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1 . INTRODUCTION 

Interest in the string theory in hadronic physics is inspi
red by a striking analogy between the open string and the view 
of the me~ory as a quark-antiquark pair held together by a QCD 
flux tube' 1, • The string model gives the description of the 
hadron mass spectrum which is beyond the scope of the QCD pre
sent-day formalism and at the same time it reproduces basic 
predictions of the field approach 12 · 4~ The massless relativis
tic string is usually considered as the simplest dynamic basis 
of the string model of hadrons 151 • . 

The more realistic string model, in which the quarks carry 
a finite fraction of the energy-momentum of the hadron, led . 
. to the study of dynamics of the relativistic string with mas-·· 1 

ses at the ends' ( for a review, see111 ) • The equations of mo
tion for the quarks yield nonlinear boundary conditions, the-

,refore, even, the investigation of classical motions of the 
massive string proved to be an extremely complicated mathema
tical problem when the quark masses are different from zero. 
Until now no general solutions of this problem have been deri
ved. In the three-dimensional Mfnkowski space E~ only the exact 
solution to the equations of motion of the relativistic string 
with masses at the ends is known 16 , 71 • The solution decribes 
the rotation in the given plane of the straight-line string 
with massive ends moving along the he-lices. There are no trans
verse string excitations in this case, hence that solution gi
ves no corrections to the linearly rising potential between 
quarks. It is thus natural to consider other approaches to the 
investigation of the dynamics of relativistic string with point 
masses at the ends which may be more fruitful in finding new 
exact solutions. 

In papers 18, 91 a new formulation for the examination of 
classical histories of the relativistic string with massive 
ends was proposed in terms of geometric invariants of both the 
string world surface and world lines of the point masses ma, 
(a= 1,2) placed at the string ends. It was shown that the 
string variables in three dimensions are completely defined 
by constant curvatures ka =-y/m , where •Y is the string ten
sion, and the torsions Ka(r) ·, (a = 1,2) of the endpoint tra-
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jectories which are subjected to a system of differential equa
tions of the second order with a delayed argument that repre
sents retardation effects of the interaction of two point mas·
ses through the string. The above example of the straight-line 
string wit_h massive ends rotating in a given plane corresponds 
to a particular solution of this system with constant torsions 

·Ka(r) =Kao, (a= 1,2) when the string ends are moving along 
the helices. In this case the string history is a helicoid in 

. l 
the space E 

2 
• 

In the present paper a new exact solution is found in the 
framework of the geometric formulation for periodic torsions 
Ka(r +277) = Ka(·r) ; (a= 1,2) which are given by the Weier
strass function with a real period proportional to 277 and.a 
purely imaginary period 2~'. The string coordinates are expres
sed in terms of normal elliptic integrals and describe a more 
intricate motion than rotation of a stretched string in the 
given plane including its transverse vibrations. Just such mo
tions ought to be considered in the string model of hadrons 
for the calculation of the contributions to the linear beha
viour of the static interquark potential;at long distances/lL~ 

2. PRELIMINARIES 

/8 9/ . µ. · 
In refs. ' for the coordinates x (r,a) of the world sur-

face of the relativistic string with masses at the endpoints 
xµ.(r, aa), ua = (0 , 77) (a = 1,2) _and with the tension •Y in the 
Minkowski spac·e E~ the following representation 

t/; (u +) + 1/1 (u-) 
+µ. -µ. 

x (r, a)=-------- ± . 
µ. 2 U=r±a 

(2.1) 

was found. Here the isotropic vectors t/; : 2(u ±) = 0 are expanded 
in a constant basis which is formed by two isotropic vectors 
eC and e~ 2 eJ = ei = 0, (e0 e 1 ) = 1 and by the space-like vec
tor ef1., e = -1,where (e

0
e )= 0 = (e e

2
), as follows: 

2 2 2 1 
2 + r ( u ) µ re +) 1 --+e2 u • 

2 
1/1 ,µ(u+) = A [ e~ +ei 
+ .f'(u+) 

1/1'/.L(u-) = A [ ~ + eµ g
2
(u-:) + eµg(u-)]. 

- g' (ti7 0 1 2 2 

(2.2), 

where A is a constant and the functions f(r) and g(r) obey the 
system ·of two·ordinary differential equations with a delayed 
argument: 

2 ,_. 

J 
,11 

( 

m _!Lin_g_µl+ 2 f'(r) + g'(r) =-y\A\ \C(r)_ - g(!".2..L 
1 dr f(r) f(r)-g(r) \f'(r)g'(,) 

(2.3) 

and 
d l g'(r-rr) f'(r+rr)+g'(r-rr) 

m2- n---- + 2 --------
d r f'(r + rr) f(.-+ rr) - g(r- rr) 

(2.4) 
1 1 

if(r+77)-g(r-rr): 
-y1A1 

\lf'(r+ rr) g'(T-77) 

or replacing in ( 2. 4) argument r by r - TT the latter becomes 

m d l g' ( r - 2 TT) 
2 

f' ( r) + g' ( r - 2 TT) 
2- n + 

dr f'(r) f(r) -g(r -2rr) 
(2.4') 

, , jf(r) -g(r-277) i 
- Yi A I --------

v'f'(r) g'(r-277) 

The system (2.3) and (2.4) is invariant under the same Moebuis 
transformation of the functions f(r) and g(r) 

(2.5) af+ /3 ag+/3 
r ➔---, g ➔----, ao-{3y =1. 

,yf + o yg + o 
This invariance corresponds to the Lorentz invariance of the 
underlying string since the Lorentz transformations of vectors 
1/J'/.L(u±)and also, according to (2.2), the vectors of the iso-

+ . 
tropic basis eg, e~, e~ induce the transformations (2.5) of 
the functions f(u+) ana g(u-) . 

In the space E~ we shall describe the world trajectories 
of the massive string endpoints in terms of two geometric in
varian,tsr curvature ka.and torsion Ka, (a= 1,2). As is 
known' 10· these characteristics uniquely define a curve in a 
three-dimensional space up to its position. In refs. 18

•
91 we 

demonstrated that the world lines xµ(r, aa), (a= 1,2) have 
constant curvatures 

k = -y/m a a 

and their torsions are given by the expressions 

K/r) = 

K ( r) 
2 

4f'(r) g'(r) 
. 2 

A[ f(r) - g( r)) 

4f'(r+ TT) g'(r- rr) 

A[ f( r + 77) - g( r - 77) ] 2 ' 

3 
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or 

K 2(r-rr) 
4C'(r) g'(r- 2rr) 

A[f(r) -g(r-2rr)] 2 
(2.8) 

invariant under the transformations (2.5). By using these for
mulas together with equations (2.3) and (2.4'), the functions 
f(r) and g(r) can be expressed in terms of the torsions K (r), 

'8 91 a (a = 1, 2) as • 

T 

D[f(r)] = D[ (\'AK
1

(7]) d7]] + 

k2 
_K l(r.) (1 - __ L_) -

2 K 
2( r) 
1 

d A 
2k - \'--

1 dr K (r) 
1 

2 
r K ( r - rr) k 

= D [ ( \i AK ( 1J - rr) d 7/] + 2 (1 - 2 ) + 

+2k
2

-£..v __ A 
dr K

2
(r-11) 

T 

D[g(r)] = D ( JyAK/7/) d7]] 

d A 
+ 2k - ,J--1 

dr K 
1
(r) 

2 K 2 ( r - rr) 
2 

Kl ( r) 
+ ---

2 

2 
k . 

(1 _ _J__) + 
2 

K (r) 
1 

2 
r K

2
(r + 11) k

2 
= D [ f-v' A K2 ( 1J -1 rr) d 7J ] + ---- ( 1 - --- ) 

2 2 
K (r+ rr) 

2 

d A 
-2k - ,/--

2dr K (r+rr) 
2 

Here D(f(r)] stands for the Schwarz derivative115• 101 

D[f(r)] = f'"(r) _ !_ (~~(r) )2 

f'(r) f'(r) 

(2.9) 

(2.10) 

(2.11) 

which is invariant under the Moebius transformations (2.5). 
According to (2.1) and (2.2), it follows from (2.9) and (2.10) 
that the string coordinates xµ( r, a) are completely defined 

4 
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by the torsions KaCr) of the world trajectories xµ(r,a) 
of massive string endpoints. a 

Thus, in the framework of the geometrical method, the clas
sical dynamics of the relativistic string with massive ends 
in the three-dimensional Minkowski space is described by two 
differential equations of second order with delayed arguments 
(2.9) and (2.10). The system (2.9) and (2.10) is of fundamen
tal importance in searching for the world surface of the re
lativistic strin9 with massive ends in the ambient 3-dimensio
nal space-time E2 • Specifically, it.follows from these equa
tions that inside the interval O < r < 11 the torsions. Kl ( r) 
and K

2
(r) are arbitrary functions, and in order to uniquely 

specify a solution of eqs. (2.9) and (2.10), they should be 
fixed there as the initial data by the choice of the initial, 
position xµ (0, a) and initial velocity x µ (O, a) 0 < a < 11 of 
the string 18 , 91 . The continuation of these functions outside 
the interval O < r .< 11 is made by integrals of eqs. ( 2. 9) and 
(2.10) so that two conditions of smoothness at the points 0 
and rr for the continued functions K 

1
( r) and K

2
(r) - oo < r< oo 

may always be fulfilled with the four arbitrary integration 
constants. 

The simplest solutions to eqs.(2.9) and (2.10) are the cons
tant torsions K (r) = K

0 
, (.a= 1,2) when the string endpoints 

are moving alon: helicesa obeying the following conditions ,1 3 ,1 

k2 
K (1--1 ) 

01 K2 

k2 
K (1 - _2) 

02 /(2 
(2.12) 

01 02 

In thi.s case the functions f(r), g(r) and g(r-2rr) are related 
by the Moebius transformations 

g( r) 
a 1f(r) +/3 1 a

2
g(r-2rr) +/3 2 

,y f ( r) + o .y g ( r - 2 rr) + 8 
1 1 2 2 

(2.13) 

with constant coefficients aa, 13a, Ya, 8a that satisfy the nor
malization conditions a 8 -13 y = l, (a= 1,2) and two rela
tions originate from eqs~(2.3la~d (2.4'). The world surface 
xµ(r,a) of the relativistic string with massive ends turns out 
to be a helicoid in the 3-dimensional space-time16 - 81 • 

3. TRAJECTORIES WITH PERIODIC TORSIONS 

It turns out that the system (2.9)-(2.10) possesses smooth 
periodic solutions 
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K(r)=K(r+2tr), a=l,2. 
a a 

(3.1) 

In fact, with the use of (3.1) we may write the sum and diffe
rence of (2.9) and (2.10) in the following from 

r 2 
. K/r) k 1 

D[ (yAK1(71)d71] +--(1---) = 
2 K /r) 

2 
r K (r+tr) k2 

;.o[f,JAK ( 71 +tr)d11] + 2 (1-----), 
2 K(r+tr) 

2 

d A A 
-<k1v--+k2v---) = a. 
dr K 1(r) K

2
(r+1r) 

From (3.3) one finds the integral of motion 

k 1 
.___ + 

k2 

yK (r) VK (r ± tr) 
1 2 

= k2 • 

(3.2) 

(3.3) 

(3.4) 

where k
2 is an arbitrary positive constant. Note that relations 

(3.4) contain only one arbitrary constant k2 so that the smoo
thers of the curve K ( r) continued outside the interval O < r <" 
cannot be guaranteed.ain this case the equalities (3.1) and 
(3.4) may give rise to discontinuous solutions for K (r) over 
the whole real axis -oo < r <"" , which are not considered here. 

In the class of smooth functions we find for the torsions 
K Cr), a= 1,2, in the interval O < r <" , the following rep
resentation: 

1 

v K
1

(r) 

1 

yK(r±1T) 
2 

2 
k 

k 1 + k 2 1 p(r)I 

= k2 1p(r)I 

k 
1 

+ k 
2

1 p ( r) i 

(3.5) 

which makes (3.4) an identity. The real-valued function p(r) 
is defined by eqs.(3.1) and (3.2). Let us show that p(r) is pe
riodic p(r)= p(r+ 2tr), and can be extended smoothly to the 
whole real axis r. Inserting (3.5) into (3.2) we obtain the 
second-order differential equation for p(r): 

6 

. l 

j 
I ., 

l 
l 

p( T) p ,, ( T) - [ J.. + 
2 

k 2i p( T) i 1 p, 2 ( T ) + 

kl+ k2 lp(r): 

2 
l (p 2(r)-l)(k 1 +k 2\p(r)I) 

+-[----_;~-----
2 k4 

The substitution 

p' 2(r) = cp(p) 

4 2 k P ( r) (k 
1 

+ k 
2 

; p ( r) ! ) (3 • 6) 
] = o. 

k 1 + k 2: p ( r) i 

(3. 7) 

changes (3.6) to a first-order equation for the function ¢(pl 
and integrating the latter over p(r) we obtain 

2 4 Mp) . . 2 2 
cp(p)=k p (r)- --(k +k 1p(r)!) =W (p), 

4 1 2 · 
k 

(3.8) 

where 

2 t.{p) = p (r) - 2pp(r) + 1 (3.9) 

and p is the integration constant. Now the function p( r) is de
fined by eq.(3.7), the r.h.s. of which, eq.(3.8), is a polyno
mial of the fourth degree in p(r) with real-valued coeffici
ents and positive cp(p) = w 2(p) > 0 for real f(r). After put
ting p(r) = 0 eq.(3.8) becomes w

2
(0)= - ki/k <0, whence it 

follows that p(r) takes values either on the half-line p(r) > 0 
or on p(r) < 0. The latter in turn ensures the coefficients 
of polynomial <3.~) being signed. . 

As is known-' 12· , the solution of equation ( 3. 7) can be rep
resented in terms of elliptic functions with periods 2 wand 
2m'. To this end for simplicity we consider the case of equal 
masses at the string ends, m 1 = m2 when according to (26) k1 = 
= k2 and one puts k 4 = k 

1 
! q ! , where q is an arbitrary cons

tant, E = 2(1 +f(p)p] and q 2/4 + E > 4. In this case the el
liptic curve (3.8) has two mutually inverse real-valued posi
tive roots 

P1 
l+yl-4,\ 

l-yl-4,\ 

where 

A= -E+yE2+4q2 

2q2 

7 

-1 
Pz = P1 • 

O<A<!. 

(3.10) 



With the use of (3.10) the solution to eq.(3.7) may be repre
sented as follows: 

¢'(\pl) •. 
ip(r)!=P1+ ¢"(!Pi) 'ip\=P1 

4( ( r) - -- ] 

(3.11) 

24 

Here (r) = (r, g 2, g3 ) is the Weierstrass function with real 
period 2 wand pure imaginary period 2w', g 2 , g3 are real-va
lued invariants of the polynomial ( 3. 8), g 3 - 27 gf > 0. In the 
interval O < r < c,i , when e 1 < ( r) < oo, wh~re 

. k 2 
e1 = :f (c,i) = -- ( q + 2E) > 0 

12 \qi 

by virtue of e1 >[ ¢"(ip!)/24]1p[=Pi , the function (3.11) is 
smooth and monotonically decreasing from a maximum [p(O)\= p

1 
at point r = 0 down to a minimum i p(w) l = p2 = p11 at point 
r =wand has at most three points of inflection. In accordance 
with the properties of the Weierstrass function 112 " 141 , outsi
de the interval O < r < w the function I p ( r) i is continued to 
the period 2 w in an even manner 

I PC - r) I = I P ( r) 1. (3.12) 

and the whole real axis r periodically with period 2w 

\p(r+2w)i = \p(r)\, (3.13) 

The lines p1 and p = p71 are envelopes of curve (3 .11). 
Thus, formula (J.5) supplemented with (3.11), according to 

(3.12) and (3.31) defines the torsions Ka(r) (a= 1,2) as 
smooth 2w-periodic even functions 

Ka(r) =Ka(-r), Ka(r+2w) =Ka(r) (3.14) 

for all real values of the evolution parameter on the world 
sheet r • To fulfil equal-i ties (3. 1), the real half-period w of 
the function (3.11) is to be fixed atrr, which results in the 
following condition on the arbitrary constants p and q 

w 

00 

dt J----- "· (3.15) 

e1 v4t3-g}-g3 

8 
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;) 

'!1 
:) 

.' 

The properties of torsions, (3.14) and (3.15), together with 
the expressions for the metric tensor component of the string 
world surface 

• 2 . A 
x (r, u) =---,(a =1,2) 

a K ( r) 
a 

(3.16) 

presented in refs. /S, 91 imply 

. 2 • 2 • 2 • 2 
x (-r,u )=X (r,a ), x (r+2rr, a) =X (r, u ) • 

a a a . a (3.17) 

To complete this section, we note that when m1 = m2 the mo
tion of the string ends proceeds along similar curves with k1 = 
= k2 and K1(r) = 1</r). In fact, the function (3.11) satisfies 
simple rule of addition 

\p(r± rr)\ = 1 

Ip( T) I 
Substitution of (3.18) into expression 

k 2 
K

2
(r) =-

1 
-, [1 + \p(r) \] = 1<

1
(r), 

I qi 

whence with (3.5), it follows that 

• 2 • 2 x (r, 0) = x (r, rr). 

(3.5) for 

(3.18) 

1 
K

2
(r) gives 

(3.19) 

(3.20) 

This equality means equality of lengths of trajectories of the 
masses in equal intervals of r: 

r2 --- r 
• 2 

2 
'· 2 f 1 = J yx (r, O)dr = ( ,Jx (r, rr)dr 

r 
1 

r 
2 

f 2· 

4. DEFINITION OF THE STRING WORLD SURFACE 

We shall define the functions f(r)and g(r) from eqs.(2.9) 
and (2.10) taking into account that their r.h.s. are periodic 
owing to (3.1). Therefore the left-hand sides of these equa
tions, i.e. the Schwarz derivatives of the functions f(r) and 
g(r), are periodic as well, D(C(r)) = D(C(r + 2rr), D(g(r))= 
= D(g(r.+2rr)) whence, as explained hi refs. 115, 161 ,. it fol
lows that: 
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f(r+2rr)= af(r)+b 
cf(r) + d 

ag(r~; 
g ( r + 2 ") = cg ( r) + d ad - be = 1. 

(4.1) 

The coefficients of these Moebius transformations are taken 
the same in order that the torsions (2.7) and (2.8) obeyed the 
condition (3.1). Specifying b = c = 0 and a= d, from (4.1) we 
obtain the periodic functions f(r+2rr) =f(r) and g(r+2rr) =g(r) 
corresponding to the case of the massless string. 

In the general case, the real-values pairs of solutions 
(f(r), g(r)) and(f(r+ 211), g(r + 211))for.a + d ~ 2 have either 
one or two points of intersection given by the equation 

2 
F ( f) = cf ( r) + ( d - a ) f ( r) - b = 0 (4.2) 

whereas for a+ d < 2 they do not intersect at all. With (4.1) 
the expression (2.8) for KlT ± 11) assumes the form 

( 
4f' ( T) g' ( T) 

K
2 

T±11)=--------
A [ (af( r) + b) - g (T) (cf( r) + d) ] 

2 
(4.3) 

Expressing 4f'(r) g'(r) in terms of K
1 
(r) from formula (2. 7) 

and inserting it back into (4.3) with using the notation 
K 1(r)IKlir ± 11) = p2 (r) we arrive at the equation quadratic in 
g(T): 

p2(r)[f(r)-g(r)] 2 = [(af(r) +b) -g(r) (cf(r) +d)]
2
. (4.4) 

Two roots of this equation correspond to two different choices 
of the sign of_ function p(r) and can be written as a common 
expression 

[a-p(r))f(r) +b 
g(r) =-----

cf ( r) + [ d - p ( r) ] 
ad - be= 1; (4.5) 

whose coefficients, in contrast to the case of constant tor
sions (see formula (2.13)), depend on r and form a matrix with 
the determinant 

2 . 
~(p) =P (r) -(a+ d)p(r) +1. (4.6) 

Comparing (4.l)with (4.5) we get the equality 

( 
ag ( r - 217) + b [ a - p ( r) ]f ( r) + b 

g r) = ------ = --------' 
cg (r,- .... 2 17) + d cf ( r) + [ d - p ( r) ] 

whence it follows that 

10 

[ p- '( r) - d ]f ( r) + b ( 4 7) 
g(r-2rr) =-------- · 

cf(r) +[p-\r) -a] 

Substituting (4.5) and (4.7) into formulae (2.7) and (2.8), 
respectively, and changing K 1(r) and K (r ± rr) by the expres-
sions (3.5) we obtain the equation 2 

MP). ( ((r) 2 

F(f)) 
- p'(r) ( f'(r)) - (k 1 "1" k2I p(v)j) 2 

F(f) • 4 
4k 

0' 

that defines the two-valued function f'(r) /F(f(r))) 
of p(ir) and p'(r) as follows 

f' ( r) 

F(f(r)) 

-----------
p' ( r) \/p'2(r)+ ~~p)(k1+k2\p(r)!)2 

k 

2 ~(p) 

(4.8) 

in terms 

(4.9) 

Using (4.5), (4.7) and (4.9), it is easy to show that the 
boundary conditions (2.3) and (2.4) reproduce eqs.(3.7) and 
(3.8) with the constant p expressed in terms of the coeffici
ents of transformation (4.1). Inserting (4.5) and (4.7) into 
eqs.(2.3) and (2.4) we represent their sum and difference in 
the form 

2ddrln[Mp)-p'(r) ~l-4(p-p-1) f'(r) -2 p'(r) 
f'(r) F(f) p(r) 

2 

= (kl - k 
2

) / p ( r) I [ n( p) \ ( r) _ p' f' ( r) ] -1' ~ 
F (f) F(f) 

2 
p(r) [ p'(r) -2n(p) f'(r) 

F ( f) ] 

k
1

+k
2
!p(r)I 

v' n(p) f' 2(r') _ p'(r) J:i!J. 
F 2 (r) F(f) 

Substitution of (4.9) into (4.11) gives the equation 

, ,2 ~(p) 2 2 
±,Jp (r)+--(k +k IP(r)j) =-k p(r), 

k4 , 1 2 

(4.10) 

(4.11) 

(4.12) 

where the sign of the root is determined by that of the func
tion p(r) . After comparing (4.6) with (3.9) and identifying 

2p = a + d (4.13) 

the above is easily recognized as eq.(3.7). Upon substitution 
o~ (4.9) into eq.(4.10) the latter takes the form (3.6) and is 

11 



\ , 

also reduced to (3.7) and (3.8). Thus, the function p(r) with 
(4.13) is defined by the representation (3.11). 

Using (3.11) we now determine the functions f(,) and g(r) • 
Owing to (4.12) the expression (4.9) assumes the form 

f'(r) p'(r)-k 2 p(r) 
--- = (4.14) 
F(f) 2t-.(p) 

To express the function g(r) in terms of p(r) we consider the 
relationship 

g'(r) 
G( g) 

g, ( r) 

cl ( r) + ( d - a) g ( r ) - b . 
(4.15) 

Substitution of expressions (4.5) and (4.14) into (4.15) gives 

g' ( T) 
-- =-
G(g) 

p'(r) + k p(r) 

2t-.(p) 

Integrating (4.14) and (4.16) we get 

f(r) df 1 p(r) dp k 2 

( -- "' C +- ( -- - - J(r), 
F(f) 1 2 fl(p) 2 

g(r) d 1 p(r) d k2 
( _g_ = C -- ( _P_. - - J(r). 

G(g) 2 2 !i(p) 2 

(4.16) 

(4.17) 

Here the integrals are depending on the condition la+ d ! i 12 
performed in terms of the same elementary functions since the 
discrimipants of polynomials (4.2), (4.15), and (4.6) coincide, 
and the elliptic integral 

I p(r) I 
J(r) =- r 

pl 

dp.p (4.18) 
C. (p) w (p) 

with the use of ( 3. 11), is split into a sum of normal elliptic 
integrals of the first and third kind. Solutions (4.17) should 
be periodic up to the Moebius transformations (4.1). The lat-
ter may, depending on whether I a + d I > 2, I a + d I = 2 or 
I a+ d I < 2, always be reduced either to the hyperbolic, or 
parabolic, or elliptic form, respectively, by Moebius trans
formations (2.5) (see, e.g., 115,161 ). Then insertion of (4.17) 
into (4.1) with (3.13) leads to the constraint on arbitrary 
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constants (a+ d) and q: 

2 a+ d f(p) k 11(--, q) = R(a + d) 
2 

(4.19) 

in addition to (3.15). Here n is a real period of the integral 
(4.18) and a function R depends on the choice of parametriza
tion of the coefficients in (4.1). Finally, the coordinates 
x.11-(r, a) of the minimal surfaces of the relativistic string 
with massive ends are given via expressions (4.17) for the 
functions f(r) and g(r) by formulas (2.1) and (2.2). 

5. CONCLUSION 

In this paper it has been shown that the geometric approach 
to the dynamics of the relativistic string with massive ends 
when the string world sheet is completely defined by the geo
metric invariants of the world trajectories of the massive• 
ends of the string in the Minkowski space E! 18_' 91 allows us to 
derive both the well-kno~n exact solution describing the rota
tion in a given plane of the straight-line string with quarks 
at its ends/6 • 81 and a new exact solution that describes a more 
intricate motion of this system. In the first case the trajec
tories of motion of the massive endpoints turn· out to be heli
ces with the constant torsions and define the surface which is 
a helicoid in E!. It is worth mentioning that the helicoid is 
the only nontrivial minimal surface. belonging to the class of 
rules surfaces generated by a-moving straight lines in a spa
ce. A solution of that sort does not describe transverse exci
tations of the string and hence does not contribute to the li
near behaviour of the static potential between quarks at long 
distances. 

On the contrary, the new exact solution we have found here 
for massive string endpoints moving along the same world tra
jectories with the constant curvatures and periodic torsions 
describes a surface that is not a helicoid and therefore does 
not belong to the class of rules surfaces. Thus, the soluti?n 
in question describes transverse excitations of the string· 
and, according to ref. 1171 , radial motions of the massive 
points. 
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16ap!iawos 6~M'. { llep~Rt<OB A.M.J •. 
1 

• E2:91-i1a; 
·. Hosoe TOHHoe · peweH1.1e Knacc1.1ctecK1.1x ypaBHeH1,1~ .. , . 
. ABl.1lt<E!Hl,1R 'penArnBl.1CTCK0~ 'crpyHbl .c' MaCCl.1BHblMl.1-KOH4aMl.1 .. '...;,,"I,, 

/: I , •• , • : I; i , ,' , . , , " , : , , •, 
Knacc1.1ctecKaR Av1HaMv1Ka penRr1,1s1.1ctcKo~ crpyHbl~ cJ MaCC1.1BHblMl.1 1KOH4aMi.:i (fJopMY-i. 

n1,1pyeTCR. B TepMl.1HaX reoMeTpll!Yec\<~)( l.1HBap1,1aHTOB Ml.1pOBblX TpaeKTOpl.1~ -TOYeYHblX 
M~CC Ha _KoH4ax CTPYHbl ,: PacCMarp1.1111ae'[CR rpexMepHoe npocrpaHCTBO Mv1HKOBCK0ro 

I E2 .,'B 3!0~ qJOpMyni..1poBK8 nepeMeHHble CTPYHbl onpeAenHIOT~H Kpl,1~1,13~()~;1,1 Kpyye- ,' 
Hl.1eM, Ml.1POBblX rpaeKTOpl.1~ Mace,. AnR /KOTOPblX BblBEiAeHbl Al.1qJqlepeH4~anbHble ypae-· 

,'.HeHl,1~: c, 3ana3Ab!BakJU11,1Ml,1 apryMe~raM~'. YYI-IJb!~alOUlllle 3<flctl!KTbl 3ana3Ab1Ba'.H"1~ ~B3a"1-
MOAelllCTBIIIR Mace, CBR3aHl;jblX" CTPYH0"1. ,Xopowo, 1113BeCTHblvt np"1Mep apa111a10U1e11tCR ,, ,, 

· npHMon"1He~Ho'-i CTPYHbl 'c MacrnBHb1M1,1 KOH4aM1.1 ·coo:reercrayer, ctacrHoMy peweti1,110 
3Tl.1X ypaa~eHt-1~, _!<or Aa KpycteH111H rpae~rop-,~ noc'roHHHbl/ ~a~Ae_Ho _H_oaoe TOYHc;>e · 
peweH1.1e c,nepl.10Al.1YeCKl.1M"1 Kpy~eH"1HMl,1 Ml.1POBb!X rpaeKTOPlll"1 Mace, KOOPAIIIHaTbl / 

. cr'pyHbl B rroM cny'1ae BblpaH<atOTCH 3nn1,1nrn'.:ie\:Kl.1M"\ 11HTe~pa~aM"1, , 3aBl.1CH111i.1Ml,1, OT 
'KPYYeHl'1H 1111' npeACTaBnHIOT AB1'1H<eH11e crpyHbl C 1 nonepeYHblM"1 KoneliaHIIIHMIII.' ,' \ ' 

Pa~oTci Bblno
1
nH~H~ B na6opa~op1,11,1 Teoperi:icteC~O~ qJlll3111K"1 OH~l-1. , " ,, 

l \ ·-, ; /-·, l ,..._, 

' _,! 

C_oo6mem1e 061,e,1miiet1~oro HHCTHTYTa.11.qepHLIX HCcn;AOBaHHii, Jzy6iia 1991 
- , . ' ' ;, ' _, ,': '1 """ \'' . ' ' •\· 

Barbashov\B.M.' Chervyakpv A.
1M. , 

A,New ExacLSolu~ion to the ChssicalEquatjons 11 , ' 
of Motion-of the Relativistic ~tring with-Ma~sive Ends 

. i' I 
1 
I 

I . 1' ' \, • -. • • - ': ' /:; . ' ' \ .,--' , .-, , \ • 

.. The classical htstori~s·of the relativistic string with massive ends 
in space~time Ei are.examined in terms of geometric invarian~s of both.the/ 
string world surface and world~l ines,,af t!Je_ point, masses:'at the string · · 
ends. In bur formulation the,string 1 variables are 'completely.defined by , 
1J1eans of the constant curvatures and torsions,of .. the"endpoint trajectories· 

•• 
1whicn are subjected to a' syslem of differential 'equations witn a delayel' 
argumerif·that'incorporates retardation.effects ofthe interactjon of two 

,'point masses.ttjrough _the string. The-well-known example,/of_ the rotating 
straight-line string ~1th massive ends:correiponds to-~ particular solu- , 

, tion of this .,system for the constant torsioris{-A .ne\i exact sol,ufion for' ' 
· the periodic torsions cif _the world trajectories of ,the massive string ends 

I is found.' In this, case the, "string c'oordinates are 'represented in tq;•ms of 
' normal ·elliptic integrals and describe a more intricate motion includfog, 
··:it~'hans".'_,erse v_ibratfons than. rotatiol') of: ~_stretched1str,!1g in a given;. 1 ' 

, , p 1 arie. , \ _ . , .. · · 1<-•< , ,rJ · 
, The :1nvesti gati on· has, been,, performe~ at the. Laboratory of/ Theoret i ca 1 

'Physics; .JINR. > /, 
,. . - I';.·, .1. /,~-

\ . 
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