

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

E2-91-114

V.V.Dvoeglazov*, N.B.Skachkov

H⁺H⁻ INTERACTION UP TO HIGHER ORDERS OF PERTURBATION THEORY IN THE MODEL WITH TWO HIGGS DOUBLETS (SELF-ENERGY AND VERTEX DIAGRAMS)

*Saratov State University, Saratov, USSR

1991

The obtained results will be used as in $^{1,2/}$, for calculating the H^+H^- interaction amplitude with one-loop corrections included (see, in this context, the papers [20-22])

2. Two Higgs doublet model

The simplest extension of the Standard Model consists in the introduction of the second doublet of Higgs bosons

$$\Phi_{1} = \begin{pmatrix} \phi_{1}^{+} \\ \frac{\psi_{1} + \psi_{1} + i\chi_{1}}{\sqrt{2'}} \end{pmatrix}, \quad \Phi_{2} = \begin{pmatrix} \phi_{2}^{+} \\ \frac{\psi_{2} + \psi_{2} + i\chi_{2}}{\sqrt{2'}} \end{pmatrix}.$$
(2.1)

The Higgs sector of the Lagrangian has the following form /23/

$$\mathcal{L}_{H} = \mathcal{L}_{GH} + \mathcal{L}_{FH} - V(\Phi_{1}, \Phi_{2}). \quad (2.2)$$

It contains:

1) the terms that define the interaction of gauge fields with the Higgs bosons

$$\mathcal{L}_{GH} = |D_{\mu} \Phi_{1}|^{2} + |D_{\mu} \Phi_{2}|^{2}, \qquad (2.3)$$

where

$$D_{\mu} = \partial_{\mu} - \frac{iq}{2} \vec{e} \vec{W}_{\mu} - \frac{iq'}{2} B_{\mu}, \qquad (2.4)$$

is the covariant derivative for the $SU(2)_{L} \otimes U(1)$ group; 2) The terms that describe the fermion-Higgs interaction x

x) The variant when the fermions get their masses due to the interaction with the only one Higgs doublet is often used. In this case q_{11} is taken to be zero (see for details $^{24-26}$).

COBCAENCONLIS BUCTURY ERCHAME BECKEROUS -4 EMENHEDTEKA

Introduction

This work continues the previous papers /1,2/ devoted to the calculation of Higgs-Higgs interaction in the framework of the standard SU(2) O U(I) model with only one doublet of Higgs particles.

There exist a rather large number of different variants of the Standard Model (SM) extension. Among them there is the left-right symmetrical model $^{/3}$;4/; vector-like theories based on another type of gauge groups (see; for example, $^{/5}$;6/) and the model with the horizonthal interaction $^{/7/}$. Most of these models are characterized by enlarging of the Higgs sector; namely by introduction of two and even more Higgs boson doublets $^{/8-10/}$. The supersymmetric extension of the SM $^{/11;12/}$ requires also an introduction of at least two doublets of the scalars:

The interest in these models has grown up in connection with the problem of suppression of CP-violation in strong interactions /13/ and the problem of $\mathcal{B}^{\circ}\mathcal{B}^{\circ}$ -mixing /14/, because they give the alternative theoretical solution to the problem of electroweak violation of CP-invariance /10,15/. Let us mention in this connection that the measurements of the B-meson life-time /16/, the ratio $\mathcal{R} =$ $= \Gamma(\mathcal{B} - e \gamma \mathcal{U}) / \Gamma(\mathcal{B} - c e \gamma) /17/$ and of $\mathcal{E}'/\mathcal{E}'^{18/}$ indicate also possible difficulties in the Standard Model (the description of CP-violation). The theoretical value of the ratio \mathcal{E}'/\mathcal{E} is larger than that measured in these experiments /19/

 $\epsilon'/\epsilon = (-0.4 \pm 1.4 \pm 0.6) \cdot 10^{-3}$

The paper is organized as follows. In sect.2, the simplest extension of the Glashow - Weinberg - Salam model by introducing two doublets of scalar particles is considered. The renormalization scheme is discussed also here. In table 1 we present the values of the coupling constants (f^{HHV} , f^{HVV} , f^{3H} e.t.c.), derived within the Minimal (i.e. two-doublet) Supersymmetric extension of the Standard Model (MSSM). But in our calculations we try to avoid the concretization of the values of vertex constants. In sect.3, one-loop integrals that correspond to self-energy diagrams as well as $H^{\pm}W^{\pm}$ mixing are calculated. In Sect.4 the vertex diagrams are computed in a similar way.

© Объединенный институт ядерных исследований Дубна, 1991

 $\mathcal{L}_{FH} = -\sum_{I} g_{If} \left[f_{R} \phi_{I}^{+} f_{L} + f_{L} \phi_{I} f_{R} \right] - \sum_{P} g_{2f} \left[f_{R} \phi_{I}^{+} f_{L} + f_{L} \phi_{I} f_{R} \right] - \sum_{P} g_{2f} \left[f_{R} \phi_{I}^{+} f_{L} + f_{L} \phi_{I} f_{R} \right] - \sum_{P} g_{2f} \left[f_{R} \phi_{I}^{+} f_{L} + f_{L} \phi_{I} f_{R} \right] - \sum_{P} g_{2f} \left[f_{R} \phi_{I}^{+} f_{L} + f_{L} \phi_{I} f_{R} \right] - \sum_{P} g_{2f} \left[f_{R} \phi_{I}^{+} f_{L} + f_{L} \phi_{I} f_{R} \right] - \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{L} \phi_{I} f_{R} \right] - \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{L} \phi_{I} f_{R} \right] + \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{L} \phi_{I} f_{R} \right] - \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{L} \phi_{I} f_{R} \right] + \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{L} \phi_{I} f_{R} \right] + \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{L} \phi_{I} f_{R} \right] + \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{L} \phi_{I} f_{R} \right] + \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{L} \phi_{I} f_{R} \right] + \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{L} \phi_{I} f_{R} \right] + \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{L} \phi_{I} f_{R} \right] + \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{L} \phi_{I} f_{R} \right] + \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{L} \phi_{I} f_{R} \right] + \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{L} \phi_{I} f_{R} \right] + \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{L} \phi_{I} f_{R} \right] + \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{L} \phi_{I} f_{R} \right] + \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{L} \phi_{I} f_{R} \right] + \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{L} \phi_{I} f_{R} \right] + \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{L} \phi_{I} f_{R} \right] + \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{L} \phi_{I} f_{R} \right] + \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{L} \phi_{I} f_{R} \right] + \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{L} \phi_{I} f_{R} \right] + \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{L} \phi_{I} f_{R} \right] + \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{L} \phi_{I} f_{R} \right] + \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{L} \phi_{I} f_{R} \right] + \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{L} \phi_{I} f_{R} \right] + \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{L} \phi_{I} f_{R} \right] + \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{R} \phi_{I} f_{R} \right] + \sum_{P} g_{2f} \left[f_{R} \phi_{I} f_{R} + f_{R} \phi_{I} f_{R} \right] + \sum$ + $\overline{f}_L \Phi_2 f_R$, where \overline{f}_L and \overline{f}_R are left-handed fermion doublets and right-handed singlets; Self-interaction potential

$$\begin{split} V(\Phi_{1},\Phi_{2}) &= -\mu_{1}^{2} \Phi_{1}^{\dagger} \Phi_{1} - \mu_{2}^{2} \Phi_{2}^{\dagger} \Phi_{2} + \lambda_{1} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \lambda_{2} (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{2} (\Phi_{2}$$

Eight Higgses are used to attach masses to gauge fields through the mechanism of spontaneous symmetry breaking. Three Goldstone fields

$$G_{1}^{\dagger} = \phi_{1}^{\dagger} \cos \beta + \phi_{2}^{\dagger} \sin \beta , \qquad (2.7)$$

$$G_{1}^{\circ} = \sqrt{2} \left[\chi_{1} \cos \beta + \chi_{2} \sin \beta \right]$$

are absorbed to produce the longitudinal components and masses for W^{\pm} and Z° bozons.

The remaining 5 Higgses

$$H^{\pm} = -\phi_{\pm}^{\pm} \sin\beta + \phi_{\pm}^{\pm} \cos\beta ; H_{3}^{o} = \sqrt{2} \left[-\chi_{1} \sin\beta + \chi_{2} \cos\beta \right],$$

$$H_{1}^{o} = \sqrt{2} \left[\eta_{1} \cos\alpha + \eta_{2} \sin\alpha \right] ; H_{2}^{o} = \sqrt{2} \left[-\eta_{1} \sin\alpha + \eta_{2} \cos\alpha \right]$$

$$(2.8)$$

also get their masses.

The potential of the self-interaction (2.6) has the most general form of the renormalizable scalar potential that is consistent with the requirement of the discrete symmetry under the replacement $\Phi_1 \cdot \Phi_1$ and $\Phi_2 \rightarrow -\Phi_2$ (This requirement is imposed usually to suppress the flavour changing neutral currents, that are automatically suppressed in the SM).

The disadvantage of the model consists in the increase of the number of free parameters: the masses of 5 Higgs bosons, the angle

4

 \propto of mixing in the sector of neutral scalars and the angle β that is connected with the ratio of two vacuum expectation values \mathcal{V}_1 and \mathcal{V}_2 as follows: $tg \ \beta = \mathcal{V}_2/\mathcal{V}_1 \cdot$ In contrast to this the minimal two-doublet supersymmetric

In contrast to this the minimal two-doublet supersymmetric model has only two additional free parameters (tg_{β} and $M_{\mu t}$, for example) /11,12/. Table 1 contains the vertex constants that follows from the supersymmetry model and are used in our paper to concretize the values of $f^{\mu\mu\nu}$, $f^{\beta\mu}$ and other constants.

_		Table	1	
	9 ^{н±н±} н <u>;</u> +	$- y M_W(\cos(\beta-\alpha) - \frac{\cos 2\beta\cos(\beta+\alpha)}{2\cos^2\theta_W})$	¢ ^{H^r₩^tH₁}	$-\frac{4}{2}\sin(\alpha-\beta)$
	<i>^{Н^tн^tн}</i> ^s 1	$-gM_{iv}\left(\sin(\beta-\alpha)+\frac{\cos 2\beta\sin(\beta+\alpha)}{2\cos^2\theta_{iv}}\right)$	₽ ^{H™™1} 2 ₽	$-\frac{q}{2}\cos(\alpha-\beta)$
	Ĵ 34j	$-\frac{3gM_{\mp}}{2\cos\Theta_{W}}\cos 2x\cos(\beta+\alpha)$	рн ^т м ^т н ₃ 7	$-i\frac{q}{2}$
	+ +	ghiz (2sin 2x cos (B+a), 2cos & + sin (B+a) cos 2x)	<i>р^{нсн±}</i> 1	- gcos 20W 2cos UW
	р <i>н</i> ;гн <u></u> г +	- gMz (2sin 2x sin (B+a)- 2costin (- cos(p+a) cos 2x)	4 ^{H^rH^rA}	- e
	р зн <u>с</u> +	- 3g Mz cos 2x sin (p+x) 2cos Qw	<i>^{µµ}^cµ_s ‡</i>	$-\frac{ig\sin(\lambda-\beta)}{2\cos\theta_W}$
	р ^н і ² н ₃ 4	$\frac{gM_Z}{2\cos\theta_W}\cos 2\beta\cos(\beta+x)$	[]н <u>°</u> н _э °я 1	$-\frac{ig\cos(x-\beta)}{2\cos\theta_{W}}$
	рн <u></u> ген <u>;</u> †	- <u>9Mz</u> cos2psin(p+x) 2cos0w	рн [±] н [±] 2н ₁ 1	$-\frac{y^2}{2}\left(\cos^2(x-p)-\frac{\cos^2(x-cos^2p)}{2\cos^2\theta_W}\right)$
•	<i>рн,^с2w</i> +	$-gM_w\cos(\beta-\alpha)$	рн ^т нт <i>ң</i> ү 7	$-\frac{g^2}{2}tg^2\theta_W \sin 2\alpha\cos 2\beta$
	рн <u></u> ггж Т	$-gM_{W}\sin(\beta-\alpha)$	рн ^т н ^т 2н ₂ 7	$-\frac{q^2}{2}(\sin^2(\alpha-\beta)+\frac{\cos 2\alpha\cos 2\beta}{2\cos^2\Theta_W})$
	f H;27	$-\frac{\mathcal{GM}_{Z}}{\cos\theta_{W}}\cos(\beta-x)$	<i>∮⁴#</i> [±]	$-\frac{g^2\cos^2 2\beta}{2\cos^2 \theta_W}$
	рн <u>2</u> 2 2 Ғ	$-\frac{gM_z}{\cos\Theta_w}\sin(\beta-x)$	рн ^т н [±] 2н ³ Т	+ $\frac{q^2 \cos^2 2\beta}{4 \cos^2 \Theta_W}$

5

- 9% OHH 2W - eg cos 20 / / OHTHT27 $-\frac{g^2\cos^2\theta_W}{2\cos^2\theta_W}$ OH; H; ZW - 91/2 UHTHT2A - g2 2 cos^Ou $-2e^{2}$ DHida - gmusina 2MwsinB gmicosa 2MinicosB OH2°UU OH2°da - gmu cosx MusinB ma sin x рНзии igmuctas 15 Hidd 2 gmatgs X5 $\frac{g}{2\sqrt{5}} \int (m_{J} t_{g} \beta + m_{u} et_{g} \beta) \pm (m_{J} t_{g} \beta - m_{u} et_{g} \beta) \chi_{5}$

 I_n /27,28/ the general approach to the renormalization in the unitary gauge was developed. We shall apply this scheme (with the use of the standard parameters, recommended by the Trieste Conference /29/ to the case of the two-doublet model of electroweak interactions

$$\begin{split} & W_{0} = \sqrt{Z_{W}} W & e_{0} = (\sqrt{Z_{A}})^{-1} e \\ & Z_{0} = \sqrt{Z_{Z}} Z & M_{0W}^{2} = Z_{M_{W}} Z_{W}^{-1} M_{W}^{2} \\ & A_{0} = \sqrt{Z_{A}} A + \sqrt{Z_{M}} Z & M_{0Z}^{2} = Z_{M_{Z}} Z_{Z}^{-1} M_{Z}^{2} \\ & H_{0}^{\pm} = \sqrt{Z_{H^{\pm}}} H^{\pm} & M_{0H^{\pm}}^{2} = Z_{M_{H^{\pm}}} Z_{H^{\pm}}^{-1} M_{H^{\pm}}^{2} \\ & H_{10}^{0} = \sqrt{Z_{H^{\pm}}} H^{0} + \sqrt{Z_{M}} H_{2}^{0} & H_{20}^{0} = \sqrt{Z_{M2}} H_{1}^{0} + \sqrt{Z_{H_{0}}^{0}} H_{2}^{0} \\ \end{split}$$

The renormalization of other parameters follows from these relations.

3. Self-energy diagrams

1. $\Pi = \frac{if^{4H}}{16\pi^2} M_{H}^2 \left[2P - 1 + \ln \frac{M_{H}^2}{M^2} \right]$ (3.1) н± $\Pi = \frac{if^{2m/2}}{16\pi^2} \varepsilon M_v^2 \left[6P - 1 + 3\ln\frac{\varepsilon M_v^2}{M^2} \right]$ (3.2) $\mathcal{E} = \left\{ \begin{array}{l} 1 & \text{, if } V \text{ is a heavy vector boson.} \\ 0 & \text{, if } V \text{ is a photon.} \end{array} \right.$ 3. $\frac{q}{q} \frac{p}{p}$ 2 $\frac{q}{q}$ $\Pi(q^{2}) = \frac{i f_{1} f_{2}}{16\pi^{2}} \left[-2P - \overline{I}_{0}(q^{2}, M_{H_{1}}^{2}, M_{H_{2}}^{2}) \right].$ (3.3) <u>q-p</u> <u>H[±]</u>q $\Pi(q^{2}) = \frac{L_{f_{1}}}{16\pi^{2}} \left\{ \left[-2q^{2}(2+\varepsilon) + 2M_{H}^{2}(1-\varepsilon) - \frac{2\varepsilon}{M_{H}^{2}} \right] \right\}$ $* \left(q_{\mu}^{2} + \mathcal{M}_{\mu}^{2}\right)^{2} \left[P + \mathcal{E}q_{\mu}^{2} - \mathcal{E}\mathcal{M}_{\nu}^{2} + \mathcal{M}_{\mu}^{2}(1 + \mathcal{E}) + \mathcal{E}\left(\mathcal{M}_{\nu}^{2} - \mathcal{E}\mathcal{M}_{\nu}^{2}\right) \right] + \mathcal{E}q_{\mu}^{2} + \mathcal{E}qq_{\mu}^{2} + \mathcal{E}qq_{\mu}^{2} + \mathcal{E}qq_{\mu}^{2} + \mathcal{E}qq_{\mu}^{2} + \mathcal{E}$

 $-q^{2}-M_{H}^{2})\ln\frac{\varepsilon M_{V}^{2}}{M_{H}^{2}}-M_{H}^{2}\ln\frac{M_{H}^{2}}{M_{V}^{2}}-\left(2q^{2}+\varepsilon M_{V}^{2}-2M_{H}^{2}\right)$ $+\frac{\mathcal{E}}{\mathcal{M}_{\nu}^{2}}\left(q^{2}+\mathcal{M}_{H}^{2}\right)^{2}\left[\int_{O}\left(q^{2},\mathcal{M}_{H}^{2},\mathcal{E}\mathcal{M}_{V}^{2}\right)\right\}.$ (3.4) $q = \frac{1}{H^{\pm}} \frac{p}{p+q} \frac{1}{H^{\pm}} q$

$$\begin{split} \Pi(q^{2}) &= \frac{if_{x}f_{z}}{4\pi^{2}} \left\{ \left[(1-b_{1}b_{2})(q^{2}+2m_{1}^{2}+2m_{2}^{2}) + (1+b_{1}b_{2}) \right] \right\} \\ & *2m_{1}m_{2} \left[P + \left[\frac{1}{2}(1-b_{1}b_{2})(q^{2}+m_{1}^{2}+m_{2}^{2}) + (1+b_{1}b_{2})m_{1}m_{2} \right] \right] \\ & * \overline{I}_{o}(q^{2},m_{1}^{2},m_{2}^{2}) + (1-b_{1}b_{2})\left(\frac{m_{1}^{2}}{2}\ln\frac{m_{1}^{2}}{M_{W}^{2}} + \frac{m_{2}^{2}}{2}\ln\frac{m_{2}^{2}}{M_{W}^{2}} + \frac{q^{2}}{2}\ln\frac{m_{2}^{2}}{M_{W}^{2}} + \frac{1}{2}(1+b_{1}b_{2})m_{1}m_{2} \right] \\ & + \frac{q^{2}}{4} + \frac{1}{2}(1+b_{1}b_{2})m_{1}m_{2} \right\}. \end{split}$$
 (3.5)

 $H^{\pm}W^{\pm} \xrightarrow{\operatorname{mixing}} V$ $q \xrightarrow{1} \xrightarrow{P} \xrightarrow{Q} \xrightarrow{Q} \xrightarrow{Q} \xrightarrow{Q} \xrightarrow{W^{\pm}} q$ H

$$\begin{split} & \prod_{\mu} \left(q^{2} \right) = \frac{i}{1} \frac{f_{1}}{f_{0}\pi^{2}} q_{\mu} \left\{ \left[-3 - \frac{1}{M_{\nu}^{2}} \left(q^{2} + M_{\mu}^{2} \right) \right] P - \frac{1}{2} \frac{1}{M_{\nu}^{2}} \frac{q^{2} + M_{\mu}^{2} - M_{\nu}^{2}}{q^{2}} \left[M_{\mu}^{2} \left(1 + \ln \frac{M_{\mu}^{2}}{M_{\omega}^{2}} \right) - M_{\nu}^{2} \left(1 + \ln \frac{M_{\nu}^{2}}{M_{\omega}^{2}} \right) - \frac{1}{2} \frac{1}{M_{\nu}^{2}} \frac{q^{2} + M_{\mu}^{2} - M_{\nu}^{2}}{q^{2}} \left[M_{\mu}^{2} \left(1 + \ln \frac{M_{\mu}^{2}}{M_{\omega}^{2}} \right) - M_{\nu}^{2} \left(1 + \ln \frac{M_{\nu}^{2}}{M_{\omega}^{2}} \right) - \frac{1}{2} \frac{1}{M_{\nu}^{2}} \frac{q^{2} + M_{\mu}^{2} - M_{\nu}^{2}}{q^{2}} + 2 \right) \frac{1}{2} \left[Q_{\mu}^{2} \left(q^{2} + M_{\mu}^{2} - M_{\nu}^{2} \right) \right] . \end{split}$$
 (3.6)

Let us still present the result of a calculation of the diagrams needed for finding of the counter terms and amplitude $H^{+}H^{-} \rightarrow H^{+}H^{-}$,

 $\prod_{x_{\beta}} = \frac{i}{16\pi^{2}} \sum_{x_{\beta}} M_{H}^{2} \left[2P - 1 + ln \frac{M_{H}^{2}}{M_{H}^{2}} \right].$ (3.7)

$$\begin{split} & \int I_{\alpha\beta}(q^2) = \frac{i f_1^{\mu\mu\nu} p_{\mu\mu\nu}}{16\pi^2} \left\{ q_{\alpha} q_{\beta} \left[-\frac{2}{3}P + \frac{2}{9} - \frac{4}{3} \right] \right\} \\ & \times \frac{\left(M_{\mu\mu}^2 - M_{\mu2}^2\right)^2}{q^4} + \frac{M_{\mu1}^2}{q^2} \ln \frac{M_{\mu1}^2}{M_{\mu\nu}^2} \left(\frac{2}{3} + \frac{4}{3} - \frac{M_{\mu1}^2 - M_{\mu2}^2}{q^2}\right) + \\ & + \frac{M_{\mu2}^2}{q^2} \ln \frac{M_{\mu2}^2}{M_{\mu\nu}^2} \left(\frac{2}{3} + \frac{4}{3} - \frac{M_{\mu2}^2 - M_{\mu1}^2}{q^2}\right) - \left(\frac{1}{3} + \frac{2}{3} - \frac{M_{\mu1}^2 + M_{\mu2}^2}{q^2}\right) + \\ & + \frac{4}{3} \frac{\left(M_{\mu\mu}^2 - M_{\mu2}^2\right)^2}{q^4} \int \frac{1}{-o} \left(q^2 + \frac{M_{\mu1}^2 - M_{\mu2}^2}{q^2}\right) - q^2 \delta_{\alpha\beta} \left[-2 \left(\frac{1}{3} + \frac{4}{3} + \frac{M_{\mu1}^2 + M_{\mu2}^2}{q^2}\right) + \\ & + \frac{M_{\mu1}^2 + M_{\mu2}^2}{q^2} \right) P + \frac{2}{9} + \frac{M_{\mu1}^2 + M_{\mu2}^2}{q^2} - \frac{1}{3} \frac{\left(M_{\mu1}^2 - M_{\mu2}^2\right)^2}{q^4} + \end{split}$$

 $+\frac{M_{H_{1}}^{2}}{q^{2}}\ln\frac{M_{H_{1}}^{2}}{M_{W}^{2}}\left(-\frac{1}{3}+\frac{1}{3}\frac{M_{H_{1}}^{2}-M_{H_{2}}^{2}}{q^{2}}\right)+\frac{M_{H_{2}}^{2}}{q^{2}}\ln\frac{M_{H_{2}}^{2}}{M_{W}^{2}}\left(-\frac{1}{3}+\frac{1}{3}\frac{M_{H_{1}}^{2}-M_{H_{2}}^{2}}{q^{2}}\right)$ $+\frac{1}{3}\frac{M_{H2}^{2}-M_{H1}^{2}}{q^{2}}-\left(\frac{1}{3}+\frac{2}{3}\frac{M_{H1}^{2}+M_{H2}^{2}}{q^{2}}+\frac{1}{3}\frac{\left(M_{H1}^{2}-M_{H2}^{2}\right)^{2}}{q^{4}}\right)^{*}$ (3.8) $* \overline{I}_{o}(q^{2}, M_{H1}^{2}, M_{H2}^{2}) \}$ 9. $q \xrightarrow{H} 2 q$

$$\begin{split} &\Pi_{\mu\mu}\left(q^{2}\right) = \frac{i}{1}\frac{f_{1}}{f_{1}}\frac{f_{2}}{f_{2}}\frac{1}{M_{\nu}^{2}}\left(q^{2}_{\mu\nu}q^{2}_{\mu\nu}\left[-\frac{2}{3}P + \frac{1}{18} + \frac{M_{\nu}^{2}-M_{\mu}^{2}}{2q^{2}} - \frac{1}{3}\frac{(M_{\nu}^{2}-M_{\mu}^{2})^{2}}{q^{2}} - \frac{M_{\nu}^{2}}{q^{2}}\ln\frac{M_{\nu}^{2}}{M_{\nu}^{2}}\left(\frac{1}{3} + \frac{M_{\mu}^{2}-M_{\nu}^{2}}{3q^{2}}\right) + \frac{M_{\mu}^{2}}{q^{2}}\ln\frac{M_{\mu}^{2}}{M_{\nu}^{2}}\right) \\ &\times \left(\frac{2}{3} + \frac{M_{\mu}^{2}-M_{\nu}^{2}}{3q^{2}}\right) - \left(\frac{1}{3} + \frac{2}{3}\frac{M_{\mu}^{2}-M_{\nu}^{2}/2}{q^{2}} + \frac{1}{3}\frac{(M_{\mu}^{2}-M_{\nu}^{2})}{q^{4}}\right) \\ &\times \left[\frac{1}{0}\left(q^{2},M_{\nu}^{2},M_{\mu}^{2}\right)\right] - q^{2}\tilde{v}_{\mu\mu}\left[\left(-\frac{1}{6} - \frac{1}{2}\frac{M_{\mu}^{2}}{q^{2}} + \frac{3}{2}\frac{M_{\nu}^{2}}{q^{2}}\right) \\ P + \frac{1}{18} + \frac{1}{4}\frac{M_{\mu}^{2}}{q^{2}} + \frac{1}{4}\frac{M_{\nu}^{2}}{q^{2}} - \frac{1}{12}\frac{(M_{\mu}^{2}-M_{\nu}^{2})^{2}}{q^{4}} - \frac{M_{\nu}^{2}}{q^{2}}\ln\frac{M_{\nu}^{2}}{M_{\nu}^{2}} \\ &\cdot \left(\frac{1}{12} + \frac{M_{\mu}^{2}-M_{\nu}^{2}}{12q^{2}}\right) + \frac{M_{\mu}^{2}}{q^{2}}\ln\frac{M_{\mu}^{2}}{M_{\nu}^{2}}\left(-\frac{1}{12} + \frac{M_{\mu}^{2}-M_{\nu}^{2}}{12q^{2}}\right) + \left(\frac{5M_{\nu}^{2}}{6q^{2}}\right) \\ \end{split}$$

 $-\frac{1}{6}\frac{M_{H}^{2}}{q^{2}}-\frac{1}{12}-\frac{1}{12}\frac{(M_{H}^{2}-M_{V}^{2})^{2}}{q^{4}}\bigg]\overline{\int}_{-0}^{2}\left(q^{2},M_{V}^{2},M_{H}^{2}\right)\bigg\}.$ 10. $H_{1}^{0}=-M_{1}^{0}$ (3,9) $q = 1 \left(\frac{p}{p+q} \right)^2 \left(\frac{q}{p+q} \right)^{q} \left(\frac{p}{p+q} \right)^{q} \left(\frac{q}{p+q} \right)^{q}$ $\Pi_{\mu}(q^{2}) = \frac{i \frac{4}{43} \frac{4}{72} q}{16\pi^{2}} \left\{ \frac{M_{\mu_{2}}^{2} - M_{\mu_{1}}^{2}}{q^{2}} + \frac{M_{\mu_{1}}^{2}}{q^{2}} \ln \frac{M_{\mu_{1}}^{2}}{M_{w}^{2}} - \frac{M_{\mu_{2}}^{2}}{q^{2}} \right\}$ $- l_{H} \frac{M_{H_{2}}^{2}}{M_{W}^{2}} + \frac{M_{H_{2}}^{2} - M_{H_{1}}^{2}}{q^{2}} \overline{I}_{0}(q^{2}, M_{H_{1}}^{2}, M_{H_{2}}^{2}) \bigg\}^{2}$ (3.10) $H^{o}Z^{o}$ -mixing $\Pi_{m}(q^{2}) = \frac{i f_{1}}{16\pi^{2}} q_{\mu} \left\{ \frac{q^{2}}{2M_{v_{1}}^{2}} - \frac{q^{2}}{2M_{v_{2}}^{2}} + \frac{3}{2} \frac{M_{v_{1}}}{M_{v_{1}}^{2}} - \frac{3}{2} \frac{M_{v_{1}}}{M_{v_{1}}^{2}} \right\}^{*}$ $P + \frac{M_{\nu_{1}}^{2}}{q^{2}} \left(ln \frac{M_{\nu_{1}}^{2}}{M_{w}^{2}} - 1 \right) \left[3 + \frac{1}{4} \frac{q^{2}(M_{\nu_{2}}^{2} - M_{\nu_{1}}^{2})}{M_{\nu_{1}}^{2} M_{\nu_{2}}^{2}} + \frac{1}{4} \right]$ $+ \frac{\left(M_{v_{2}}^{2} - M_{v_{1}}^{2}\right)^{2}}{M_{v_{1}}^{2}M_{v_{2}}^{2}} + \frac{M_{v_{2}}^{2}}{q^{2}} \left(l_{n}\frac{M_{v_{2}}^{2}}{M_{w}^{2}} - 1\right) \left[-3 + \frac{1}{4}\frac{q^{2}(M_{v_{1}}^{2} - M_{v_{2}}^{2})}{M_{v_{1}}^{2}M_{v_{2}}^{2}}\right]$ $+\frac{1}{4}\frac{\left(\frac{M_{v_{1}}^{2}-M_{v_{2}}^{2}}{M_{v_{1}}^{2}M_{v_{2}}^{2}}\right)^{2}}{M_{v_{1}}^{2}M_{v_{2}}^{2}}+\left[\frac{1}{4}\frac{q^{2}\left(\frac{M_{a}^{2}-M_{a}^{2}}{M_{a}^{2}M_{v}^{2}}\right)}{M_{a}^{2}M_{v}^{2}}+\frac{1}{2}\frac{M_{a}^{4}-M_{a}^{4}}{M_{v}^{2}M_{v}^{2}}+\frac{1}{2}\frac{M_{a}^{4}-M_{a}^{4}}{M_{v}^{2}M_{v}^{2}}+\frac{1}{2}\frac{M_{a}^{4}-M_{a}^{4}}{M_{v}^{2}M_{v}^{2}}+\frac{1}{2}\frac{M_{a}^{4}-M_{a}^{4}}{M_{v}^{2}M_{v}^{2}}+\frac{1}{2}\frac{M_{a}^{4}-M_{a}^{4}}{M_{v}^{2}M_{v}^{2}}+\frac{1}{2}\frac{M_{a}^{4}-M_{a}^{4}}{M_{v}^{2}M_{v}^{2}}+\frac{1}{2}\frac{M_{a}^{4}-M_{a}^{4}}{M_{v}^{4}}+\frac{1}{2}\frac{M_{a}^{4}-M_{a}^{4}}{M_{v}^{4}}+\frac{1}{2}\frac{M_{a}^{4}-M_{a}^{4}}{M_{v}^{4}}+\frac{1}{2}\frac{M_{a}^{4}-M_{a}^{4}}{M_{v}^{4}}+\frac{1}{2}\frac{M_{a}^{4}-M_{a}^{4}}{M_{v}^{4}}+\frac{1}{2}\frac{M_{a}^{4}-M_{a}^{4}}{M_{v}^{4}}+\frac{1}{2}\frac{M_{a}^{4}-M_{a}^{4}}{M_{v}^{4}}}+\frac{1}{2}\frac{M_{a}^{4}-M_{a}^{4}}+\frac{1}{2$ $+\frac{g}{4}\frac{M_{2}^{2}-M_{\nu_{1}}^{2}}{q^{2}}+\frac{1}{4}\frac{M_{\nu_{2}}^{6}-M_{\nu_{1}}^{6}}{M_{\nu_{2}}^{2}q^{2}}\left]\overline{I}_{0}\left(q^{2},M_{\nu_{1}}^{2},M_{\nu_{2}}^{2}\right)\right\}.$ (3.11)

11

Obviously, when the masses of the virtual particles are equated the $\mathcal{H}^{o} \neq^{o}$ -mixing diagrams don't contribute. Since

 $\prod_{\mu \pm}^{ren} (q^2) = \prod_{\mu \pm} (q^2) - \delta M_{\mu \pm}^2 - (Z_{\mu \pm} - 1)(q^2 + M_{\mu \pm}^2)_{,(3.12)}$ it is necessary to find the counter terms $\delta M_{\mu \pm}^2$ and $Z_{\mu \pm} - 1$.

 $\frac{\delta M_{\mu^{\pm}}^2}{M_{\mu^{\pm}}^2} = \frac{\prod_{\mu^{\pm}} \left(-M_{\mu^{\pm}}^2\right)}{M_{\mu^{\pm}}^2} = \frac{ig^2}{16\pi^2} \left\{ \left[9 - 6R - \frac{1}{R} \left(\frac{3}{2} + \cos^2 2 \rho \right) \right] \right\}^2 + \frac{1}{2} \left\{ \frac{1}{2} + \cos^2 2 \rho \right\}^2 + \frac{1}{2} \left\{ \frac{1}{2} + \frac{1}{2} +$ $-5r_{\pm}^{-1} - \frac{1}{R}r_{\pm}^{-1}\left(3 - 2\cos^{2}2\beta\right) + \frac{1}{R^{2}}r_{\pm}^{-1}\left(\frac{3}{2} - \frac{1}{2}\cos^{2}2\beta\right) - \frac{1}{R}r_{\pm}^{-1}\left(\frac{3}{2} - \frac{1}{2}\cos^{2}\beta\right) - \frac{1}{R}r_{\pm}^{-1}\left(\frac{1}{2} - \frac{1}{2}\cos^{2}\beta\right) - \frac{1}{R}r_{\pm}^{-1}\left(\frac{1}{2} - \frac{1}{2}\cos^{2}\beta\right) - \frac{1}{R}r_{\pm}^{-1}\left(\frac{1}{2} - \frac{1}{2}\cos^{2}\beta\right) - \frac{1}{R}r_{\pm}^{$ $-\left(r_{1}\sin^{2}(\alpha-\beta)+r_{2}\cos^{2}(\alpha-\beta)-r_{3}\right)-\frac{1}{2}r_{\pm}^{-1}\left(r_{1}\cos^{2}(\alpha-\beta)+r_{3}\sin^{2}(\alpha-\beta$ + $r_2 \sin^2(\alpha - \beta)$ + $\frac{1}{2}r_{\pm}^{-1}(r_1^2 \sin^2(\alpha - \beta) + r_2^2 \cos^2(\alpha - \beta) - r_3^2)$ + + $\frac{1}{4R}r_{\pm}^{-1}\cos 2\beta \left(r_{1}\cos 2\alpha - r_{2}\cos 2\alpha + r_{3}\cos 2\beta\right) - \sum_{k=1}^{2m_{4}}$ $\frac{\left(\frac{m_{i}^{2} ct_{g}^{2} \beta + m_{j}^{2} tg^{2} \beta}{M_{W}^{2}} - 2 \frac{m_{i}^{2} m_{j}^{2} (tg^{2} \beta + ct_{g}^{2} \beta + 1)}{M_{W}^{2} M_{W}^{2}}\right)$ $-2 \frac{m_i^4 \operatorname{ctg}^2 \beta + m_i^4 \operatorname{tg}^2 \beta}{M^2 M_{\text{ut}}^2} \Big] \Big[p + \text{finite part}$ (3.13) and $\left(\Gamma_{\pm} = M_{H\pm}^2 / M_W^2, \Gamma_i = M_{H\pm}^2 / M_W^2 \right)$ $Z_{H^{\pm}} - 1 = \frac{ig^{2}}{16\pi^{2}} \left\{ \left[-7 + 4R + \frac{3}{2} \frac{1}{R} + \left(r_{1} \sin^{2}(a-p) + \frac{3}{2} \frac{1}{R} + \frac{3}{2} \frac$ + $r_2 \cos^2(\alpha - \beta) - r_3 + \frac{\sum_{i=1}^{m_i} \frac{m_i^2 \cot g^2 \beta + m_i^2 t g^2 \beta}{M_w^2}]P +$ +4 $(1-R)P_{TR}$ + finite part (3.14)

4. Vertex diagrams

$$\Gamma(p^{2},q^{2},(p-q)^{2}) = \frac{i p^{3H} p^{3H} p^{3H}}{16\pi^{2}} \overline{I}_{1}(q^{2},(p-q)^{2},p^{2},M_{HI}^{2},M_{HI}^{2},M_{HI}^{2}).$$
(4.1)

 $p \xrightarrow{1}_{H^{\pm}} q$ $m_{3} \xrightarrow{p}_{H^{\pm}} m_{2}$

and a similar diagram with the opposite lepton current direction.

$$\begin{split} & \Gamma\left(p^{2},q^{2},(p-q)^{2}\right) = \frac{iP_{1}^{H}p^{H}p^{H}}{4\pi^{2}} \left\{ -\left[2m_{1}B_{1}+2m_{2}B_{2}+\right. \\ & + 2m_{3}B_{3}\right]P - \frac{m_{1}B_{1}+m_{2}B_{2}+m_{3}B_{3}}{2} - \frac{m_{1}B_{1}+m_{2}B_{2}}{2} \right\} \\ & \times \left[-\left(q^{2},m_{1}^{2},m_{2}^{2}\right) - \frac{m_{1}B_{1}+m_{3}B_{3}}{2} - \frac{\int_{0}\left(p^{2},m_{1}^{2},m_{3}^{2}\right) - \left(4.2\right)}{2} \right] \\ & - \frac{m_{2}B_{2}+m_{3}B_{3}}{2} - \frac{\int_{0}\left(\left(p-q\right)^{2},m_{2}^{2},m_{3}^{2}\right) - \frac{1}{2}\left[m_{1}B_{1}\left(\left(p-q\right)^{2}+\right)^{2} + m_{2}^{2}+m_{3}^{2}\right) + m_{2}B_{2}\left(p^{2}+m_{1}^{2}+m_{3}^{2}\right) + m_{3}B_{3}\left(q^{2}+m_{1}^{2}+m_{2}^{2}\right) + \end{split}$$

$+2m_{1}m_{2}m_{3}B_{4}]I_{1}(q^{2},(p-q)^{2},p^{2},m_{1}^{2},m_{2}^{2},m_{3}^{2}),$	-
$B_1 = 1 + b_1 b_2 - b_1 b_3 - b_2 b_3 ,$	
$B_2 = 1 - b_1 b_2 - b_1 b_3 + b_2 b_3 ,$	(4.3)
$B_{3} = 1 - b_{1}b_{2} + b_{1}b_{3} - b_{2}b_{3},$	
$B_4 = 1 + b_1 b_2 + b_1 b_3 + b_2 b_3 .$	
$P \xrightarrow{H^{\pm}}_{H^{\pm}} H_{1} \xrightarrow{H^{\pm}}_{H_{2}} H_{2}$	
$\mathbf{q}_{\mathbf{q}}$	
$\int \left(p^{2}, q^{2}, (p-q)^{2}\right) = \pm \frac{i f_{1}}{16\pi^{2}} \int \frac{1}{2} \left[1 - \varepsilon - \frac{\varepsilon}{M^{2}} \left(p^{2}, \frac{1}{2}\right)\right]$	+92+
$+M_{H1}^{2}+M_{H2}^{2})]P-E+Eln\frac{EM_{V}^{2}}{M^{2}}+\int_{O}((p-q)^{2},M_{H1}^{2},M_{H2}^{2})$	+
$+ \frac{1}{2} \left(q^{2}, \varepsilon M_{v}^{2}, M_{H2}^{2} \right) \left[- \frac{1}{2} + \frac{\varepsilon}{M_{v}^{2}} \left(q^{2} + M_{H2}^{2} \right) \right] + \frac{1}{2} \left(p^{2}, \varepsilon M_{v}^{2}, M_{v}^{2} \right) \left[- \frac{1}{2} + \frac{\varepsilon}{M_{v}^{2}} \left(q^{2} + M_{H2}^{2} \right) \right] + \frac{1}{2} \left(p^{2}, \varepsilon M_{v}^{2}, M_{v}^{2} \right) \left[- \frac{1}{2} + \frac{\varepsilon}{M_{v}^{2}} \left(q^{2} + M_{H2}^{2} \right) \right] + \frac{1}{2} \left(p^{2}, \varepsilon M_{v}^{2}, M_{v}^{2} \right) \left[- \frac{1}{2} + \frac{\varepsilon}{M_{v}^{2}} \left(q^{2} + M_{H2}^{2} \right) \right] + \frac{1}{2} \left(p^{2}, \varepsilon M_{v}^{2} \right) \left[- \frac{1}{2} + \frac{\varepsilon}{M_{v}^{2}} \left(q^{2} + M_{H2}^{2} \right) \right] + \frac{1}{2} \left(p^{2}, \varepsilon M_{v}^{2} \right) \left[- \frac{1}{2} + \frac{\varepsilon}{M_{v}^{2}} \left(q^{2} + M_{H2}^{2} \right) \right] + \frac{1}{2} \left(p^{2}, \varepsilon M_{v}^{2} \right) \left[- \frac{1}{2} + \frac{\varepsilon}{M_{v}^{2}} \left(q^{2} + M_{H2}^{2} \right) \right] + \frac{1}{2} \left(p^{2}, \varepsilon M_{v}^{2} \right) \left[- \frac{1}{2} + \frac{\varepsilon}{M_{v}^{2}} \left(q^{2} + M_{H2}^{2} \right) \right] + \frac{1}{2} \left(p^{2}, \varepsilon M_{v}^{2} \right) \left[- \frac{1}{2} + \frac{\varepsilon}{M_{v}^{2}} \left(q^{2} + M_{H2}^{2} \right) \right] + \frac{1}{2} \left(p^{2}, \varepsilon M_{v}^{2} \right) \left[- \frac{1}{2} + \frac{\varepsilon}{M_{v}^{2}} \left(q^{2} + M_{H2}^{2} \right) \right] + \frac{1}{2} \left(p^{2}, \varepsilon M_{v}^{2} \right) \left[- \frac{1}{2} + \frac{\varepsilon}{M_{v}^{2}} \left(q^{2} + M_{H2}^{2} \right) \right] + \frac{1}{2} \left(p^{2}, \varepsilon M_{v}^{2} \right) \left[- \frac{1}{2} + \frac{\varepsilon}{M_{v}^{2}} \left(q^{2} + M_{H2}^{2} \right) \right] + \frac{1}{2} \left(p^{2}, \varepsilon M_{v}^{2} \right) \left[- \frac{1}{2} + \frac{\varepsilon}{M_{v}^{2}} \left(q^{2} + M_{H2}^{2} \right) \right] + \frac{1}{2} \left(p^{2}, \varepsilon M_{v}^{2} \right) \left[- \frac{1}{2} + \frac{\varepsilon}{M_{v}^{2}} \left(q^{2} + M_{H2}^{2} \right) \right] + \frac{1}{2} \left(p^{2}, \varepsilon M_{v}^{2} \right) \left[- \frac{1}{2} + \frac{\varepsilon}{M_{v}^{2}} \left(q^{2} + M_{H2}^{2} \right) \right] + \frac{1}{2} \left(p^{2}, \varepsilon M_{v}^{2} \right) \left[- \frac{1}{2} + \frac{\varepsilon}{M_{v}^{2}} \left(q^{2} + M_{H2}^{2} \right) \right] + \frac{1}{2} \left(p^{2}, \varepsilon M_{v}^{2} \right) \left[- \frac{1}{2} + \frac{\varepsilon}{M_{v}^{2}} \left(q^{2} + M_{H2}^{2} \right) \right] + \frac{1}{2} \left(p^{2}, \varepsilon M_{v}^{2} \right) \left[- \frac{1}{2} + \frac{\varepsilon}{M_{v}^{2}} \left(p^{2} + M_{v}^{2} \right) \right] + \frac{1}{2} \left(p^{2}, \varepsilon M_{v}^{2} \right) \left[- \frac{1}{2} + \frac{\varepsilon}{M_{v}^{2}} \right] + \frac{1}{2} \left(p^{2}, \varepsilon M_{v}^{2} \right) \left[- \frac{1}{2} + \frac{\varepsilon}{M_{v}^{2}} \right] + \frac{1}{2} \left(p^{2}, \varepsilon M_{v}^{2} \right) \left[- \frac{1}{2} + \frac{\varepsilon}{M_{v}^{2}} \right] + \frac{1}{2} \left(p^{2}, \varepsilon M_{v}^{2} \right) + \frac{1}{2} \left(p^{2}, \varepsilon M_{v}^{2} \right) \left[- \frac{1}{2} + \frac{\varepsilon}{M_{v}^{2}} $	M ² / _{H1})*
$ \left[-1 + \frac{\mathcal{E}}{M_{v}^{2}} \left(p^{2} + M_{HI}^{2} \right) \right] - \overline{I}_{1} \left(p^{2} \left(p - q \right)^{2}, q^{2}, \mathcal{E}M_{v}^{2}, M_{HI}^{2} \right) $	
$M_{H_{2}}^{2}\left[-p^{2}-q^{2}+2(p-q)^{2}-\mathcal{E}M_{V}^{2}+M_{H_{1}}^{2}+M_{H_{2}}^{2}-\frac{\mathcal{E}}{M_{V}^{2}}(p^{2}+M_{H_{1}}^{2})\right]$	¥
$\left. \left(q^{2} + M_{\mu 2}^{2} \right) \right] \right\} .$	(4.4)

 $\Gamma(p^{2},q^{2},(p-q)^{2}) = \pm \frac{L_{f_{1}}^{HHV}p_{HV}p_{HV}}{16\pi^{2}} \left\{ -\left[3\frac{1}{M^{2}}(p-q)^{2} + \frac{1}{M^{4}}\right] \right\}$ $* \left(\frac{(p-q)^2}{p^2} \left(\frac{p^2 + q^2 + (p-q)^2 + 2M_H^2}{p^2} + 2\left(p^2 + M_H^2 \right) \left(q^2 + M_H^2 \right) \right] P +$ $+\frac{1}{M^{2}} \frac{p^{2}+q^{2}+(p-q)^{2}+2M_{H}^{2}}{2} \left(1-\ln\frac{M_{v}^{2}}{M_{w}^{2}}\right) - \left[-\frac{1}{2} +\frac{1}{2} \frac{p^{2}-q^{2}}{M_{v}^{2}} + \frac{1}{2} \frac{p^{2}-q^{2}}{M_{v}^{2}}\right]$ $+\frac{1}{2} \frac{(p^2 + M_{\mu}^2)(q^2 + M_{\mu}^2)}{M_{\mu}^4} \overline{\int}_{-0}^{-1} (p^2 M_{\mu}^2 M_{\nu}^2) - \left[-\frac{1}{2} + \frac{1}{2} \frac{q^2 - p^2}{M_{\nu}^2} + \frac{1}{2} \frac{q^2 - p^2}$ $+\frac{1}{2} \frac{(p^2 + M_{H}^2)(q^2 + M_{H}^2)}{M^4} \left[\overline{1}_o \left(q_{1,1}^2 M_{H_1}^2 M_V^2 \right) - \left[1 + \frac{1}{2} \frac{1}{M_V^2} \left(-p^2 - \frac{1}{2} M_{H_1}^2 M_V^2 \right) \right] \right]$ $-q^{2}+2(p-q)^{2}-2M_{H}^{2})+\frac{1}{4}(p-q)^{2}\frac{p^{2}+q^{2}+(p-q)^{2}+2M_{H}^{2}}{M^{4}}\Big]_{*}$ $* \overline{I}_{o} \left(\left(p - q \right)^{2}, M_{v}^{2}, M_{v}^{2} \right) + \left[p^{2} + q^{2} - \frac{1}{2} \left(p - q \right)^{2} + M_{v}^{2} - 2M_{H}^{2} + \right]$ $+\frac{1}{M_{\nu}^{2}}\left(p^{4}+q^{4}-p^{2}q^{2}-\frac{1}{2}(p^{2}+q^{2})(p-q)^{2}+M_{\mu}^{2}(p^{2}+q^{2}-(p-q)^{2})+M_{\mu}^{4}\right) -\frac{1}{2}\frac{1}{M_{H}^{4}}(p-q)^{2}(p^{2}+M_{H}^{2})(q^{2}+M_{H}^{2})\Big]I_{1}\left(q^{2},(p-q)^{2},p^{2},M_{H}^{2}\right)$ $\mathcal{M}_{V}^{2}, \mathcal{M}_{V}^{2}$ $\Big\}$.

 $+\frac{1}{2}\left[\left(p^{2}+m_{1}^{2}+m_{3}^{2}\right)B_{1}'+2m_{1}m_{3}B_{3}'\right]\left[\frac{1}{2}\left(q^{2},\left(p-q\right)^{2},p^{2},m_{1}^{2}\right)\right]$ $\begin{array}{c} m_{2}^{2}, m_{3}^{2} \end{pmatrix} + \left[\frac{p^{2} + q^{2} - (p - q)^{2} + 2m_{1}^{2}}{2} B_{1}^{\prime} + m_{1}m_{2} B_{2}^{\prime} + m_{1}m_{3} B_{3}^{\prime} + m_{2}m_{3} B_{4}^{\prime} \right] \frac{1}{p^{4} + q^{4} + (p - q)^{4} - 2p^{2}q^{2} - 2p^{2}(p - q)^{2} - 2q^{2}(p - q)^{2}}$ $\begin{array}{c} (4.8) \\ \end{array}$ $* \left[2p^{2}\overline{I}_{0}\left(p^{2},m_{1}^{2},m_{3}^{2}\right) + \left(\left(p-q\right)^{2}-p^{2}-q^{2}\right)\overline{I}_{0}\left(q^{2},m_{r}^{2},m_{2}^{2}\right)^{2} + \right. \right]$ $+ (q^{2} - p^{2} - (p - q)^{2}) \overline{f} ((p - q)^{2}, m_{2}^{2}, m_{3}^{2}) + ((p^{2} + q^{2} - (p - q)^{2})^{2}).$ $\left(m_1^2 - m_3^2 - p^2 \right) - 2p^2 \left(m_1^2 - m_2^2 - q^2 \right) \left[\overline{I} \left(q_1^2 \left(p - q \right)^2 p_1^2 m_1^2 m_2^2 n_1^2 \right) \right]$ $B_{1}' = a_{3}(1 - b_{1}b_{2}) - b_{1}b_{3} + b_{2}b_{3},$ $B'_{2} = a_{3}(1 + b_{1}b_{2}) - b_{1}b_{3} - b_{2}b_{3},$ (4.9) $B'_{3} = a_{3}(1+b_{1}b_{2})+b_{1}b_{3}+b_{2}b_{3},$ $B'_{4} = a_{3}(1 - b_{1}b_{2}) + b_{1}b_{3} - b_{2}b_{3}$

 $\begin{array}{c} 6 \cdot p = \frac{1}{H^{\pm}} \begin{pmatrix} 2 \\ H \\ \end{pmatrix} \\ H_1 \\ H_2 \\ H$ $\int_{\mu} \left(p^{2}, q^{2}, (p-q)^{2} \right) = \frac{i f_{1}}{16\pi^{2}} \frac{f_{2}}{f_{1}} \frac{f_{2}}{f_{2}} \frac{f_{3}}{f_{1}} \left\{ p_{\mu} \Gamma^{(1)} + q_{\mu} \Gamma^{(2)} \right\} (4.10)$ $\int^{-1} (p^{2}, q^{2}, (p-q)^{2}) = 2 \left[-1 + \varepsilon + \frac{\varepsilon}{M_{v}^{2}} \left(q^{2} + M_{H_{2}}^{2} \right) \right] P + \varepsilon .$ $\frac{M_{V}^{2}-M_{HI}^{2}}{p^{2}}\left(l_{H}\frac{\mathcal{E}M_{V}^{2}}{M_{W}^{2}}-1\right)+\left(\frac{M_{HI}^{2}}{(p-q)^{2}}-\frac{M_{HI}^{2}}{p^{2}}+\frac{\mathcal{E}}{M_{V}^{2}}\frac{M_{HI}^{2}(p^{2}+M_{HI}^{2})}{p^{2}}\right).$ $\times \left(\ln \frac{M_{H_{1}}^{2}}{M_{W}^{2}} - 1 \right) - \frac{M_{H_{2}}^{2}}{(p-q)^{2}} \left(\ln \frac{M_{H_{2}}^{2}}{M_{W}^{2}} - 1 \right) - \left[\frac{\mathcal{E}M_{V}^{2} - M_{H_{1}}^{2}}{p^{2}} - \frac{\mathcal{E}}{M_{V}^{2}} \right]$ $\times \frac{(p^{2} + M_{H1}^{2})(M_{V}^{2} - M_{H1}^{2})}{p^{2}} \left[\frac{1}{p} - \left(p^{2} \in M_{V}^{2}, M_{H1}^{2}\right) - \left[1 - \frac{\mathcal{E}}{M_{V}^{2}}(q^{2} + M_{H2}^{2})\right] \times \right]$ $= \frac{1}{20} \left(q^2, \varepsilon M_{V_1}^2, M_{H_2}^2 \right) - \frac{M_{H_1}^2 - M_{H_2}^2}{(p - q)^2} \frac{1}{20} \left((p - q)^2, M_{H_1}^2, M_{H_2}^2 \right) + 2 \left[-p^2 - \frac{1}{20} \left((p - q)^2, M_{H_1}^2, M_{H_2}^2 \right) \right]$ $-q^{2}+2(p-q)^{2}+M_{H_{1}}^{2}+M_{H_{2}}^{2}-\varepsilon M_{V}^{2}-\frac{\varepsilon}{M_{V}^{2}}(p^{2}+M_{H_{1}}^{2})(q^{2}+M_{H_{2}}^{2})]\times$ $\frac{1}{p^{4}+q^{4}+(p-q)^{4}-2p^{2}(p-q)^{2}-2q^{2}(p-q^{2})-2p^{2}q^{2}}\left[(p^{2}+q^{2}-(p-q)^{2})\overline{I}_{0}(p^{2},p^{2},p^{2})\right]$ $\mathcal{E}M_{v}^{2},M_{H_{1}}^{2})-2q^{2}\overline{I}_{0}(q^{2},\mathcal{E}M_{v}^{2},M_{H_{2}}^{2})-(p^{2}-q^{2}-(p-q)^{2})\overline{I}_{0}(p-q^{2}),$ $M_{H_1}^2, M_{H_2}^2) + \left(\left(p^2 + q^2 - (p - q)^2 \right) \left(q^2 + M_{H_2}^2 - E M_V^2 \right) + 2q^2 \left(E M_V^2 - M_{H_1}^2 - M_{H_1}^2 - E M_V^2 \right) \right)$

 $-p^{2} - \frac{1}{2} \left(p^{4} + q^{4} + \left(p - q \right)^{4} - 2p^{2}q^{2} - 2p^{2} \left(p - q \right)^{2} - 2q^{2} \left(p - q \right)^{2} \right)$ $= \overline{I}_{1} \left(p^{2} \left(p - q \right)^{2} q^{2} + \mathcal{E} M_{V}^{2} + M_{HI}^{2} + M_{H2}^{2} \right) \right] ,$ (4.11) $\int^{7(2)} (p^{2}, q^{2}, (p-q)^{2}) = 2\left[-1 + \varepsilon + \frac{\varepsilon}{M_{v}^{2}}(p^{2} + M_{H_{1}}^{2})\right]P +$ $+ \mathcal{E} \frac{M_{\nu}^{2} - M_{H_{2}}^{2}}{q^{2}} \left(ln \frac{\mathcal{E} M_{\nu}^{2}}{M_{W}^{2}} - 1 \right) - \frac{M_{H_{1}}^{2}}{(p-q)^{2}} \left(ln \frac{M_{H_{1}}^{2}}{M_{W}^{2}} - 1 \right) + \left(\frac{M_{H_{2}}}{(p-q)^{2}} - 1 \right) + \left(\frac{M_{H_{2}}$ $-\frac{M_{H_2}^2}{q^2} + \frac{\varepsilon}{M_v^2} \frac{M_{H_2}^2(q^2 + M_{H_2}^2)}{q^2} \left(\ln \frac{M_{H_2}^2}{M_{H_1}^2} - 1 \right) - \left[1 - \frac{\varepsilon}{M_v^2}(p^2 + M_{H_1}^2) \right].$ $\frac{1}{20} \left(p^{2} \in M_{V_{1}}^{2} M_{H_{1}}^{2} \right) - \left[\frac{\mathcal{E} M_{V}^{2} - M_{H_{2}}^{2}}{q^{2}} - \frac{\mathcal{E}}{M_{V}^{2}} \frac{(q^{2} + M_{H_{2}}^{2})(M_{V}^{2} - M_{H_{2}}^{2})}{q^{2}} \right]^{*}$ $* \overline{I}_{o} \left(q^{2} \in M_{v_{1}}^{2} M_{H2}^{2}\right) - \frac{M_{H2}^{2} - M_{H1}^{2}}{(p-q)^{2}} \overline{I}_{o} \left((p-q)^{2} M_{H1}^{2} M_{H2}^{2}\right) + 2 \left[-p^{2} - q^{2} + \frac{M_{H2}^{2}}{(p-q)^{2}}\right]$ + $2(p-q)^2 + M_{H_1}^2 + M_{H_2}^2 - \epsilon M_v^2 - \frac{\epsilon}{M_v^2}(p^2 + M_{H_1}^2)(q^2 + M_{H_2}^2)$ $\frac{1}{p^{4}+q^{4}+(p-q)^{4}-2p^{2}q^{2}-2p^{2}(p-q)^{2}-2q^{2}(p-q)^{2}}\left[-2p^{2}\int_{0}^{2}(p^{2},$ $\mathcal{E}M_{V}^{2}, M_{H_{1}}^{2} \right) + \left(p^{2} + q^{2} - (p - q)^{2}\right) \overline{I}_{o}\left(q^{2}, \mathcal{E}M_{V}^{2}, M_{H_{2}}^{2}\right) - \left(q^{2} - p^{2} - p^{2}\right) - \left(q^{2} - p^{2}\right) - \left(q^{2} - p^{2} - p^{2}\right) - \left(q^{2} - p^{2} - p^{2} - p^{2}\right) - \left(q^{2} - p^{2} - p^{2} - p^{2}\right) - \left(q^{2} - p^{2} - p^{2} - p^{2} - p^{2}\right) - \left(q^{2} - p^{2} - p^{2} - p^{2} - p^{2}\right) - \left(q^{2} - p^{2} - p^{2} - p^{2} - p^{2}\right) - \left(q^{2} - p^{2} - p^{2}$ $-(p-q)^{2})\overline{I}_{o}((p-q)^{2},M_{H1}^{2},M_{H2}^{2})+((p^{2}+q^{2}-(p-q)^{2})(p^{2}+M_{H1}^{2}-EM_{v}^{2})+$ $+2p^{2}(\mathcal{E}M_{v}^{2}-M_{H2}^{2}-q^{2})-\frac{1}{2}(p^{4}+q^{4}+(p-q)^{4}-2p^{2}q^{2}-2p^{2}(p-q)^{4}-2p^{2}q^{2}-2p^{2}(p-q)^{4}-2p^{2}q^{2}-2p^{2}(p-q)^{4}-2p^{2}q^{2}-2p^{2}(p-q)^{4}-2p^{2}q^{2}-2p^{2}(p-q)^{4}-2p^{2}q^{2}-2p^{2}(p-q)^{4}-2p^{2}q^{2}-2p^{2}(p-q)^{4}-2p^{2}q^{2}-2p^{2}(p-q)^{4}-2p^{2}q^{2}-2p^{2}(p-q)^{4}-2p^{2}q^{2}-2p^{2}(p-q)^{4}-2p^{2}q^{2}-2p^{2}(p-q)^{4}-2p^{2}q^{2}-2p^{2}(p-q)^{4}-2p^{2}q^{2}-2p^{2}(p-q)^{4}-2p^{2}q^{2}-2p^{2}(p-q)^{4}-2p^{2}q^{2}-2p^{2}(p-q)^{4}-2p^{2}q^{2}-2p^{2}(p-q)^{4}-2p^{2}q^{2}-2p^{2}(p-q)^{4}-2p^{2}-2p^{2}(p-q)^{4}-2p^{2}-2$ $-2q^{2}(p-q)^{2}) \overline{I}_{1}(p^{2},(p-q)^{2},q^{2},\mathcal{E}M_{V}^{2},M_{HI}^{2},M_{H2}^{2})]. \quad (4.12)$

 $\int_{M}^{T} \left(p^{2}, q^{2}, \left(p - q \right)^{2} \right) = \pm \frac{i}{16\pi^{2}} \frac{1}{16\pi^{2}} \int_{M}^{T} \left(p^{1}, q^{2}, \left(p - q \right)^{2} \right) = \pm \frac{i}{16\pi^{2}} \frac{1}{16\pi^{2}} \int_{M}^{T} \left(p^{1}, q^{2}, \left(p - q \right)^{2} \right) = \pm \frac{i}{16\pi^{2}} \frac{1}{16\pi^{2}} \int_{M}^{T} \left(p^{1}, q^{2}, \left(p - q \right)^{2} \right) = \pm \frac{i}{16\pi^{2}} \frac{1}{16\pi^{2}} \int_{M}^{T} \left(p^{1}, q^{2}, \left(p - q \right)^{2} \right) = \pm \frac{i}{16\pi^{2}} \frac{1}{16\pi^{2}} \int_{M}^{T} \left(p^{1}, q^{2}, \left(p - q \right)^{2} \right) = \pm \frac{i}{16\pi^{2}} \frac{1}{16\pi^{2}} \int_{M}^{T} \left(p^{1}, q^{2}, \left(p - q \right)^{2} \right) = \pm \frac{i}{16\pi^{2}} \frac{1}{16\pi^{2}} \int_{M}^{T} \left(p^{1}, q^{2}, \left(p - q \right)^{2} \right) = \pm \frac{i}{16\pi^{2}} \frac{1}{16\pi^{2}} \int_{M}^{T} \left(p^{1}, q^{2}, \left(p - q \right)^{2} \right) = \pm \frac{i}{16\pi^{2}} \frac{1}{16\pi^{2}} \int_{M}^{T} \left(p^{1}, q^{2}, \left(p - q \right)^{2} \right) = \pm \frac{i}{16\pi^{2}} \frac{1}{16\pi^{2}} \int_{M}^{T} \left(p^{1}, q^{2}, \left(p - q \right)^{2} \right) \left(p^{1}, q^{2}, \left(p - q \right)^{2} \right) \left(p^{1}, q^{2}, \left(p - q \right)^{2} \right) = \pm \frac{i}{16\pi^{2}} \frac{1}{16\pi^{2}} \int_{M}^{T} \left(p^{1}, q^{2}, \left(p - q \right)^{2} \right) \left(p^{1}, q^{2}, \left(p - q \right)^{2} \right) \left(p^{1}, q^{2}, \left(p - q \right)^{2} \right) \left(p^{1}, q^{2}, q^{2} \right) \right) \left(p^{1}, q^{2}, q^{2} \right) \left(p^{1}, q^{$ $\int^{\pi(4)} (p^2, q^2, (p-q)^2) = \left[3 + \frac{1}{M_v^2} \left(\frac{14}{3} q^2 - \frac{5}{3} p^2 + \frac{1}{4} \right) \right]^{2/4}$ $+\frac{8}{3}(p-q)^{2}+3M_{H}^{2})-\frac{1}{6}\frac{(p-q)^{2}}{M_{v}^{4}}((p-q)^{2}-p^{2}+q^{2})]P+$ $+ M_{V}^{2} \left[\frac{1}{2} \frac{1}{p^{2}} + \frac{1}{M_{V}^{2}} \left(\frac{7}{6} - \frac{M_{H}^{2}}{2p^{2}} - \frac{2}{3} \frac{p^{2} - q^{2}}{(p - q)^{2}} \right) + \frac{1}{6} \frac{1}{M_{V}^{4}} \left(p^{2} - \frac{1}{2p^{2}} + \frac{$ $-q^{2} - (p-q)^{2} \Big] \Big(\ln \frac{M_{\nu}^{2}}{M_{\mu\nu}^{2}} - 1 \Big) + M_{\mu}^{2} \Big[-\frac{1}{2} \frac{1}{p^{2}} + \frac{1}{2} \frac{p^{2} + M_{\mu}}{M_{\nu}^{2} p^{2}} \Big] \times$ $\times \left(l_n \frac{M_{\mu}^2}{M_{W}^2} - 1 \right) + \left[\frac{3}{2} + \frac{M_{\mu}^2}{p^2} - \frac{1}{2} \frac{M_{V}^2}{p^2} + \frac{1}{M_{V}^2} \left(p^2 + \frac{q^2}{2} + \frac{q^2$ $+ M_{H}^{2} - \frac{1}{2} \frac{M_{H}^{4}}{p^{2}} - \frac{1}{2} \frac{1}{M_{V}^{4}} \left(p^{2} + M_{H}^{2}\right) \left(q^{2} + M_{H}^{2}\right) \left[\frac{1}{2} \left(p^{2} + M_{H}^{2}\right)^{2}\right] + M_{H}^{2} \left(p^{2} + M_{H}^{2}\right) \left(q^{2} + M_$ $+ \left[-\frac{1}{2} + \frac{1}{2} \frac{1}{M_{\nu}^{2}} \left(q^{2} - p^{2} \right) + \frac{1}{2} \frac{1}{M_{\nu}^{4}} \left(p^{2} + M_{H}^{2} \right) \left(q^{2} + M_{H}^{2} \right) \right] \overline{T}_{o} \left(q^{2}, \frac{1}{2} \right) \left(q^{2} + M_{H}^{2} \right) \left(q^$ $M_{H_1}^2 M_V^2 + \left[-\frac{2}{3} + \frac{2}{3} \frac{p^2 - q^2}{(p - q)^2} + \frac{3}{2} \frac{1}{M_V^2} (q^2 - p^2 + (p - q)^2) + \right]$

 $+\frac{1}{12}\frac{1}{M_{v}^{4}}(p-q)^{2}(p^{2}-q^{2}-(p-q)^{2})]\overline{I}_{o}((p-q)^{2},M_{v}^{2},M_{v}^{2})+$ $+ \left[M_{v}^{2} - 2M_{H}^{2} + 3q^{2} - p^{2} + \frac{1}{2}(p - q)^{2} + \frac{1}{M_{v}^{2}} \left(\left(q^{2} + M_{H}^{2} \right)^{2} + \right)^{2} \right]$ $+ \left(q^{2} + M_{H}^{2}\right) \left(p^{2} + M_{H}^{2}\right) - \left(p^{2} + M_{H}^{2}\right)^{2} + \frac{1}{2} \left(p - q\right)^{2} \left(p^{2} + q^{2} + q^{2}\right)^{2}$ $+2M_{H}^{2}))+\frac{1}{2}\frac{1}{M_{V}^{4}}(p-q)^{2}(p^{2}+M_{H}^{2})(q^{2}+M_{H}^{2})]\overline{1}_{1}(q^{2},$ $(p-q)^2, p^2, M_{\mu}^2, M_{\nu}^2, M_{\nu}^2) + 2 \left[\frac{p^2+q^2}{2} - 3pq + 2M_{\mu}^2 - 3pq + 2M$ $-M_{V}^{2} + \frac{1}{2} \frac{(p-q)^{2}}{M_{V}^{2}} (p^{2}+q^{2}+2M_{H}^{2}) - \frac{1}{M_{V}^{2}} (p^{2}+M_{H}^{2})(q^{2}+M_{H}^{2}) - \frac{1}{M_{V}^{2}} (p^{2}+M_{H}^{2})(q^{2}+M_{H}^{2}) - \frac{1}{M_{V}^{2}} (p^{2}+M_{H}^{2})(q^{2}+M_{H}^{2}) - \frac{1}{M_{V}^{2}} (p^{2}+M_{H}^{2})(q^{2}+M_{H}^{2})(q^{2}+M_{H}^{2}) - \frac{1}{M_{V}^{2}} (p^{2}+M_{H}^{2})(q^{2}+M_{H}^{2})(q^{2}+M_{H}^{2}) - \frac{1}{M_{V}^{2}} (p^{2}+M_{H}^{2})(q^{2}+M$ $-\frac{1}{2} \frac{(p-q)^2}{M_V^4} (p^2 + M_H^2) (q^2 + M_H^2) \Big] \frac{1}{p^4 + q^4 + (p-q)^4 - 2pq^2 - 2p(p-q)^2 - 2q(p-q)^2}$ $* \left[-2q^{2} \overline{T}_{o}(q^{2}, M_{H}^{2}, M_{v}^{2}) + 2pq \overline{T}_{o}(p^{2}, M_{H}^{2}, M_{v}^{2}) + 2(q^{2} - q^{2}) \right]$ $-pq)\overline{f_{0}(p-q)^{2},M_{v}^{2},M_{v}^{2})} + 2((q^{2}-pq)(M_{u}^{2}-M_{v}^{2})+q^{2}(pq-p^{2})),$ $\left(\frac{2}{3} + \frac{4}{9} \frac{(p-q)^2}{M_{\nu}^2} + \frac{1}{18} \frac{(p-q)^4}{M_{\nu}^4}\right),$ (4.14)

 $\int^{1} {\binom{2}{p^2}} (p^2, q^2, (p-q)^2) = \left[\frac{3}{3} + \frac{1}{M_v^2} \left(\frac{14}{3} p^2 - \frac{5}{3} q^2 + \frac{1}{3} q^2 \right) \right]$

 $+\frac{8}{3}(p-q)^{2}+3M_{H}^{2})+\frac{1}{6M_{v}^{4}}(p-q)^{2}(q^{2}-p^{2}-(p-q)^{2})]P+$ $+ M_{v}^{2} \left[\frac{1}{2} \frac{1}{q^{2}} + \frac{1}{M_{v}^{2}} \left(\frac{7}{6} - \frac{1}{2} \frac{M_{u}^{2}}{q^{2}} - \frac{2}{3} \frac{q^{2} - p^{2}}{(p - q)^{2}} \right) + \frac{1}{6} \frac{1}{M_{v}^{4}} \right]$ $* \left(q^{2} - p^{2} - \left(p - q\right)^{2}\right) \left(l_{H} \frac{M_{v}^{2}}{M_{w}^{2}} - 1 \right) + M_{H}^{2} \left[-\frac{1}{2} \frac{1}{q^{2}} + \frac{1}{2} \frac{1}{M_{v}^{2}} \right]$ $\frac{q^{2} + M_{H}^{2}}{q^{2}} \left[\left(l_{H} \frac{M_{H}^{2}}{M_{V}^{2}} - 1 \right) + \left[-\frac{1}{2} + \frac{1}{2} \frac{1}{M_{V}^{2}} \left(p^{2} - q^{2} \right) + \right] \right]$ $+\frac{1}{2}\frac{1}{M_{\nu}^{4}}\left(p^{2}+M_{\mu}^{2}\right)\left(q^{2}+M_{\mu}^{2}\right)\left[\overline{I}_{0}\left(p^{2},M_{\mu}^{2},M_{\nu}^{2}\right)+\left[\frac{3}{2}+\frac{M_{\mu}^{2}}{q^{2}}-\right.\right.$ $-\frac{1}{2}\frac{M_{V}}{q^{2}}+\frac{1}{M_{V}^{2}}\left(q^{2}+\frac{p^{2}}{2}+M_{H}^{2}-\frac{M_{H}^{2}}{2q^{2}}\right)-\frac{1}{2}\frac{1}{M_{V}^{4}}\left(p^{2}+M_{H}^{2}\right).$ $\left(q^{2}+M_{H}^{2}\right)\left[\overline{\int}_{0}\left(q^{2},M_{H}^{2},M_{V}^{2}\right)+\left[-\frac{2}{3}+\frac{2}{3}\frac{q^{2}-p^{2}}{\left(p-q\right)^{2}}+\right]$ $+\frac{3}{2}\frac{1}{M_{v}^{2}}\left(p^{2}-q^{2}+\left(p-q\right)^{2}\right)+\frac{1}{12}\frac{1}{M_{v}^{4}}\left(p-q\right)^{2}\left(q^{2}-p^{2}-p^{2}-p^{2}\right)$ $-(p-q)^{2}\left|\frac{1}{I_{o}}\left((p-q)^{2}M_{v}^{2}M_{v}^{2}\right)+\left[M_{v}^{2}-2M_{H}^{2}+3p^{2}-q^{2}+\right]\right|$ $+\frac{1}{2}(p-q)^{2}+\frac{1}{M_{\mu}^{2}}\left(\left(p^{2}+M_{\mu}^{2}\right)^{2}+\left(p^{2}+M_{\mu}^{2}\right)\left(q^{2}+M_{\mu}^{2}\right)-\left(q^{2}+M_{\mu}^{2}\right)^{2}\right)$ $+\frac{1}{2}(p-q)^{2}(p^{2}+q^{2}+2M_{H}^{2}))+\frac{1}{2}\frac{1}{M_{V}^{4}}(p-q)^{2}(p^{2}+M_{H}^{2})(q^{2}+M_{H}^{2})$ $\frac{1}{2} \left(q^{2}, \left(p - q \right)^{2}, p^{2}, M_{H}^{2}, M_{V}^{2}, M_{V}^{2} \right) + 2 \left[\frac{p^{2} + q^{2}}{2} - 3pq + 2M_{H}^{2} \right]$

 $- M_{V}^{2} + \frac{1}{2} \frac{1}{M_{V}^{2}} (p-q)^{2} (p^{2}+q^{2}+2M_{H}^{2}) - \frac{1}{M_{V}^{2}} (p^{2}+M_{H}^{2}) (q^{2}+M_{H}^{2}) - \frac{1}{M_{V}^{2}} (p^{2}+M_{H}^{2}) (q^{2}+M_{H}^{2}) - \frac{1}{M_{V}^{2}} (p^{2}+M_{H}^{2}) (q^{2}+M_{H}^{2}) - \frac{1}{p^{4}+q^{4}+(p-q)^{4}-2p^{2}q^{2}-2p^{2}(p-q)^{2}-2q^{2}-2q^{2}(p-q)^{2}-2q^{2}-2q^{2}(p-q)^{2}-2q^{2}-2q^{2}-2q^{2}(p-q)^{2}-2q^{2}-$

In the diagrams (3.4), (4.3), (4.4) and (4.7) the sign "+" corresponds to the case when V is a gauge Z° boson or a photon and the sign "-" to the case when V is a gauge W^{\pm} boson.

The counter terms need for the renormalization of the vertex function in the framework of the supersymmetric (SUSY) model are

 $+\frac{\delta g}{g}+\frac{2R+1}{2(2R-1)}\frac{\delta R}{R}\right]-ie\left[\left(\mathcal{Z}_{H^{\pm}}-1\right)+\frac{1}{2}\left(\mathcal{Z}_{M}-1\right)-\right.$ $-\frac{1}{2}(Z_{A}-1)|$. (4.17)

н±

And next,

H[±]

}___

| H^o₁₂ $\int_{H^{\pm}H^{\pm}H_{12}^{\circ}}^{\infty} \left(p^{2}, q^{2}, t\right) = -ig M_{W} \left[\int_{Sin(B-d)}^{\cos(B-d)} + \frac{1}{2R} \cos 2\beta \right]$ $\left\{ \begin{array}{c} \left\{ S_{in} \left(\beta + \alpha \right) \right\} \\ \left\{ S_{in} \left(\beta + \alpha \right) \right\} \end{array} \right\} \left\{ \left[\left(\overline{Z}_{H^{\pm}} - 1 \right) + \frac{1}{2} \left(\overline{Z}_{H^{o}} - 1 \right) + \frac{\delta q}{q} + \right] \right\} \\ \left\{ \left[\left(\overline{Z}_{H^{\pm}} - 1 \right) + \frac{1}{2} \left(\overline{Z}_{H^{o}} - 1 \right) + \frac{\delta q}{q} + \right] \right\} \\ \left\{ \left[\left(\overline{Z}_{H^{\pm}} - 1 \right) + \frac{1}{2} \left(\overline{Z}_{H^{o}} - 1 \right) + \frac{\delta q}{q} + \right] \right\} \\ \left\{ \left[\left(\overline{Z}_{H^{\pm}} - 1 \right) + \frac{1}{2} \left(\overline{Z}_{H^{o}} - 1 \right) + \frac{\delta q}{q} + \right] \right\} \\ \left\{ \left[\left(\overline{Z}_{H^{o}} - 1 \right) + \frac{\delta q}{q} + \left(\overline{Z}_{H^{o}} - 1 \right) + \frac{\delta q}{q} + \right] \right\} \\ \left\{ \left[\left(\overline{Z}_{H^{o}} - 1 \right) + \frac{\delta q}{q} + \left(\overline{Z}_{H^{o}} - 1 \right) + \frac{\delta q}{$ $+\frac{1}{2}\frac{SM_{w}^{2}}{M_{w}^{2}} - igM_{w}\left[+\frac{1}{2R}\cos 2\beta \left\{\frac{col(\beta+\alpha)}{Sin(\beta+\alpha)}\right\}\right] \times$ $\times \frac{SR}{O} - igM_{W} \left[\begin{cases} \sin(\beta \cdot \alpha) \\ \cos(\beta \cdot \alpha) \end{cases} + \frac{1}{2R} \cos 2\beta \begin{cases} \sin(\beta + \alpha) \\ \cos(\beta + \alpha) \end{cases} \right]^{(4.18)}$ $\left[\left(Z_{H^{\pm}} - 1 \right) + \frac{1}{2} \left(Z_{M2,M1} - 1 \right) + \frac{\delta q}{q} + \frac{1}{2} \frac{\delta M_{W}^{2}}{M^{2}} - ig M_{W}^{*} \right]$ * $\left[\frac{1}{2R}\cos 2\beta \left\{ \frac{\sin(\beta+\alpha)}{\cos(\beta+\alpha)} \right\} \right] \frac{\delta R}{R}$ 5. Summarv

The self-energy and vertex diagrams calculated here will be used in subsequent papers to find out a renormalized expression for the H^+H^- amplitude up to the fourth order of perturbation theory. We have not here written the final general expressions for \prod^{ReN} and $\int^{7} KEN$ because they would take too much space. But they can be quite easily obtained in the framework of the SUSY model by summing up the expressions (3.1)-(3.5) and (4.1)-(4.15) with the concrete values of the coupling constants f^{3H} , f^{HHV} , f^{H} etc.

The authors express their gratitude to V.G.Kadyshevsky, Yu.N. Tyukhtyaev and V.I.Kikot' for valuable discussions.

References

- V.V.Dvoeglazov, F.I.Kikot, N.B.Skachkov. Higgs-Higgs interaction up to higher orders of perturbation theory in the Standard Model. I. Self-energy and vertex diagrams. JINR Communication E2-90-569, Dubna: 1990.
- V. V. Dvoeglazov, V. I. Kikot, N. B. Skachkov. Higgs-Higgs interaction up to higher orders of perturbation theory in the Standard Model. II. Box Diagrams and one-loop amplitudes. JINR Communication E2-90-57⁰, Dubna: 1990.
- 3. Mohapatra H.N., Pati J.C. Phys. Hev. D. 1975, 11, No 3, 566-571.
- 4. Chang D. Nucl. Phys., 1983, B214, No 3, 435-451.
- 5. Albright C.H., Jarlskog C., Tjia M.O. Nucl. Phys., 1975, B86, No 3, 535-547.
- Schechter J., Ueda Y. Phys. Rev. D, 1970, 2, No 4, 736-742, ibid. 1973, 8, No 2, 484-490.
- 7. Maehara T., Yanagida T. Progr. Theor. Phys. 1978, 60, No 3, 822-827; ibid. 1979, 61, No 5, 1434-1446.
- 8. Georgi H., Hadronic J. 1978, 1, No 1, 155-168.
- 9. Donoghue J.F., Ling-Fong Li. Phys. Rev., 1979, 19, No 3,945-955.
- IO. Branco G.C., Buras A.J., Gerard J.-M. Nucl. Phys., 1985, B259, No 2-3, 306-330.
- 11. Haber H.E., Kane G.L. Phys. Repts., 1985, 117, No 2-4, 75-263.
- 12. Gunion J.F., Haber H.E. Nucl. Phys. 1986, B272, No 1, 1-76, ibid. 1986, B278, No 3, 449-492; ibid. 1988, B307, No 3, 445-475.
- 13. Peccei R.D., Quinn H.R. Phys. Rev. Lett. 1977, 38, No 25, 1440-1443; Phys. Rev. D, 1977, 16, No 6, 1791-1797.
- 14.Glashow S.L., Jenkins E.Z. Phys.Lett. 1987, 196B, No 2, 233-236;
 Krawczyk P., Pokorski S. Phys.Rev.Lett. 1988, 60, No 3, 182-185;
 Nandi S. Phys.Lett. 1988, 202B, No 3, 385-387.
- 15.Lee T.D. Phys.Rev.D, 1973, 8,No4, 1226-1239; Weinberg 5. Phys.Rev. Lett. 1976, 37, No 11, 657-661.
- 16.Caso C., Touboul M.C. Riv. Nuovo Cim. 1986, 9, No 12, 1-75.
- 17. Chen A. et al. (CLEO Coll.) Phys. Rev. Lett. 1984, 52, No 13, IO84-IO88; Klopfenstein C. et al. (CUSB Coll.), Phys. Lett. 1983, B130, No 6, 444-448.

 $\mathbf{24}$

 $\mathbf{25}$

- 18. de Sousa Gerbert P.A.S. Nucl. Phys., 1986, B272, No 3-4, 581-597.
- Hsiung Y.B. (E731 Coll.) Preprint FERMILAB_Conf_90/163_E, Batavia, July, 1990.
- Veltman M., Yndurain F. Preprint UM_TH_89-04, Univ.of Michigan, 1989.
- 21. Anselmino M. et al. Preprint IVNET 96, Indiana Univ., 1984.
- 22. Cahn R.N., Suzuki M. Phys.Lett. 1984, 134B, No 1-2, 115-119.
- 23. Hollik W. Z. Phys., 1986, C32, No 2, 291-307.
- 24. Abbott L.F., Sikivie P., Wise M.B. Phys.Rev.D, 1980, 21, No 5, 1393-1403.
- 25. Haber H.E., Kane G.L., Sterling T. Nucl. Phys., 1979, B161, No 2-3, 493-532.
- 26. Hall L.J., Wise M.B. Nucl. Phys., 1981, B187, No 3, 397-408.
- 27. Bardin D.Yu., Fedorenko O.M., Christova P.Ch. Sov.J. Nucl. Phys., 1982, 35, No 5, 1220-1230 (in Russian).
- 28. Bardin D.Yu., Christova P.Ch., Fedorenko O.M. Nucl. Phys., 1980, B175, No 3, 435-461; ibid. 1982, B197, No 1, 1-44.
- 29. Topical Conf. on Radiative Corrections in SU(2), xU(I) Miramare -Trieste, Italy, 6-8 June, 1983.

Двоеглазов В.В., Скачков Н.Б. Н Н -взаимодействие с учетом высших порядков теории возмущений в модели с двумя хиггсовскими дублетами (Собственно-энергетические и вёршинные диаграммы)

В рамках модели электрослабого взаимодействия, содержащей два дублёта хиггсовских бозонов и произвольное число фермионов, вычислены собственноэнергетические и вершинные блоки, входящие в амплитуду хиггс-хиггс взаимодействия в четвертом порядке теории возмущений. Перенормировки всуществияются на Массовой поверхности физических полей после спонтанного нарушения симметрии. Значения констант, как правило, в работе не конкретизируются. Однако в случае такой необходимости использовались значения, полученные для них в рамках Модели, являющейся минимальным суперсимметричным расширением стандартной Модели.

E2-91-114

E2-91-114

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Сообщение Объединенного института ядерных исследования. Дубна 1991

Dvoeglazöv V.V., Skathköv N.B. H⁺H⁻ Interaction up to Higher Orders of Perturbation Theory in the Model with Two Higgs Doublets (Self-Energy and Vertex Diagrams)

Self-energy and vertex blocks that enter into the amplitude of Higgs-Higgs-interaction are calculated up to the fourth order of perturbation theory in the framework of the model of electroweak interaction with two Higgs doublets and an arbitrary number of fermions. The renormalization is performed on the mass shell of the physical fields after a spontaneous symmetry breaking. The values of the coupling constants are, as a rule; not concretized in the paper. In the cases where we need to use them, we take their values obtained in the model with the minimal supersymmetric extension of the standard model (MSSM).

The investigation has been performed at the Laboratory of Theoretical Physics; JINR.

Received by Publishing Department on March 4, 1991.