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1. IntroductJon 
The description of t~daaental particle interactions with the 

help of the gauge fields introduces superfluous degrees of :freedom 
into the theory. This ~nifests itself in the sipqular nature of the 
corresponding Lagrangian or in the presence of constraints in the 
equivalent hamiltonian formulation /l/, The phase space in, this case 
is larger than the physical one which is a hyperaurface determined 
by these constraints. On the physical subspace a usual hamiltonian 
system can be detined without any gauge symmetries and constraints. 

Due to the gauge invariance the basic objects of the theory -
the gauge potentials- :form an overcomplete basis. Gauge fields which 
are connected by an infinitesimal gauge transformation actually des­
cribe the same physical state. Thus the vector potentials are divi­
ded into equivalence classes with respect to the gauge group I' 
action. An equivalence class represents an orbit in the gauge-field 
configuration space. It is rather the space ot orbits than the 
function apace of the gauge fields that has to be viewed as the 
physical space. Transitions along the orbits correspond to pure 
gauge transforwations. These vertical paths are of no physical 
importance. Physically significant are only horizontal paths, i.e. 
paths which are perpendicular to the orbits 121. These paths 
describe the time evolution of the physical system. Fixing the 
gauge, one tries to solve the problem of 
horizontal paths. In fact, this ~na that the 

constructing such 
reduced phase space 

(on which an unconstrained Hamiltonian can be defined) is identified 
with the vector potentials and their conjugate •omenta in this 
gauge. However, Gribov pointed out that the standard. Coulomb gauge 
fails to specifY a unique vector potential for each physical field 
and that the gauge, regarded as a map f~ the physical fields to 
the space of vector potentials, is singular /l/, This result waa 
generalized by singer 121 who showed that there is no co•plete gauge 
for non-Abelian Yang-Mills fields on a 3-sphere and thu• no complete 
gauge on R3 for which the vector potentials are sufficiently regular. 
at infinity. 
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This problem has one more aspect. In the path-integral quanti­

zation of gauge fields one starts from an initial configuration at 

t = 0 and integrates over all histories, i.e. all paths in the gauge 

-field configuration space. In such a way the genuine dynamical time 

evolution is not distinguished from the time evolution generated by 

gauge transformations. An attempt to circumvent this difficulty con­

sists in imposing a gauge condition / 4/; globally, however, this 

approach fails because garden - variety gauges are only locally uni­

que /S/. Thus, one needs a prescription for choosing the paths so as 

.to eliminate the spurious time development due to gauge transforma­

tions. 

Using time as a parameter of the paths in the b~ndle of all 

spatial potentials, we define the tangent of the path A(t) 

d -> 
- A(t). 
dt 

In particular, for vertical paths 

~ ~ -1 ~ 
A(t) • g-1ltJA(t)g(t) - ig (t)Og(t) 

with g(t) an element of ~. the ~angent vector is 

., ... 
~ = A(t) '= De, 

where e = { e a } are the parameters of the infinitesimal transfor­

mation corresponding to g(t). Thus, vertical paths (i.e. paths along 

the orbits) have tangent vectors of the form 
., 

< - no, (1) 

with ,P an arbitrarY Lie-algebra valued function. To eliminate the 

time development due to gauge transformations, one should restrict 

the paths in the path integral to those that are purely horizontal. 

We can de·fine the horizontal ve~tor ~ / 2 ' 61 as a vector orthogonal 

to all vertical vectors t with respect to the scalar product < , > 

in the orbit space, i.e. 

<~, t> = 0 for all vertical t• s • 

Using expression (1), we find/?/ 
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which implies 

n.1 P
11 

a
1 

= o, (2) 

(where P
11 

is the metric in the orbit space) ?ecause of the arbitra­
riness of ljl(x), A path A

1 
(t) is horizontal if its tangent is 

everywhere horizontal and condition (2) leads to the following 
definitiori of a horizontal path in a space with a metric P

11 

D
1

P
11

A
1

=0. (3) 

Thus, the correct definition of the metric in the orbit space 
comes out to be very important for singling out the horizontal paths. 

In this paper we show that. the physical (orbit) space is equip­
ped with a natural projective metric, which provides introduction of 
a symplectic structure therein and construction of Poincare-group 
representation with a nonstandard action on the gauge fields. A 
transition to physical variables is defined which transforms the 
initial theory into a manifestly gauge invariant and Lorentz 
covariant theory of a two-component scalar field. Quantization, 
then, is straightforward- and quantum commutation relations coincide 
with the classical Poisson-bracket ones. 

2. The metric of the orbit space 

The notion of a metric is connected with the definition of the 
measure for a distance between the points in the space. As has been 
mentioned above, one should consider as points in the physical space 
the gauge orbits as a whole rather than the vector potentials, We 
shall show that the consequences of this almost obvious observation 
are far from being trivial. 

Let us consider the simple example of free electrodynamics 

(4) 

' 
F~v a~Av - avA~ 

From Lagrangian (4) the following equations of motion are 
obtained 

a~F~v=O, 

the one with v = 0 being, in fact, a constraint. Its explicit solu­
tion with respect to the time component of the gauge field A 
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(5) 

where G(x-y) is the Green 
sents A as 

0 
a functional of 

function of the Laplace 

the space components A
1 

operator, repre­

thus reducing the 
gauge-field configuration space 

r={AIJ.)->ID=(A 1 }. 

On solution (5) the kinetic term of Lagrangian (4) takes the 

form 

where 

- 8 A 
0 ' 

' 

PlJ=cS~J-alAaJ (6) 

Thus, by analogy with the free-particle action, the natural way 

to define the infinitesimal squared distance in the space m is /B/ 

' •• 
So the space m is endowed with a natural metric P. 
The operator P is a projection operator since p 2 

easily be shown by partial integration 

u • P , v = (P , u) • v 1 

(7) 

P. As can 

so it is self-adjoint. Also the following relations take place: 

a . P = P . a = o, 

P , .SA = 0 1 .SA
1 

= a
1
e, 

where e are the infinitesimal gauge-transformation parameters. 
Thus, the distance between any two points on an orbit vanishes 

and P, in fact, may be considered as a metric in the orbit space 

where points are the orbits as a whole. This metric separates the 
invariant (horizontal) characteristic of the orbit. In the case of 
free electrodynamics, this means that all gauge fields with one and 

the same transverse part belong to the same equivalence class or 
represent the same physical situation. 

From the explicit expression for P
1

J it follows that condition 
(3), which defines the horizontal trajectories in the orbit space, 



is precisely Gauss law. 'So Gauss law provide~ a natural definition 
of horizontal paths. !ntegration only over thiS class of paths means 
that each physical path (i.e. path in which all gauge-equivalent 
potentials are identified) gives rize to a unique, everywhere hori­
zontal path in the orbit space. This is the best that can be achie­
ved in the absence of a global gauge. An analogous statement has 
been proved in ref./5/ for the special case of the temporal gauge. 
We do not fix the gauge but instead solve explicitly the constraint 
equation for A

0 
and concentrate on the structure of the orbit space 

for thus reduced configuration space and especially on its non­
standard metric. The explicit solution of the constraint equation 
has been postulated in the minimal quantization method 1 9- 121. As we 
have seen, this step has not only physical but also deep geometrical 
motivations. 

On solution (5) Lagrangian (4) takes the form 

(8) 

and is Lorentz and gauge invariant. From (8) the canonical momenta 
are obtained 

II 1 = P 1 J 8
0

AJ 

and the Hamiltonian is found to be 

' Jf=-II 
' 

(9) 

(10) 

The coordinates A
1 

and their conjugated momenta IIJ (9) form the 
phase space of the theory (8). In the usual way a symplectic struct­
ure can be introduced in it with a symplectic unit 

E [ _: : l 
and Poisson-bracket relations 

P1 J a (x-y) 
(11) 

A, (x) , AJ (y) { II
1 

(X), ITJ (Y) } = 0 • 

The question one must answer now is whether a representation of 
the Poincare group can be constructed in this space and if so, which 
are the transformation properties of the fields A

1 
with respect to 

it. The next paragraph is devoted to these problems. 
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3. Poincare group representation in the space m 
The canonical energy-momentum tensor for a theory with Lagrang­

ian f is defined as . ~ 
TIJ.V cS allAl 811AI - giJ.V !l • 

For the theory (B) with the metric (6) taken into account we find 

TIJ.V = BIJ.AI P 1 J 8VAJ - ~ g auA 
2 

IJ.V I • .,... J • (12) 

We would like to emphasize that in such a way a symmetric and 
gauge invariant canonical energy-momentum tensor is obtained. It 
differs from the Belinfante one, being its reduction on the 
equations of motion. Thus, tensor (12) appears to be the minimal 
symmetric energy-momentum tensor for the theory under consideration. 

The generators of the Poincare group are 

H P = Jd
3
x T (x) 

0 00 

(13) 

-Jd
3x {K T (X) - JC T (X)] 

I Jo J lo 

M >o X P - Jd
3x X T (X) • 

0 k k 00 

It is not difficult to get convinced in the validity of the 
Poincare algebra for generators {13) 

P,' MJ> 1 

H, M 0' 1 

p 

'' 
M 1 o> 

M , M 
o I o J 

= i(iSI k 

= i p 
' 

=-i • .. 

=-i M ,, 

M1 J, H] = q 

PJ -
• ' J 

P,) 

H 

Now the transformation properties of the field A
1 

under the 
action of generators (13) can be obtained 
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i[ M1 J, Ak(x) =- (x1aJ - xJ8 1) Pkn An 

i e 1[ M01 , AJ(X) J = 5L PJk Ak + aJA, 

where 

a L = -c 1 [x o a I - rIa o], A 

(14) 

Relations (14) show that translations and space rotations act 
on the field A

1 
in the usual way with the metric tensor P

1
J present 

in the transformation laws. Contrary to this, Lorentz rotations act 
in a more speCific manner: in addition to the ordinary Lorentz trans­
formation a gauge transformation occurs with a gauge parameter which 
depends on the metric. 

To summarize, in the space of gauge orbits m with metric (6) 
and symplectic structure (Poisson-bracket relations) (11) a represen-
tation of the Poincare group can be constructed in which boost 

generators induce gauge transformations of the field A
1, or equiva­

lently, vertical translations in the spatial-potential configuration 
space. 

However, the fields A
1 

are still not independent. Transitiori to 
independent physical variables can be performed by the introduction • of an appropriate basis e

1 
, 

' 
Lela: eJa: cS a:(3 • (15) 

a:=t 
Then, the independent physical variables are defined as 

(16) 

In terms of independent variables (16) Lagrangian (8) and thus 
the initial Lagrangian (4) can be rewritten as 

1 
!f. = - a ,a: atJ. ,a. 

' " 
(17) 

Starting from Lagrangian (17), we can repeat the whole procedu-
re described above. Now the canonical momenta and the Hamiltonian 
read 

Pa 8.4 
0 • 

1 

" - Pa Pa + - 8 .. a1 Aa. 

' 
1 • 

' 
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and the energy-momentum tensor is 

This energy-momentum tensor gives rise to a set of generators 

H, P1' mlJ' mok' 

for which the Poincare algebra is closed. So, a representation of 

the Poincare group is defined which transforms the field .Aa as a 

usual two-component Lorentz scalar 

i.[ H, ,/' ] = aoR 

i[ pk, Aa 1 = ak~ 

i[ mok' ,J:1 

i[ m 4° ,. 
= -(x 8 

0 ' 

- x a) R 
' 0 

(18) 

Relations (18') convince us in the relativistic invariance of 

Lagrangian (17)o Its invariance under gauge transformations of the 

initial fields All follows from definition (16) of the independent 

physical variables~- It is free of constraints and contains only 

physical degrees of freedom. Quantization of this Lagrangian is 

straightforward: classical Poisson-bracket relations 

4 0 (X), p~ (y) 

A
0

(x), A~(y) 

8a.{J o5 (x-y) 

( p
0

(x), p~(y) } = o 

become commutation relations in quantum theory. Note, that classical 

and quantized fields are now transformed in a uniform way under the 

action of the Poincare group. Thus, Lagrangian (17) provides a con­

sistent description of the electromagnetic field in an explicitly 

Lorentz covariant and gauge invariant form. 

4. Concluding remarks 

In the previous sectioris we have considered the free electroma­

gnetic field as an illustration of the main ideas of our approach. 

The same procedure can be performed for the free Yang - Mills field 

as well, though with some peculiarities. In this case, the metric 

has the form 

(19} 
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where D is the covariant derivative. Contrary to (6), metric (19) 
depends on the gauge field through the derivative D which means that 
the orbit space of the free Yang - Mills field is not flat but has 
an intrinsic curvature. However, the same is true for the abelian 
gauge field coupled to scalar matter fields /S/. Consideration of 
the singular points of the orbit space with an infinite value of the 
curvature is connected with a more detailed analysis of the zero 
modes of. the inverse operator in the metric. In the latter, the 
effects of the nontrivial topology of the orbit space are manifested. 
In some simple models this provides an interesting topological 
confinement mechanism 1 91 thus suggesting a possible solution of the 
open-colour problem in the more realistic theories. 

With the help of the genuine symplectic structure of the physi­
cal (orbit) space the theory of the free gauge field is formulated 
in a manifestly relativistic-covariant form providing its straight­
forward quantization with the same transformation properties of the 
quantized fields with respect to the Lorentz-group action as in 
the classical theory. The Lagrangian obtained describes an uncon­
strained hamiltonian system. Thus, in the path-integral construction 
one should not encounter difficulties connected with the sin9ular 
nature of the original gauge-field Lagrangian such as the necessity 
of additional conditions and, consequently, the problem of the equi­
valence of different gauges, gauge ambiguities, ghosts and so on. 
These problems will be considered in detail in a separate paper. 

We would like to thank prof.B.Kostant, D.Bennequin and c.Duval 
for fruitful conversations and C.Destri, E.Onofri, V.N.Pervushin 
and A.B.Pestov for stimulating discussions, 
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