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1. Introduction 

· Thermodynauic properties of nuclear matter are of current interest. In 
particular the stiffness is at present under serious consideration be­
cause it contains essential information on the. ~uclear equation of stli:te 
(EOS). The EOS determines the flow properties of colliding heavy nuclei 
as well as the characteristics of the supernova bounce and the neutron 
star gross properties. One goal of the theoretic research in this field 
is the construction of better founded approximations of the EOS and the 
comparison with experimental data. Of particular interest are the phase 
transitions in nuclear matter, such as the liquid-gas transition and the 
auperfluid/superconducting state and pion/kaon condensation and the de­
confinement. 

While heavy ion collisions point to a rather stiff EOS (ct. [1]), the 
models for prompt supernova II explosions seem to require a soft EOS (ct. 
[2]). It has been suggested to resolve this apparent puzzle by taking in­
to account not only the momentum dependen~e of the nuclear forces (cf.[2, 
3]) but also the proper isospin dependence of the stiffness at high den­
sity (cf.[4]). Both ideas stimulated a considerable number of theoretical 
studies in this line. 

Already in 1981 Blaizot and Haensel [5) calCulated the nuclear incom­
pressibility coefficient of isospin-asymmetric nuclear matter in Hartree­
Fock approximation by using effective interactions. Trainer et -al. [6] 
tried to extrapolate the experimental data of the giant monopole reso­
nance to the incompressibility coefficient of infinite nuclear matter. 
For a rather long time the work of Blaizot (7] served as standard refer­
ence for the nuclear incompressibility K ~ 210 MeV. More recently Koleh­
mainen et al.[B] used the Thomas-Fermi approximation and effective inter­
actions of Skyrme type for the determination of the incompressibili~y of 
nuclei in ,coexistence with a neutron fluid. Lopez-Quelle et al. [9] ap­
plied the relativistic Dirac-Hartree-Fock approach to treat iaospin­
asymmetric nuclear matter. They found results in agreement with non­
relativistic calculations relying on the Skyrme interaction. A critical 
review on most !•liable non-relativistic [10] and relativistic [11] cal­
culations can be found in Ref.[2]. For the completeness' sake we recall 
also the relativistic mean field approaches [12] and the series of d'eri­
vations of operative EOS for the simulation of the stellar core col­
lapse [13]. 
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In the present work we stUdy the nuclear EOS at finite temperature and 
arbitrary isospin asymmetry within the Hartree-Fock (HF) approximation 
with effective interactions of Skyrme type. A similar approach has been 
employed by Xuo and collaborators [14) and Vinas et al. [4). The method 
allows for a consistent determination of the proton and neutron chemical 
pote!ltials and thus for the evaluation of the neutron excess in beta­
stable nuclear matter. By using this approach one can estimate also the 
isospin dependence of the incompressibility coefficient. We present our 
results merely in view of the application to the structure and properties 
of neutron star matter which is, due to the long time scales, in beta 
equilibrium. 

In chapter 2 we recapitulate the necessary basic formulae for the 
evaluation of properties of warm isosPin-asymmetric nuclear matter. The 
resulting numerical findings are presented in chapter J. The discussion 
and summary can be found in chapter 4. 

2. Basic formulae 

In the calculation of the properties of finite nuclei and infinite nucle­
ar matter as well a commonly used method is the HF approximation with ef­
fective interactions (cf.[l5] and further Refs. therein). These interac­
tions describe also short-range correlations and therefore, represent a 
kind of phenomenologic G matrix. Often a suitable parameterization is 
chosen to facilitate explicit calculations: the parameters are fixed by 
the requirements of reproducing known nuclear matter properties, such as 
binding energy, saturation density and ao on. 

we use here the famous Skyrme force in the form (5] 
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Inserting the matrix elements (2.1) into the definition of the HP •ingle­
particle (sp.) enerqy E, which is determined ~y the kinetic energy, the 
chemical potential, u, and the HF shift,· tw, 

E(k)- h
2
k'(2m)-

1 - 11 + r""(k), (2.2) 

!:"'" (kl ~ I: 0 Id
3k' (2n)·

3 
f(E[k' Jl C<k,k' lVIII,!<'> - <k' ,kiVIk,II'>J 

V,J 
one arrives at 

2 
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for the protons; for neutrons the replacement n ~ p holds, The nucleon 

distribution functions n
1 
(k), 1 = n, p, depend. on the temperature T and 

read 

n
1 

(k) = [1 + exp(E
1 

j T) )-t. (2.4) 

Since we are interested in isospin-asymmetric nuclear matter, one has to 

solve the system of four coupled equations for the respective sp. ener­

gies and the distribution functions for proton and neutrons self consis­

tently. From the sp. distribution function the particle densities follow 
as usual 

(2.5) 

(we consider not too high temperatures; therefore the antiparticle admix­
tures are negligible). Following Ref.(l4) we introduce an effective mass 
approach in the form 
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By inversion of eq. (2.5) one can explicitly evaluate the f
5

/
2 

integrals 
in eq.(2.7) and thence calculate the chemical potentials of the nucleons. 

For our purposes it is useful to have the EOS in the form p(p,a,T}, 

where a describes the neutron excess 

a = (p - P ) (p + P ) -t, 
n p n p 

(2.10) 

and p is the thermodynamic pressure. To this end we extent a method used 

by Jaquaman et al. [16] to the generic case of arbitrary values of a in 
the rangE:: 0 ••• 1. To do this a virial expansion of the £5/2 integrals is 
exploited, which enables one to use the thermodynamic relation 

(2.11) 

for the explicit determination of the free energy density f. The pressure 
then follows from (cf.[14] for computational details) 

(2.12) 
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in the form 
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The incompressibility coefficient is defined as 

K - 9 (8pf8p), (2.14) 

where again the virial expansion is used for the explicit calculation. A 
useful characteristics of the stiffness of matter is the adiabatic coef­
.ficient r 

r - (P/P) (Bp/Bp). (2 .15) 

3. Numerical results 

Using the EOS (2.13), the pressure as function of the total baryon den­
sity p and the neutron excess a can be easily calculateQ for various tem­
peratures. In Fig.l the isotherms for symmetric nuclear matter are dis­
played. The curves show the knOwn occurrence of the liquid-gas phase in­
stability (cf.[17] for more detailed discus~ions). The critical tempera-

10 

plfm-11 

Fig.l. Isotherms for the pressure as functions of 
the density p for symmetric nuclear matter. 
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ture is in the order of 20 MeV. To get art impression of the isospin de­
pendence in Fig.2 the isotherm T : 10 MeV is displayed for various values 

of the neutron excess a as function of the density. One observes that the 

10 

0.05 0.1 0.15 

Fig.2. The pressure as function of the density for 

isospin-asymmetric nuclear matter at tempe­
rature T = 10 MeV. 

pressure increases with increasing neutronization. This is a consequence 
of the increasing Fermi energy of the neutrons. Note that increasing va­

lues of the neutron excess act as the increase of the temperature [18]: 
the liquid-gas instability vanishes at sufficiently high neutron excess 

or temperature or both. This is in accordance with relativistic HF calcu­
lations of Weber and Weigel [12]. They have shown that for certain para­

meters in Hartree approximation (= mean field theory) there is the phase 
instability in neutron matter which vanishes when including the Fock 

term. For the given temperature T = 10 MeV we find the critical value of 
the neutron excess ac = 0.6. This example also demonstrates the strong 
isospin dependence of nuclear matter Properties. Therefore, the phase di­

agram of nuclear matter must be considered in a three dimensional state 

space, e.g., in the variables T-n-a. The line of critical points pc and 
Tc as function of a and the instability region are considered in more de­

tail in re£.[18]. 
The chemical potentials of protons and neu~rons as function of the to­

tal density for various values of the neutron excess are displayed in 
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Fig.3 in case of vanishing temperature. Using the expression (2.5) for 
the chemical potentials one can easily calculate the neutron excess in 

beta-stable neutron star matter. The relation 

IJra = llP + ll,. + llv (3.1) 

holds for equilibrium with respect to non-strangeness c:.hanging weak in­

teractions. For the electron chemical potential IJ,. the usual formula for 
ideal relativistic electrons is used (we discard here muons). In stable 

neutron star matter the neutrinos diffused away, i.e., the neutrino chem­

ical potential llv vanishes (nv = O). Electric charge neutrality means 
equal densities of protons and electrons. In Fig.4 the resulting neutron 
excess is displayed as function of the density for various temperatures. 

At very low densities the ideal gas approximation appears as rather ac­
curate. In comparison with the ideal gas approximation for the nucleons 

one observes however strong deviations in the region of nuclear matter 
saturation density. This demonstrates the insanity of the ideal gas ap­

proximation. At nuclear matter saturation density the difference is 
rather large (a = o.BJ in contrast to a = 0.92 {19) in ideal gas approxi­

mation at vanishing temperature). This effect is, of course, related to 

so 
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__ ......... o.;' 
/ ..... .. .... 
_ .......... "'as 

..... if:J ... 
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Fig.3. Neutron (full lines) and proton (dashed 
lines) chemical potentials as function of' 
the density at vanishing temperature for 

several values of the neutron excess «. The 
heavy full line is for symmetric nuclear 
matter. 
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the liquid-gas instability, and cannot be described in ·any ideal gas ap­
proximation. Increasing temperature results in an overa~l decrease of the 

0.1 

11T 10 10" 

Fig. 4. The neutron excess a as function of the 
density for beta-stable neutron star matter 
in HF {full lines) and in ideal gas (dash~d 
lines) approximations for several tempera­
tures. 

neutron excess. For larger densities (say, above two times the nuclear 
matter saturation density), the results must be taken with caution, be­
cause the Skyrme parameterization becomes too repulsive in this density 
region. Also the non-relativistic approach is not longer valid. Using the 
ultra-relativistic ideal gas approximation for nucleons one finds the li­
miting value a

11
• = o. 77 (19]. Even though the proton concentration in 

interacting beta-stable neutron star matter is considerably larger than 
in case of non-interacting {ideal) nucleons, the neutron excess is still 
too large to allow for the liquid-gas instability (see Figs.2,4). 

In Fig.s the incompressibility coefficient K
0 

• K{p
0

) as function of 
the neutron excess is displayed for different temperatures. The satura­
tion point p

0 
is defined by the minimum of the internal energy or p c o: 

hence p
0 

depends on o: and T. one observes a drastic decrease with in­
creasing values of o:. This is a wanted effect for resolving the apparent 
discrepancy of the stiff Eos needed for ·interpreting the flow effects in 
high-energy nuclear collisions and the needed softness of the EOS in mod-
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eling the supernova bounce (2]. Observe also the softening of the EOS 
with increasing temperature. The Fig.S shows that the chosen parameters 

of the Skyrme fore~ (Eq. (2.1)) result in a rather stiff EOS at vanishing 

temperature. 
In Fig.6 the adiabatic index r as function of the density is displayed 

for vanishing temperature. For high values of the density, r increases 

rapidly because the short-range repUlsive correlations become operative. 
This behavior is in contrast with the ideal gas approximation of the neu­
tron-proton-electron mixture, which shows a slightly decreasing r. The 

differences between pure neutron matter and beta-stable neutron star mat­
ter are rather negligible. That is,. the use of the EOS of pure neutron 

matter may serve as good approximation in neutron star calculations. Note 

the large difference to the results of the EOS II of Baym, Bethe and 

Pethick [20], who considered the clustering of nucleons in the region of 
sub-nuclear densities, not included here. The dip in their EOS is caused 
by the neutron dripping-out at densities slightly above 3 · 1011 g cm-3

• At 

higher densities {i.e., slightly below nuclear saturation density) the 
nuclei dissolve, and the results of ref.[20] and ours are rather similar. 

Although the EOS of Re£.[20] shows the steep increase of r in the supra­
nuclear density region as our EOS, there is some quantitative difference 

which may be traced back to the too strong repulsive Skyrme force at high 

density. 

Ol 02 Q.3 0.4 0.5 0.6 0.7 oc. 

Fiq.s. The incompressibility coefficient K
0 

at 

saturation density as function of the 
neutron excess tt for several temperatures. 
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Fig.6. The adiabatic index r as function of the 

density at vanishing temperature (dashed 

line: beta-stable neutron star matter in HF 

approximation, heavy dotted line: mixture 

of ideal ' neutron-Proton-electron gases, 

full line: pure neutron matter in HF appro­

ximation, dotted line: results of ref.(20]). 

'· Discussion and Summary 

We consider here warm lsospin-asytmetric nuclear matter within the HF ap­

proximation With an effective and density dependent interaction of Skyrme 

type. Using a suitable representation of the EOS we calculate the che­

mical potentials of the nucleons, and with this at disposal the neutron 

excess in beta-stable neutron matter. Therefore, the nuclear incompressi­

bility coefficient as function of density and neutron excess and tempera­

ture is accessible. we also consider the adiabatic index at vanishing 

temperature. 
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The EOS is affected by the growing neutron excess in two ways: first, 

the pressure increases, and second, as consequence, there is a critical 
neutron excess above which the liquid-gas instability does not longer ap­

pear. The neutron excess for very dilute beta-stable neutron star matter 
is found to agree fairly well with the ideal gas predictions (note how­
ever, that we do not include here clustering effects). In the density 

rang-e 10-2 < p < 3· 10-1 fm-3 we find a strong influence of the interac­

tion which results in a larger concentration of proto~s. This is of im­
portance for the suprafluidityjsupraconductivity which are considered 

elsewhere. 
In agreement with the findings of other authors we also get a very 

strong decrease of the incompressibility with increasing neutron excess. 
This can.be considered as support of the idea to resolve the conflict of 

the stiff EOS as "observed" in relativistic heavy-ion collisions and the 
need of a soft EOS· to run successful supernova models with prompt explo­

sion by bounce-off. Growing temperature also considerably softens the 

EOS. 

The adiabatic index as global measure of the stiffness of the EOS 
shows in a clear manner the need of including repulsive correlations 

caused in the high-density region by the hard core of the nucleon-nucleon 
interaction; at low densities the ideal gas approximation turns out to 

agree with the results of the HF approximati-on. Because of the lack of 
bound states and clusters in the HF approach our EOS differs in the low­

density region from them of Ref.[20]. 
Altogether we state that the HF approximation allows one to para­

meterize the nuclear EOS in an appropriate way. The parameters of the 
underlying effective density dependent force are fixed in order to repro­
duce known nuclear· properties. With this at disposal one can extrapolate 

to beta-stable neutron star matter and fix some important values needed 
for further investigations. Unfortunately, the present calculations are 
restricted to densities not being too high (due to non-relativistic 

treatment) and not being too small (due to the lack. of including clus­
tering effects). 

In summary we present here an investigation of the nuclear EOS in a HF 
approach. In agreement with earli'er findings we confirm the very sensi­
tive dependence of the incompressibility coefficient on the neutron ex­
cess and the temperature. _The proton admixture in beta-stable n~utron 

star matter is considerably enhanced by the interaction. 
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