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1 . INTRODUCTION 

Quasiclassics is the branch of quantum mechanics, which stu
dies the Schroedinger equation with a large and s~ooth enough 
potential. We shall write down this equation in the form 

(1.1) 

·2 . 2 
, ~ = I a I a X is the Laplace operator. Up to 

i i 

now one investigated mainly the one-dimensional quasiclassics, 
where one got a complete solution of the problem: one construc
ted the series 

00 

r/l(x, ,\) = ei~S(x) I An(x) ,\-n (1.2) 
n= 0 

for the function 0 if the point x does not belong to a vicinity 
of a turning point x0 (f(x0 ) = 0) 111• Main quasiclassical appro
ximation to the wave function in a vicinity of a turning point, 
t/J0 (x, .\), is determined by the Airy integral 111 • One also con
structed a series for t/J(x,i\) 

which gives a homogeneous (in powers of,\) decomposition of t/J 
in a vicinity of a turning point 121 and decompositions in in
verse powers of ,\ for the bound-state energies (see the work131 

and references therein). From the results on many-dimensional 
quasiclassics we shall mention interesting result:by Newell · 
concerning the density of energy levels in an arb~t.rary poten
tial 141. This result enables one to prove (in quasiclassical 
limit) the microcanonical distribution via methods of quantum 
mechanics 151 • 

' 1. Here we 
X=(X

1
,x

2
). 

shall study the two.:..dimensional qua~iclassics: 
We shall study the potential V(x) 

2 
,\ f(x) = 2m(E -V(x)) 

-
0-1.~.i,r.i:•. wif:l l:Hcn.rtyv 1· 

' U}l".J,!ii.J' >.; tll C !l?,JWill'lUDO ' 
~ _ _E~1Sffi-!(~_T;Hi_ _ 

(1.3) 



which does w~akly depend on the azimuthal angle¢: 

V ( x) = V0 ( r) H V1 ( r, ¢) , x 1 = r cos ¢, x 2 = rsin ¢, 

here c is a small parameter. The change of variables 
gives: 

i a 
/1 = r ar 

a 1 
r-· + --

ar r2 

·2 a 
,-

a ¢2 

1 a2 a2 
-(- + -). 

. r2 a·p2 a¢2 

Thus our Schroedinger equation assumes the form 

· 2 · 2 a a 2 [ -· + - + ,\ T/ (p, ¢, c)] t/J = 0, 
ap 2 a¢2 

T/(P, ¢, c) T/o (p) H 'T/ 1 ( p' <p) ' 

111 (p, ¢ + 2it) = T/1 (p, ¢). · 

(1.4) 

p = lnr 

(1.5) 

(1.6) 

(1.7) 

If ,the point p , ¢ does not belong to a vicinity of turning cur
ve (this curve is not determined by the equation 
T/(P, ¢, d = 0), one has again representation (1.2) of the 
function W• Here 

2 
(vS(·p, ¢)) =·11(p, ¢, d, (1.8) 

V(A
0

VS) +(VA0)VS = 0, 
(L8a) 

and so on; V = (iJ/iJp, iJ/iJ¢). In one dimension (there is no ¢) 
one solves eq.(1.8) trivially 111 . But in two dimensions this 
equation is nontrivial. 

1.1. In this work we shall construct some series in powers 
of c which represent a solution S(p, ¢) of eq. (1.8). 

1.2~ Let us first consider a radially symmetric potential: 

T/ (p, '¢) = 0. Then~ 1 . : ·' 

S(p, ¢) = R(p) + w¢ (1.9) 

where the function R satisfies the equation 

dR. (1.10) ~ = ±C-T/ (p) _ rue) 112 0 • 

1.2.1. We shall suppose the continuous function T/o(p) - w
2

, 
w2< w~, to be positive within some interval 

2 

4" 

~ 
i 
l 

t 
' i' 

.\ 

a(<u) < p < {3(w) (1.11) 

and to be negative outside of this interval. Two zeroes of the 
function 770 (p) - <u 2 will be denoted by a(w) and /3(<u), a(w) < 
</3(w) if w2<w~=m.~x77o<"p). - . 

1.3. We shall generalize eqs.(1.9) and (1.10), if the poten
tial depends on¢, as follows 

2 . 2 1/2 
VS=±(a(f) -U(p,¢,d) VU(p,¢,d +V<ll(p,¢,E), (1.12) 
U(p,¢+211,d =D(p, ¢,d, see also eq.(1.18). · 
Here functions U and <ll and their first derivatives are conti
nuous for all real values of p and ¢, a ( c) is a constant, which 
depends only on f. Equation (1.8) has to be satisfied for both 
signs± in eq.(1.12). Thus, one has 

VUV<ll = 0. (1.13) 

One can satisfy eq. ( 1. 13), setting 

-
V ·<ti = M V U , M (p, ¢ + 211, d "' M (p, ¢ , d . ( 1.14) 

wherev =(-a/a¢, a/a•p) and function M:aM(p, ¢, d satisfies the 
equation 

V(MVU)=0 (1.15) 
a a¢ a a<1> : 

which follows from the condition ilp ( a<1) = al aj( see eq. ( 1. 14)). 
Thus we have reduced our problem to that of constructing 

the functions M(p, ¢, d , U(p, ¢, d and the constant a(d: 

2 U = U0 (p) + cU 1(p, ¢) + c Ulp, ¢) + ..• (1.16a) 

<,) 2 
M = ---+ cM1(p, ¢) + f M2(p, ¢) 

Uo(·p) 
+ ••• (1.16b) 

2 
a= a0 + fa 

1 
+ c a2+ .•• (1. 16c) 

i 
for the choice of the function M0 , M0 = "'/ U ~ ( p) see Sec. 2. 

1.3.1. In Sec.2 we shall write down equations ~or determi
nation of the functions Un and Mn,n = 0,1,2, ••. T~ese equa
tions determine the functions Un and Mn uniquely for any given 
value of a. n 
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1.3.2. ThJ condition that then-th order correction does 
not change the value of w*, eq. (1.16b), enables one to deter
mine the, value of an • To prove this statement, we shall intro
duce decompositions 

Un('P, ¢) = I Unk (-p) eik¢ • 
k 

M (-p, ¢) = I M (p) eik¢ 
n k nk 

anq require 

'<ll(p, ¢+217) -<ll(p, ¢) =217w, 

Equations (1.14) and (1.18) give 

217 
B(p, a) = I M(p, ¢, £) ciU(p, ¢, f) ·d¢ 

cip 
0 

(1.17a) 

(1.17b) 

. (1.18) 

217w. (1.19) 

It is easy to see that it follows from eqs.(1.17) and (1.15) 
that 

dB(p, a) = O. 

dp 

The procedure of Sec.2 shows that the functions 

217 n ci,Un_.e(P, ¢_) 
Bn(-p, a)= J I Me (p, ¢) ----,d¢ 

O f=O dp 

(1.20) 

n = 1,2, ••• , depend on an linearly (see eq.(2.3)-(2.6)). This 
fact, -eq. ( 1. 20) and the representation 

B(p, a)= I Bn(p, a) l 
0 

prove that a) Bn(P, a) does not depend on p and b) it can be 
eliminated by appropriately choosing an, n = 1,2, •.. Then 
eqs.(1.18)-and (1.19) would be satisfied. 

*Quantityw is determined via the condition (1.18). 
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1.4. When expressing Mn in terms of U0, •.• Un-l' Un, 
M

0
, ••• M _, a

0
, a , ••• an via eq.(2.13), item 2.2, we use, 

as a matfe} of facf, the condition that w is not too small. 
Sec.3 contains the extension of the Section's 2 considera

tion to the case of small values of w. 
1.5. Sec.4 contains the solution to the Kramers - Airy prob

lem (i.e. the consideration of the wave function in a vicinity 
of the turning curve). Our solution is not complete for we are 
not able to prove the property C(p, ¢ + 217) = C(p, ¢) of ·the 
function C (see eq.(4.3)). Note that the turning curve is deter

.,, . mined by equation U (p, ¢, £) = ±a • 

2. THE c-DECOMPOSITIONS, w » V-; 

Equations (1.8), (1.12) and (1.14) give 

· · 2 2 2 2 , · 
[a(f) - u + M ](rU) = 11(p, ¢, f). (2.1) 

Substituting here decompositions (1.16) one gets the equations 

2 2 2 , 2 _ _ ~ dU O (p) 
[ a

0 
- U

0 
+ M

0 
1 U0 (p) = T/ (p), u (p) == __ _ 

o o dp 

2 
LU + ( U

0
') M 

0
M = F , n = 1 , 2 , 3 , •••• n n n 

Here· 

L = (a~ - U~) u~ :i + M:U~ {p - U/U~{ • 

F1 =111(p, ¢)/2-a0 a1(U~)
2 

,_ 

· 2 2 2 ,2 2 2 2 
F2 =-(a0 a 2 +a 1 /2-U1/2-Mif2) (U0 ) -(a0 -U0 ) (VU1 ) /2 

au - lb' .::..::J2(a0 a 1 - u0 U1 + M0 M1), 
ap 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

etc. The functions F n ( as well as functions T n in eq. ( 2. 8)) 
depend on U0 , U1 , ••• Un:_1 , M0 ,M 1, ••• Mn-l and a0 , a 1 , ••• an-t' 
a • 

n 
Substitution of decompositions (1.16) into eq.(1.14) gives 

L (M
0

U~(p)) = 0, ap 

5 

(2. 7) 



a au . .a a_un .a , 
~ (M 2.!l.) + - (M - ) + - (M U ) = T , n - 1 , 2, 3, ••• , ap . 0 ap a¢ 0 a¢ ap n O n 

T1 =0, 

T2 = -\?(Ml \7 Ul) • 

etc. 
2. It follows from eq. (2. 7) that 

M
0 

=c,,/U~ 

. (2.8) 

(2.9) 

(2.10) , 
/, 

;\ 
~ (2.11) \ 

s·ee eq.(l.16b), here c,, is a constant. Then eq.(2.2) reduces·· 
to the equation 

2 2 , 2 2 
(ao - Uo)(Uo) = 71 o(P) - c,, (2.12) 

.which uniquely determines the bounded together with its first 
derivative function Uo(p) and constant ao, a0·> 0 (if max770 (p) > 
>c,,2), U~ > 0. One has P 

U0 (a("')) = - a 0 , U0 ({3(w)) = a 0 (2.12a) 

see item 1.2.1. and eq.(2.12). Equation (2.11) enables one to 
rewrite eq.(2.3) as · 

LUn + wU0Mn = Fn. (2.13) 

Using this equation, one can eliminate Mn from eq.(2.8): 

·2 
. a 2 au 2 a Un 
~-(LU -~-2!.)-~--
ap n U' ap U' a..1..2 

0 0 'I' 

aF n 
-a;;-euTn• (2.14) 

Using decomposition (1.17) one reduces eq.(2.14) to the form 

Lk U nk= 

Here 

dFnk {-p). ~ w Tnk(p). -· dp 
(2.15) 1 

~ 

L 
d [ ( 2 2 U' d u ( , 21 l eu

2 

k = -· a - U ) ·- - U ) + -- • dp o o· o dp o o U, 
0 

1\ 
(2.16) ·~ 
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2.1. Consider the homogeneous equation 

L· v(p) =0 
k 

(2.17) 

in a vicinity of the point p = a(c,,) (or the point p = f3(w'j), 
see eq. (2.12a). Two independent solutions of eq.(2.17) behave 
as v 1 - canst and 

-1/2 
v

2
(p) -[U0 (p) +a] 

-1/2 
(or v 2 (-p) -[U0 (p) -a] ) • 

Let us denote by w a ( p) the solution of eq. ( 2 .17) which is 
regular at the point p = {3(w) (and, in general, has the sin-;
gularity -[p -a(w) r 112 at the point p = a(w))and w13(p) the 
solution which is regular at the. point p = a(eu) and has the 
singularity -[p-/3(w)r112 at the point p = /3(euli 

It follows from eqs:(2.17) and (2.16) that 

dwa dw/3 2 2 -3/2 , -1 . 
w(p) =--wa---w =Const(a0 -U0 ) (U0 ) • (2.18) 

dp tJ dp a 

2.2. Then the formula 

p 
-1 

Un/p) =Wa(-p) f wls) w(s) ds [ 
i 

d~k~2 -eu T nk(s)] -
ds 

a(eu) 
(2.19) 

P -1 dFnk(s) 
-w13(p) f wa( s) w(s) ds [--

f3(eu) ds 
.,.. c,,T nk(s)] 

I 
gives the solution to eq.(2.15) which is continuous together 
with its first two derivatives U~k and U~k at poipts p = a(eu) 
and p = f3(eu).Equation (2.3) enables one to express the func~ 
tion Mn (-p, ¢) in t~rms of the functions Uo, U 1, •• 1~ Un, Mo, M~, 
... Mn_ 1 and_ constants a 0 ~ a 1, ••• , an. · 1 

Thus, we have solved our problem: we have given the recur
rent procedure for the subsequent determinations bf the func-
tions Un, Mn, n = 0,1,2,... 1 

3. CONSIDERATION OF POSSIBILITY <u - ,ti 
The case of small values of <u is to be considered separa

tely (see item 1. 4). Here we shall consider the d1se 

eu = ·Y\/7. (3.1) 
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We shall use equations (1.16a), (1.16c) and equation 

1/2 3/2 
M=M £· +M E + ••• 

1/2 3/2 

(instead of eq. (1.16b)). 
One gets (cf.eqs.(2.2) and (2.3)) 

[a~- -U:(p)] [U;(p)]
2 

= r,
0
(p), 

L0U =Q·, n = 1,2, ..• n n 

here L 0 is the operator (2.4) with M0 = 0 and 
2 

Ql =Fl -[U;(p) Ml/2(p, ¢)] 12,· 

2 au1(·p, ¢) 2 
Q = F I -( U') M M - U' --- ( M ) , 

2 2 M = M =0 0 1/2 3/2 0 ap 112 
. 0 1 

etc. (see eqs.(2.5) and (2.6)). 
Equation (1.15) gives 

_L [ M (p, ¢) U
0
' (-p)] = R , n = 0, 1, 2, ••• , , 

ap n+½ n 

R
0 

=0, 

Rl =-v<M112<P, ¢)v 0 1<P, ¢)) • 

and·so on. 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3. 7) 

(3.8) 

(3.9) 

3.1. Equation (3.3) uniquely determines continuous together 
with its derivative function [U 0(p) ] 2, U'(p) •> 0 and constanta8~ 

. . . . . ' . 0 . 
Then eq:(3.7) with n = 0 and eq.(3.8) give 

M11lP, ¢) =a 112 (¢)/U~(p). (3.10) 

3.1.2. A solution to equation L0v=O is v(p)=[a~-U0
2(p)J-1:2 

thus equation 

2 2 -1/2 p 
U (p) = [ a - U ( p) ] ( q ( s, ¢) ds, 

n O O · n (3.11) 
P_ 

2 2 -1/2 -1 
q/s,¢)=[a0 -U0(s)] U0(s) Qn(s,¢), (3.12) 

8 

gives some solution to eq.(3.4). We shall choose p as the ro~ . + 
ots of equation -

Uo(p ) ± ao· (3.13) 

Then the function (3.11) is bounded at the point p =·p_. We 
need this function to be bounded also at the point ·p = P+. 

Then the condition 

P+ 

I q ( s , ¢) ds = O 
·p_ 

has to be fulfilled. 

(3.14) 

3.2. Let us first taken= 1. Equations (3.5), (3.10) and 
(3.12) show, that eq.(3.14) with n = 1 enables one to determi
ne the function [a1; 2 (¢)]~ given the function U0 (-p) and cons
tants a0 and a 1. 

For the function B(p, a), see eqs.(1.19), (1.20), one has 
this time expansion 

oo n+½ 
B ( p, a, E) = I B (p, a) £ 

n+½ 

Condition / 12 B112 = 2 rrw = 2rry,J-; allows one to express a1 in 
terms of y (item 1.3.2). 

· 3.2. Let us yet consider the case n = 2. Equation (3.7) 
with n = 1 and eq. (3. 9) determine the function M312 (p, ¢) ( up 
to the term 

aa12 (¢) / Uo(p) (3.15) 

given the functions Uo, U 1 and M112" Then eqs.(3.11), (3.6) 
give the function U2. Equation (3.14) with n = 2 enables one 
to determine the function a312( ¢). 

3.3. The procedure outlined can be continued to any value 
of n, n = 3,4, 

4. THE KRAMERS - AIRY PROBLEM 

First of all note that while in one dimension 

dS{x) -1/2 . -1/4 , 
· A

0
(x) = (---) - (x - x0) as x ➔- x 0, f(x0 ) = O, 

dx 
(4.1) 

9 



see111 , in two dimensions one has 

-1/4_ 1/4 
Ao<x)=Z D+Z G. (4.2) 

Here z = a2 - U(x)2 and the functions D and G are regular in 
the real p , <p plane if so is the function T/. Note also that 
eq. ( 1. 8a) enables one to construct the function Ao along the 
trajectory dx(t) /dt = V S(x(t)). 

4.1. Let us represent our function t/J in a vicinity of the 
turning curve in the form 

iM> t/1 = e A(U, ,\)C(p,</>) + ••• (4.3) 

The~ eq.(1.6) gives 

2 2 2 d2A 
,\[-(V<I>) +·r,]AC+(VU) -C+iM<llAC+ 

dU
2 

(4.4) 

2i,\AV<l>VC + 2 dAvuvc + ~u~c + ••• = O ~ =( V )2 • 
dU dU ' 

It follows from eqs.(1.8), (1.12) and (1.13) that r,-(v<Ii/ 
= (\7 U)2 (a:3 - U2 ). Let us determine the .function A by the equa
tion 

d 
2
A 2 2 2 

- + ,\ (a - U ) A 
dU 2 

0 (4.5) 

and consider, e.g., a vicinitl of the point U =a. The change 
of the variable U - a= y,\-21 reduces eq.(4.5) to the equa
tion 

4/3 d 2A 
,\ [---2ayA]=0 

dy2 
(4.6) 

whose solution is essentially the Airy function 111
• (See also 

eq.(4.2)). Thus we have taken account of terms Q(;\.
413

) in 
eq. (4.4). Terms O(;\.) give 

~ <I> C + 2\7 <Ii \7 C = 0 • (4. 7) 

This equation determines the function C along a curve U(p,¢)= 
= canst. 

We do not know how to prove that C (p, ¢ + 2 TT) = C (p, ¢). 
4.2 With this exception Sec.4 gives the complete solutio? 

of the lowest order (in powers of,\) Kramers - Airy problem 
1
~ 
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Note added in proof. Consideration of asymptotics of func
tions u lk (p) as p ... - oo shows that u lk - r -k Ck • It is impos
sible to eliminate all the constants Ck simultaneously. Thus~ 
contrary to the statement of the abstract, our f expansions 
are uniformly valid only outside of a small 0(£) - vicinity 
of the point r = 0. As for the constants an, n = 1,2, ••• , 
they are to be determined according to the procedure of item 
1.3.2. 
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BaJiaH,D;Irn · M .rr. ~ 3acTaBeHKO fl. r. 
K ABYMepHoH KBa3HKnaccnKe 

EZ-91-133 

Pac.cMaTpHBaeTCH· KBa3HKn'aCCHtJeCKHH npep;en 'p;ByMepHoro 
ypamreHHH Hlpep;nHrepa [-L\ /2 m + V ( x) - E ]it, (x) = 0. IToTeH:
unan V(x) = V(x_l.' x 2) 6epeTcH cna6o 3aBHc~~HM oT a311My..:._ 
TaJibHoro yrna V(x) = Vo(r) +.· EV1 (r, ¢) • 3,n;ecb E - ManbIH na-

_-paMeTp, I1ocTpoeHbl pHp;bl no· cTeneHHM E , npep;~TaBnHIO~He . 
_ !PYHKUHIO S (oHa onpep;eneHa ypaBHeHHeM (y' S) 2 ,= 2m[ E - V(x)]) 

BO BCeH o6nacTH O .< r .< oo , 0 .< cp < 2 7T , PaCCMOTpeHo IlOBe-
_p;eHHe. KBa3HKnacCHtJeCKOH BOnHOBOH cpyHKUHH.B OKpecTHOCTH 
· KPHBOH _noBopoTa. ·3ap;a qa' pa,cceHHHH ue paccMaTpHBaeTcH. 

Pa6oTa Bb!IlOnHeHa,B na6opaTopHH TeopeTHtJeCKOH qJH3HKH 
omrn. 

/ 

- Coo61llet1He 06-be,llHHelmoro HHCTHTyT8 R,llepHblX HCC1le,llOBaHHH • .Lly6aa 1991 

Balandin M.P., Zastavenko L.G~ 
Ori Two-Dimensional Qtiasiclassics 

We study quasiclassical limit of the two-dime~sio~al 
Schroedinger equation [ - ~/2m + V(x) ·- E] 1/,(x) = 0. Poten
tial V(x) . is supposed to weakly depend on the azimuthal · 
angle ¢: V(i) = V 0(r) + EV 1 (r, ¢) ·.·Here E is a ~mall para
meter. We have constructed-. the series. iri powers of· ( for 
the functibn S , which is determined ·by the quasiclassical 
master-equation (v S) ~ = · 2m[E - V(x)] • Our decompositions 
are uniformly valid in the whole plane of_two dimensions 
including the turning curve. We.have· considered also .the 

·behaviour of the quasiclassical wave function in a vicini
. ty of turni~g curve •. We. consider mainly the' bound state' 
problem .. , 

• The i.nvestigat
1

ionhas been performed at the Laboratory 
of. Theoretical Physics, JINR. • 
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