ 0 for D - A = A or 1 + A = D - 1 - A and in both cases 

.,\ = ITv12A = .,\Ilv12 (4.26) 

Two consequences follow from this relation. At first, for odd coordinates tpµ of the spinning 
particle to be defined in the irreps of the Duffin-Kemmer algebra the dimension of space-time 
must be even6 and, at second, the irreps is uniquely fixed to be A= f. 

6This is why the twin-algebras was not included in ( 4.25) 
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Comparing (4.20) and (4.26) we find that the set s in (4.21) contains the only element s = 
{a=¥}, and equations (4.21) and (3.5) on the wave function reduce to 

Ql1Q_1I0) = QIIQIO) = 0, ID)= (IIQ_l + IlQ)I0) 
2 2 :l 2 

( 4.27) 

For D = 2Z we use identities QI1Q_1 = lIQ Q and QIIQ = lIQ+I Q, the explicit form of the 
2 2 2 2 

projectors (4.lla) and (4.llb) and charges (Q = (p • tf,) and Q = (p • ~)) to rewrite the above 
relations as 

P,., ... ,.z(P · t/J)I0) = P,., ... ,.z_, (p ·~)IO)= 0, for even Z 

and 
P,., ... ,.z(P · t/J)I0) = P,., ... ,.z+• (p · ~)10) = 0, for odd Z 

Moreover, the last relation in (4.27) implies that the wave function I0) is described by two anti­
symmetric tensor fields satisfying 

Pµz+i A,., ... µzµz+i (p) = 0, PµzA,., ___ ,.z(p) = 0, for even Z 

and 
P[µzAµ, ... µz_,µz_,](P) = 0, P[µz+i A,., ... µz](P) = 0, for odd Z 

In the coordinate representation these two sets of equations have the same form if for even Z one 
replaces the fields A,., ... ,.N(p) by the dual fields 

dAz(x) = 0, dAz-1(x) = 0 ( 4.28) 

where AN(x) ~ mA,., ... ,.N(x)dx"' ... dx"N are differential N-forms. 
Equations of motion ( 4.28) possess gauge invariance. They are unchanged under the abelian 

transformations of fields 

AN(x)-+ AN(x) + dxN-1(x), or A,., ... ,.Ax)-+ A,., ... ,.N(x) + q,.,x,., ... ,.N](x) ( 4.29a) 

where N = Z or N = Z - 1 and x,., ... ,.N(x) is an arbitrary totally antisymmetric field. To 
understand the origin of gauge invariance, recall the property (4.1) of dual operators QQ = 0. 
Then, it can be easily seen that the equations of motion ( 4.27) are invariant under transformations 

ID) -+ ID)+ (IIzQ + Ilz-1 Q)lx) (4.29b) 

with Ix) being an arbitrary state. The relations (4.29a) and (4.29b) turn into each other after 
decomposition of the state Ix) over the antisymmetric tensor fields Xz-i(x) and xz-2 (x). 

The gauge ambiguity of the wave function analogous to (4.29a) and (4.29b) did not appear 
in the previous case. This effect is one of the manifestation of the restrictions one puts on the 
representation space of the operators tf,,,. 

Thus, the physical subspace of the parasupersymmetric spinning particle whose spinning co­
ordinates belong to the irreps of the Duffin-Kemmer algebra is described by two antisymmetric 
tensor fields satisfying ( 4.28). In the performed consideration relativistic quantum mechanics of 
the spinning particle was the starting point. After the second quantization one deals with quan­
tum fields and treats the wave function of spinning particle as asymptotic state of quantum fields. 
The natural question arises: what kind of action for the fields A,., ... µz(x) and A,., ... µz_,(x) allows 
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one to justify equations of motion (4.28) and gauge invariance (4.29a). It is remarkable that such 
an action exists (19, 20) 

S = J d0 x c:"1·••µzµz+il'z+>A,., ... ,.2 (x)8,. 2 +,A,. 2 +,-·-"D(x) = kv Az(x)dAz-1(x) ( 4.30) 

It is unique and coincides with the action of the D = 2Z-dimensional topological field theory (21). 
Of course, it is possible to propose another form of actions by adding the corresponding Lagrange 
multipliers to ensure equations of motion ( 4.28). But in that case the multipliers will _be in thier 
turn by additional antisymmetric tensor fields. The action (4.30) does not require introduction of 
any auxiliary fields and is minimal and unique in that sense. 

We conclude that after quantization of the parasupersymmetric spinning particle propagating 
in the representation space of the irreps of the Duffin-Kemmer algebra the physical subspace is 
described by topological gauge fields. 

4.5.3. Generalizations to arbitrary representations 

We have considered above only two extreme cases of the representation space of the Duffin-Kemmer 
algebra: P = I and P =PA.To understand what will occur for an arbjtrary choice of projector P 
in (3.3), one compares equations of motion (4.23b) and (4.28) for the fields Az(x) and Az-1(x). 
Note that after transition from P = PA to P = I when the representation space of matrices 
tf,,. is enlarged, the number of restrictions on these fields increases. Two additional equations 
d * Az(x) = d * Az_1(x) = 0 appear that can be considered as conditions fixing gauge ambiguity 
(4.29a). It is natural that for an arbitrary projector P ,/Ione encounters intermediate situation 
when the resulting set of equations on the antisymmetric tensor fields is a subset of equations 
(4.23b). Among them one can find pairs of equations dAN(x) = d * AN(x) = 0 and single ones 
dAN(x) = 0 (or d * AN(x) = 0). In the former case AN(x) is the strength of U(l) connection 
AN(x) = dwN-i(x) but in the latter AN(x) is a topological gauge field. The explicit realization 
of this scheme depends on the specific form of the projector P or, equivalently, on the set S of 
irreps. 

Consider as an example the D = 3-dimensional spinning particle with the projector P defined 
as 

P =Po+ pj+l + pj-l = Ilo + II1 + II2 

or S = {o,1+,1-J, S' = {0,1,2} ands= {1,2} in (4.19) and (4.20). Solving (4.21) we get that 
the wave function of particle obeys the equations 

P,.,,.,(p. t/J)I0) = f>,,, (p. t/J)I0) = 0, P,.11,,,.,(p. tf)IO) = P,,11,,(p. il·)IO) = 0 

or, applying (4.14) and (4.15) 

p,.,A,.,,.,,.,(p) = 0, p,.,A,.,,.,(p) = P[,.,A,,11,,](P) = 0, P[,,,A,.,1(p) = 0 

Thus, the physical subspace of the spinning particle is described by the strength tensor 1\,,11, 2 (7,) 
and abelian Chem-Simons gauge field A,,, (p). 
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5. Conclusions 

We have considered the relativistic spinning particle with the action invariant under reparametriza­
tions and local worldline parasupersymmetric transformations. The corresponding symmetry al­
gebra being polynomial contains a set of nontrivial irreps. It is the property that allows for 
parasupersymmetric particle to have properties different from supersymmetric particle. 

The physical space of the massless spinning particle possessing parasupersymmetry of order 
R was defined in (2.9), (3.4) and (3.5). For R = 2 the symmetry algebra reduces to the Duffin­
Kemmer algebra. Using properties of the irreps of this algebra we found that the wave function of 
the massless particle is described by the strength tensors of U(l) antisymmetric gauge fields and 
topological gauge fields. Generalization to the (D - 1)-dimensional massive particle is achieved 
by putting the additional constraint (2.18) on the wave function of D-dimensional massless 
particle, or in the coordinate representation 8/Dxnl0} = iMI0}. It is convenient to decompose 
the antisymmetric tensor field Aµ,·••µN(x) withµ;= 1, ... , D -1, D into two antisymmetric fields 
B,,, ... ,,N(x) = A,,, .. .,.N and B,,, ... ,,N_,(x) = Ana,·•·<>N-, with a;= 1, ... , D-1. If the field Aµ,••·l'N(x) 
obeys dAN = d * AN = 0, then for massive particle the above relations after imposing of (2.18) 
are replaced by dBN-1 - iMBN = 0, d * BN - (-)NiM * BN-1 = 0 and BN(x) is the strength 
of the massive antisymmetric tensor field BN-i(x). The topological gauge field AN(x) satisfying 
dAN(x) = 0 turns into dBN-i(x) - iM BN(x) = 0. 

To define the wave function of the spinning particle for an arbitrary order R one has to specify 
the projector onto representation of parasupersymmetry algebra in (3.3). For R > 2 we have no 
detailed description of the irreps analogous to that for the Duffin-Kemmer algebra. If one chooses 
the trivial projector 'P = I or uses the Green anzatz (3.1), then the wave function coincides with 
the wave function of N = R extended supersymmetric particle found in (8, 9, 10]. Nevertheless, 
there is a possibility to define the nontrivial projector as follows. The Green anzatz originates from 
the direct product of R spinor irreps. We can define the "modified" Green anzatz by forming the 
direct product of R/2 reducible representations of the Duffin-Kemmer algebra. The replacement 
of ,1") operators iri (3.1) by operators tpµ from (3.3) corresponds to the nontrivial projector 'P =/ I. 
The resulting wave function of the parasupersymmetric spinning particle of order R is equal to 
the product of R/2 wave functions of R = 2 parasupersymmetric particles. · 

Acknowledgements 

I would like to thank A.B.Govorkov, A.P.Isaev, S.Penati and V.P.Spiridonov for numerous helpful 
discussions. I am also grateful to G.Marchesini and A.Di Giacomo for warm hospitality at Parma 
and Pisa Universities. 

rn 

References 

[1] V.A.Rubakov and V.P.Spiridonov, Mod. Phys. Lett. A3 (1988) 1337. 

[2] S.Durand and L.Vinet, Mod. Phys. Lett. A4 (1989) 2519; 
J.Beckers and N.Debergh, Mod. Phys. Lett. A4 (1989) 1209; 
S.Durand, R.Floreanini, M.Mayrand and L.Vinet, Phys. Lett. 223B (1989) 158. 

[3] V.P.Spiridonov, Dynamical parasupersymmetries in quantum systems, in Proc. of the Int. 
Seminar "Quarks-90", Telavi, USSR, May 1990. Eds. A.N.Tavkhelidze et al.( World Scien­
tific). 

[4] F.A.Berezin and M.S.Marinov, Ann. Phys. (NY) 104 (1977) 336. 

[5] L.Brink, P.Di Vecchia and P.Howe, Phys. Lett. 65B (1976) 471. 

[6] F.Ravndal, Phys. Rev. D21 (1980) 2823; 
E.Sokatchev, Class. Quantum Grav. 4 (1987) 237; 
V.De Alfaro, S.Fubini and G.Furlan, Nucl. Phys. B296 (1988) 402. 

[7] M.Henneaux and C.Teitclboim, Ann. Phys. (NY) 143 (1982) 127. 

[8] V.D.Gershun and VJ.Tkach, Pis'ma Zh. Eksp. Teor. Fiz. 29 (1979) 320; 
P.Howe, S.Penati, M.Pernici and P.Townsen<l, Phys. Lett. 215B (1988) 555. 

[9] P.Howe, S.Penati, M.Pernici and P.Townsend, Class. Quantum Grav. 6 (1989) 1125. 

[10] R.Marnelius and U.Martensson, Nucl. Phys. B321 (1989) 185. 

[11] Y.Ohnuki and S.Kamefuchi, Quantum Field Theory and Parastatistics, (Springer-Verlag, 
1982). 

[12] H.J.Bhabha, Rev. Mod. Phys. 17 (1945) 200. 

[13] R.J.Duffin, Phys. Rev. 54 (1938) 905; 
N.Kemmer, Proc. Roy. Soc.Al 73 (1939) 91. 

[14] I.Fujiwara, Prog. Theor. Phys. 10 (1953) 589. 

[15] J_>.S.Howe and P.K.Townsend, preprint CERN/Til-5519/89 (1989). 

[16] Q.Lin and G.Ni, Phys. Rev. D41 (1990) 1307; 
M.Pierri and V.O.Rivelles, Phys. Lett. 251B (1990) 421. 

[17] II.Umezawa, Quantum Field Theory (North-Holland P.C., 1956). 

[18] A.B.Govorkov, Sov. J. Part. Nucl. 14 (1983) 520. 

[i9] V.I.Ogievetsky and I.V.Polubarinov, Yad. Fiz. 4 (1968) 210; 
S.Deser, Phys. Rev. 178 (1969) 1931; 
K.Hayashi, Phys. Lett. 448 (1973) 497; 
J.Kalb and P.Ramond, Phys. Rev. D9 (1974) 2273; 
Y.Nambu, Phys. Rept. 23 (1976) 250; 
D.Z.Freedman and P.K.Townsend, Nucl. Phys. Bl77 (1981) 282. 

19 



[20] J.Thierry-Mieg and L.Baulieu, Nucl. Phys. B228 (1983) 259; 
S.P.de Alwis, M.T.Grisaru and L.Mezincescu, Phys. Lett. 190B (1987) 22; 
Nucl. Phys. B303 (1987) 57; 
A.H.Diaz, Phys. Lett. 203B (1988) 408; 
J.Thierry-Mieg, Nucl. Phys. B335 (1990) 334. 

[21] G.T.Horowitz, Comm. Math. Phys. 125 (1989) 417; 
G.T.Horowitz and M.Srednicki, Comm. Math. Phys. 130 (1990) 83; 
M.Blau and G.Thompson, preprint SISSA 39-FM/89 (1989). 

Received by Publishing Department 
on April 10, 1991. 

20 

I 

i 
! 

,. ) 

', 

\ 
t· 
l 

\ 
·/· 
\ ,. 
1 

,( 

t. 

KopYeMCK"1H r.n. 
napacynepc"1MMeTp"1YHaR cn1,1HoeaR YacT1,14a 1,1 Tononor1,1yecK1,1e 
Kan1,16pOBOYHble non.R 

E2-91-157 

npoB.OA"1TCR nepB"1YHOe KBaHTOBam,e 0-MepHOH penRT"18"1CTCKOH Cn"1HOBOH Ya­
CT"14bl, 11e'1CTB"1e KOTOpOH "1HBap1,1aHTHO OTHOC"1l'enbHO penapaMeTp1,13a41,1'1 1,1 no- · 
KanbHblX napacynepC"1MMeTp"1YHblX npeo6pa3oeaHHH. CooTBeTCTBYIOUlall anre6pa C"1M­
MeTp"1"1 He RBnReTcll anre6po'1 n1,1_1,1 1,13eecrHa KaK non1,1HoM11anbHall anre6pa. Yc­
TaHoeneHo, YTO $A3"1YeCKOe no11npocTpaHCTBO YaCT"14bl On"1CblBaeTCll ~~H3opaM"1 
HanpR~eHHOCT"1 a6eneBblX aHT"1C"1MMeTp"1YHblX Kan1,16poaoYHblX none'i 1,1 TOn~nor1,1ye­
CK"1M"1 Kan1,16poBO'fHblM"1 nonRM"1. A6eneeo none YepHa-Cai;iMOHCa noRBnReTCll KaK 
BOnHoBaR $YHK4"1H Yacrn4b1 B o::::3-MepHOM npocTpaHCTBe. nonyYeHHble pe3ynbTaTbl 
0606111a10TCR Ha cny~ai;i MaCC"1BHOH napacynepC"1MMeTp"1YHOH cn"1HOBOi;i yacrn4bl. 

Pa6oTa Bbln6nHeHa e na6oparop1,11,1 reopeT11YeCKOH $"13"1K"1 OHRH. 

Coo6meHHe OfrbE?AHHetmoro !fHCTHTyTa ·11.nepHblX uccne,noaaHHH. )zy6Ha 1991 

Korchemsky G.P. 
Parasupersymmetric Spinning Particle and Topological 
Gauge Fi.elds 

• E2-91..: 157 

The first quantization of the 0-dimensional relativistic spinning 
particle with the action invariant ~nder reparamet~izations and local 
world] ine parasupersymmetric transformations is p'Elrfcirmed.' The correspon­
ding symmetry algebra is not of the Lie kind and -is known as a polynomial 
al_gebra. It is found that the phy.sical space of the massless particle is 
described by the ~trength tensors of abelian,anti,ymmetric fields arid 
topological gauge fields. In the special case D = 3 t.he abel ian Chern­
Simons gauge field appears as wave fu'nction of the particle. The gene­
ralization to a massive parasupersymmetric spinning particle are presented. 

The investigation has been performed at the Laboratory of Theoretical 
Physics, JINR.· 
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