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1. INTRODUCTION 

In the present paper, following 11•21 , we consider the Schro
dinger equation 

i h a 'I' 1 a t = H c t, i. P' > 'I' (1.1) 

for a system with v degrees of freedom and with Hamiltonian 
in arbitrarily time-dependent quadratic form in the coordina
tes i and momenta p: 

1 .-.a.-. f3 f3 .-.a.-. ... .-.a af3. A A 

H=21Aaf:l(t)x x +Ba(x Pf3+Pf3X )+C (t)PaPf31. 
(1. 2) 

Here and in what follows.it is understood that repeated Greek 
indices are summed from 1 to v. The problem of field quantiza
tion in an arbitrarily prescribed pseudoriemaniam space-time 
world reduces to this very problem/3/ , except that the number 
of degrees of freedom is infinite. The present problem, howe
ver, is obviously interesting quite apart from its applica
tions in quantum field theory. 

It is, of course, impossible to solve this problem in the 
general case in terms of already studied functions. This is 
impossible even for the corresponding classical Hamilton equa-

tions 
~a 

dt ap 
a f3 af3 

Bit) x + C (t) Pf3' 
(1. 3a) aH 

a 

~ = _ aH 
dt axa 

(1.3b) f3 f3 
= -A{:la(t)x -Ba(t)pf3. 

We shall proceed to show, however, 11ow to construct a complete 
system of solutions of Eq.(1.1), as soon as a general solution 
of Eqs. (1.3) 

a a - f3 af3 o a a 
X = K 1t) X + L (t) p Q• X I = X 0' 

tf 0 ~ t=t 

{3 {3 
Pa = Mf:la(t) x 0 + Na (t) p~, 

0 

P I - o 
a t=t - Pa:• 

0 

Ob~tll!il:l1_\ilihi2 P.HCT'in'y7 I 

, fUi-e~ln~_.!.!!;C.,~Jlo.u::w,;'1 j 

(1.4a) 

(1.4b) 



is known. Accordingly, it will 
of the quantum system with the 
known as·soon as one knows the 

be shown here that.the behaviour 
Hamiltonian (1.2) is actually 
behaviour of the corresponding 

classical system. 
In the next section 

dinger equation 
ia/h 

with a 
an attempt is made to satisfy the Schro
function of the form 

'I' = v7J e (1.5) 

.. by equating the coefficients of,rall powers of h to zero. It 
turns out that this is possible for the Hamiltonian (1.2). 
In Section 3 the general solution of this form is found. We 
shall call it the fundamental solution of the Schr6dinger equa- _ 
tion. Each fundamental solution is characterized by v + 1 comp- ~ 
lex parameters ul' .•. , u11 , Uv+l and v(v +1Y2 complex parame-
ters Safj= Sf3a • The parameters u, u11 + 1 are arbitrary. There 
are no conditions imposed on the real part of the matrix S = 
= R +iQ, except the condition that it be symmetric. The matrix 
Q is assumed to be positive definite. This is necessary in or-

-der' that the fundamental solution possesses a norm. The func
tion·p satisfies the equation of continuity and is given by 

a ay -1 
• P =·p011 K,it) + L (t) S{Jyll (1.6) 

where ··p
0 

is a normalization constant. The function a· satisfies 
the Hamilton - Jacobi equation 

r . . . 

aa 1 a f3 {3 a aa af3 aa fia 
- + -....: lAafJ<t> x x + 2B (t) x -.-·a + c (t) -. - "'15' I= o < 1. 7) at ' 2 ' a iJ xfJ axa fjxtJ 

and the initial condition 

- 1 af3 a 
al =- 8 f3X X +UaX +Ull+l' _, 

t=t 2 a '· 

In r:la~ion to the parameters u; Uv+l the function a is a comp- !l 
lete integral of Eq.(l.7). 

(1.8) 
-~ 
j 

By differentiating the fundamental solution of the Schrodin
ger equation with respect to the parameters "a we can get more 
and more new solutions of the equation. This has enabled us in 
Sec.4 to introduce a generating 'I' function, which is itself 
a solution of the Schrodinger equation and gives a complete or
thogonal system of solutions. These last differ from the funda
mental solution by factors which are Hermite polynomials of 
certain linear combinations of the coordinates xa with coeffi
cients which are functions of the time. 

2 
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Owing to this, we have been able in Section 5 to introduce 
the Fock representation, which is so convenient in quantum 
field theory, for our present case of the system with the Ha
miltonian (1.2). According to the terminology used in quantum 
field theory, the fundamental solution of the Schrodinger equa
tion is called the vacuum state; the other solutions given by -
the geil'erating function are states with prescribed numbers of 
particles. The operators xa and Pa then appear in-the role of 
field operators.Operators for annihilation and creation of par
ticles can be expressed in terms of the ia and pa.Owing to the 
finite number of degrees of freedom of the system considered 
here,the configuration space of the particles introduced in 
this way consists of v points in all. 

This result is nontrivial even for the simplest system, 
with A = E, B = 0, C = E; the well-known result here applies 
only to the extremely special case u = 0, R = 0, Q = E. 

Having defined the vacuum state as the above-mentioned fun
damental solution with the parameters S, u, u

11
+

1 
we have con

sid~rably broadened this concept, because the usually accep
ted practice is to associate the vacuum state with the smallest 
value of the energy. In the general case of the time-dependent 
Hamiltonian (1.2) an analog of energy could be its mean vacuum 
value. In our treatment, however, the Hamiltonian (1.2) does 
not necessarily have to be positive definite. Therefore in the 
general case we cannot raise the question of its lowest mean 
value. But even if we stipulate that the Hamiltonian (1.2) is 
positive definite at all times, its vacuum average will depend 
on the time, and it is not possible to minimize it at each va
lue of the time by varying the constants S and u. Indead, in 
this way we can arrive at the equation u = 0. It can in fact 
be shown that 

<OIH(t, i, p) IO> = H(t, i, p) + 

A B' h -J. 
+-S"Q (K'+S*L' M+S*N) ( ) 

4 r B C 

(1. 9) 
K + LS 

( ) . 
M' + N'S 

where 

- A i -1 -1 + 
X = < 0 I X I 0> = - [ (K + LS*) Q u, - (K + LS) Q u ], 2 -

- A 1 ..,-1 -1 p = .< 0 I pI 0> = - [ u""- (M + S*N) - u*Q (M + SN)]. 
2 

(1.10) i 
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The matrix notations used here are explained in Sec.3. The 
vacuum averages x, p obey the classical Hamilton equations 
(1.3). If the Hamiltonian is po'sitive definite at all times, 
then H(t, x, p) > 0 whenever not all x and pare equal to zero, 
and H(t, 0, 0) = 0. But. if i = 0, p = 0, then u = 0. The trace 
of the matrix in the second term of ( 1. 9) ... can depend on the 
time, and then_ we cannot minimize it at each value of the time 
with any choice of the parameters S. 

The minimum principle also does not work in the case of a 
Hamiltonian which does not depend,·on the time but is not posi
tive definite. For example, for A = 0, B = 0, C = E, we would 
get from the minimum principle p= 0, S = 0. This last equa
tion, however, contradicts the condition that the matrix Q be 
positive definite. Moreover, x remains entirely arbitrary. Ne
vertheless the Fock representation can be used in the most ge
neral case of the Hamiltonian (1.2), and so also can our pro
posed broad interpretation of the vacuum. If indeed there 
exists some positive definite integral of the motion, an opti
mal choice ~f the_parameters can be prescribed by the condition 
that its vacuum average be a minimum. 

2. ATTEMPT TO SOLVE SCHRODINGER EQUATION 

We shall solve the Schr.odinger equation in the x representa
tion, setting 

1 II 
'P='P(t,x , ••• ,x ), 

~a a 
X =X , P = - ih a a -axa . (2.1) 

If we represent 'P in the form ( 1. 5), where ·p and u are func
tions of t , x1 , ••• , x11 (we do not require that they be real!),' · 
Eq.(l.l) can be rewritten in the form 

au ( au - -+ H t, X, -) = at_ ax 
(2'. 2) 

hll a,13 
+ -C (t) 

2y·p 

•2-a '1/·p 
"axaax'P' 

ih a-p a a 
=. - [ - + - (-pv ) ] 

2·p at axa 
·q :~ .. ; 

where 

a . a {3 a{j au 
v =. Blt)x +0 (t) ~-· 

. ax . 
(2.3) 

'I•' 

4 

I 
I 

j 

I 
I 

II 

I 

l 
I 
I 
I 

'\' 

1 
11 

!J 
I[ 

r 

I 

I 
'I 
I 

We shall try to solve Eq.(2.2) by equating the coefficients 
of powers of h to zero. The zeroth order gives the Hamilton -
Jacobi equation (1.7), the first order, the equation of conti
nuity 

a·p a a 
-- + - (·pv ) = 0 . a ' at ax. 
and, finally, the second order gives the equation 

. 2 -
a/3 ) a y·p = 0. c (t -;-~ 

ax ax 

(2.4) 

(2.5) 

Suppose that the function u = u( t , x 1 , ••• , x11 ) satisfies 
the Hamilton - Jacobi equation (1.7) and that its value at t = 
= t 0 is 

ul 
t= t 

0 

1 II 
u (x , ..• , x ) • 
0 

By the use of the well-known Liouville - Lindelof theorem in 
the theory of ordinary differential equations, it is not hard 
to find the function p from (2.4). Because the point is an im
portant one we give the d~ta~l]f calculation. 

If we substitute Pfj =au/ax in (1.3a) we get a syst_em of11 
ordinary differential equations · 

a . 
dx a {3 a{3 a 1 II a 
-+Bf3't)x +0 (t) 7 u(t,x, ... ,X)=V. 
dt ax (2.6) 

We find the general solution, 

a a f3 a/3 · 1 11 · :'3 
X =Ka(t) xo + L (t) au (x ' .. ~.X ) lax ' 

~ 0 0 0 0 (2. 7) 

of this system if we substitude in (1.4a) 

o· 1 v ·f3 
p{j = au

0 
(x

0
, ••• , x

0
) lax

0
• 

From this we can get the first integrals xg = x~ (t,x1 , ••• ,x11) 

of system (2.6). They obey the partial differential equation 

· a · a 

~ + v 13~ = o~ at axP (2.8) 

5 



Differentiating (2.8) with respect to xY, we get 

cl-
at 

. a 
(3 a axo 

+V -)-ai ax'Y 

Consequently, 

a {3 a . 
(--- + v -:-a> J at axP 

where 

J 

. 1 v 
~(xo, .•. , xo> 

acx1; ... , r') 

• t:J • a 
av~-' axo 

- axY -;~· 

. (3 
- J av 

a x'f1 ' • .! 

And therefore we have found the solution of-Eq.(2.4): 

-2 
a a.y a . 1 v -1 

·p ,..·poJ =·po II Kit) + L (t) . ·y· .j3 ao (xo, .•. , xo) II . 
axoa 0 

(2.9) 

(2.10) 

(2.11) 

In order to satisfy (2.5) it is sufficient to prescribe the 
initial function a 0 in the form of the second-deyree polynomial 
( 1. 8). When this is do_ne p does not depend on x , ... , x

11 
at 

all and is given ( 1. 6). 
Accordingly, our attempt to solve Eq.(2.2), and thus also 

the Schrodinger equation, has been justified. The only thing 
remaining is to solve the Hamilton - Jacobi equation (1.7) 
with the initial function (1.8). 

3. THE FUNDAMENTAL SOLUTION 

For brevity and, we may add, expressivity in the writting 
we use matrix(jcalculations. We lay out sets of quantities of 
forms Aa(j, Ba, caf3, xa in the following way: 

A1v 

) 
I Bl . . . B~ 1 

B = 

\ s~ 
. . . Bv 

v 

(

. A~1 

A ':"' • 

1\i Aw 

6 

·I 

I 

~ 

·~ 

i[ 
.... 
i' 

( 

C 11 •. • • C 1V ) ( X 1 ) . . . . . . 
C= • • • • • x= : 

CV1 : : : CW XV 

We arrange a set of quantities of the for:m.Pa in a row p =:= .. 

= (p 1 ••• Pv) • Th~. derivative operatQr~ a;axa form a row a;ax, 
and the operators a;apaform a column a;ap. w~ shall regard co
lumns and rows of the types x, p as rectangular matrices. 
Transposition will be denoted by a prime. Thus the transposed : 
column x becomes a row x', and the transposed row pis a column 
p'. The matrices A and C which appear in the Hamiltonian are 
symmetric, i.e., A'= A, c·= C. The matrix S which appears in 
the initial condition (1.8) is also symmetric. 

In matrix notation the Hamilton equations (1.3) can by writ
ten in the form 

dx au , dp au , 
- = - = Bx + Cp , - = - - = - x A - pB, 
ili ap ~ ax 

and their solution (1.4) can be written in the form 

x=Kx0 +LP0, P=x0M+p
0

N. 

We need to solve the Hamilton - Jacobi equation 

a a 1 I , a a aa a a 
- + -- x Ax + 2- Bx + - C -- I = 0 at 2 ax ax ox' 
with the initial condition 

a ( '0 , x) = a0 (x) = _!. x' Sx + ux + u v + 1 • 2 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

· f By the method of characteristics we have 

!, 
! ~ = - H + p £..1! = .!.. I pCp' - x' Ax I = ~- ~ px. 

dt ap 2 2 dt 
(3.5) 

From this we get 

1 aao (xo) 1 1 
a=a (x) --- x0 +-PX=-(UX 0 +pX) +U 

1
• 

0 0 2 ax 2 2 V+ 
0 

(3.6) 

In order to express x0 and p in terms of x we must substitude 

a 
p = -- a ( x ) = u + x' S 

0 ax 0 0 0 
(3. 7) 

0 

7 
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in the solution (3.2) of the Hamilton equations (3.1): 

x = (K + LS) x0 + Lu' , p = x 0 (M + SN) + uN • (3.8) 

From this we can find x 0 and then p, under the condition 
IlK+ LSII" 0. We shall prove this last inequality, assuming that 
the ~ function (1.5) has a norm. To do so we need some informa-
tion about the matrices K, L, M, N. 

If the phase-space vectors ( Y,) and ( x,) both satisfy the 
q .J p 

Hamilton equations (3.1), then 

d ( qx - py ) I dt = 0 , i.e. qx - py = q0 x0 - P0 Y0 • (3.9) 

Consequently, the solution (3.2) of the Hamilton equations 
(3.1) gives a symplectic transformation of phase space. From 
(3.9) there follows directly the matrix equ~tion 

= . (3.10) (K' M) ( 0 -E)' ( K L ) ( 0 -E) 
V N E- 0 M' N' E 0 

From this we get 

(
N -L')(.K L) (E 0) (K L )(N 
-M K' ,,M' N' = 0 E = M' N' -M 

-C) 
K' 

i.e., 

MK = K' M', KL '= LK ', KN - LM = N' K' - M' L' = E , 

NL = L 'N ', M' N = N' M, NK - L 'M '= K' N'- ML = E. 

(3.11) 

(3.12) 

It can also be shown that the determinant of any symplectic 
transformation is equal to unity. The group properties of symp
lectic transformations are obvious. Equation (3.11) enables us 
to solve the equations (3.2) for Xo and Po= 

N L , ' 'M' K X 0 = X- p ' Po =-X + p • (3.13) 

This amount of information about the matrices K, L, M, N will 
be enough for our purposes. 

We now resolve the matrix S into real and imaginary parts 

S ~ R + iQ. (3.141 

8 

.. 
~ 

;. 

J. 
' 

In order for the ~ function (1.5) to have a norm at t = t
0 

, 
the quadratic form x'Qx must be positive definite. We shall 
show that in this case the matrix K + LS has an inverse. First 
we note that the matrix 

(
K + LR L) ( K L) (E 0) 
M'+N'R N' = M' N' R E 

(3.15) 

is a symplectic one, since both factors in this product are 
symplectic matrices. In view of the fact the determinant of 
symplectic matrix is not zero, the rows of the rectangular mat
rix (K + LR L) are linearly independent. If in the space of 
these rows we define a scalar product by means of the matrix 

( 
g-t 0). then the product 
0 Q ' 

(
Q-i o)(K' + RL') 

(K + LR L) O Q L' = 

= (K + LR) Q -
1 

(K' + RL' ) + L Q L' = G 
(3.16) 

will be the Gram determinant for these rows. Owing to this the 
quadratic formx'Gx is positive definite and 11011 "0. But the 
matrix G can be resolved into the product 

G = (K + LS) Q-\K' + S*L') = (K + LS*) Q-1(K' + SL'). (3.17) 

To verify this one must use (3.12). It follows from (3.17) 
that the matrix K + LS has an inverse. 

We can now solve Eq.(3.8). It is, however, more convenient 
to use a different equation for the determination of p , namely 

p(K + LS)- x'(M' + N'S) - u = 0, (3.18) 

which follows from (3.13) if we substitude (3.7) in that equa
tion. From (3.8) we find 

-1 -1 
x =(K+LS) x -(K+LS) Lu' 

0 ' 
(3.19) 

and from (3.18) 

-1 -1 
p = x'(M' + N'S) (K + LS) + u(K + LS) • (3-.20) 

9 



tuting the last two expressions in (3.6), we finally 
the function a : 

_ 2. u.fLu' + llv+ 1' 
2 

-1 
Hl = (M' + N' S) ( K + LS) 

(3.21) 

(3.22) 

of (3.12) it is not h<o\rd to show that 0 =0', ·rL = 

L'•f'. 
Combining the formulas (1.5), (1.6) and (3.21), we get the 

fundamental solution of the Schrodinger equation 

'l' (u, u ) ='Vp l!·f II x 
0 V+1 0 

iu 
x'ox iurx iurLu' v+1 

x exp I - -- + -- - ---- + ---- l. 
2h h 2h h 

(3.23) 

We note that the matrix 0 satisfies a Riccati equation 

i~ +A +inl3+iB'O-OCO = 0, 
dt 

Hll = s: 
t:= t0 

(3. 24) 

This .follows from the Hamilton equations (1.3), which give 

~,) =(~ 
t=to 

d ( K L) ( !3 C ) (K d; M' N' = -A~ -B' M' ~, ),( :, 0 ) (3.25) 
[; . 

If.the matrix 0 is known, it is not necessary to solve (1.3). 
In fact, in this case we can find the matrix r from the equa
tion 

d[ 
) 

(3.26) -of(B + iCO), fl 
t= t

0 

=E, --·.= 
dt 

which· also.follows from ( 3. 25). Knowing 0 and f, we can find 
fLby.an algebraic procedure. Namely, from (3.17) we find 

i -1 i -1 i ) 
'fL=- -of[(K+LS) -(K+LS*))Q =--Q +-TO.f'. (3.27 

. 2 2 2 

But .it follows from (3.17) and (3.12) that 

10 

) 
·J, 

i: 
1:\ 

,, 

"\ 

-l 

1 
l 
1 

':~ " 

-1 -1 -1 
0 = G - i [ (M' + N' R) Q (K' + R L ') + N' Q L') 0 • (3. 28) ' 

Accordingly 

i -1 -1 
.fL=- -Q +i·f(O+O*) r'. (3~29) 

2 
If the matrices A, B, C do not depend on the time and S is 

a root of the equation 

A + SB + B'S + SCS = 0, (3.30) 

then, according to (3.24), iO = S. In this case we have from 
(3.26) and (3.29) 

i -1 i -1 ·fL =- -Q +-fQ f', f = exp{(t0 -t) (B + CS) I. 
2 2 

(3.31) 

It may also be, however, that Eq.(3.30) has no root with po
sitive definite imaginary part Q, and then the matrix n cannot 
be regarded as constant, as for example, in case A = 0, B = 0, 
C = E. But if the Hamiltonian (1.2) is positive definite, 
Eq. (3.30) does have such a root. For this value of the root 
the trace of the matrix which appears in (1.9) is a minimum. 

4. THE GENERATING 'l' FUNCTION 
AND COMPLETE SYSTEM OF SOLUTIONS 

S~nce the fundamental solution (3.23) satisfies the Schro
dinger equation for all values of u 1, ••• , uv, uv+l' all of its 
derivatives with respect to these parameters also satisfy the 
same equation, and the derivatives with respect to u1 , ••• ,uv 
are linearly independent. This follows from the fact that 

. s as ' al as -
(-th) q;

0 
=lx

0 
... x0 +P

6
_ 11'1'0 , 

aua ... aua 
1 B 

(4.1) 

where x~ are defined by E<J,· ( 3. 19) and P s _ 1 is a polynomial of 
degree s - 1 in x5 , ... , x0 • The functions ( 4.1) are inconve
nient, however, because they are not orthogonal. In order to 
construct an orthogonal system of solutions, let us consider 
scalar products of the functions (4.1). Such a product is· ob
viously equal to a factor (-fu)r+s times the derivative with 
respect to u , .•• , u ; v* · , ••• , v* of the integral 

at ar {31 {3s 

11 



00 
v/2 -*--

(17h) \I·PoPo 
( 'l'

0 
(U, u ) lJI

0
*(v, V ) dx = 

V+l 11+1 
-oo v'IIQII 

(4.2) 
i(u -v*) 

• exp { 11 + 1 v + 1 h ------ 1 ( *) -1( , +) l -- u-v Q u -v 
4h 

for vA = uR. It follows from (4.2) that the fundamental solu
tion will ~e normalized to unity if we set 

-v/2 
P =(rrh) v'IIQII. 

0 
_.; 

·c * > 1 c -1 + 1 "v+ 1 - "v+ 1 = 4 u- u*) Q (u'- u ) • 

(4.3) 

It can now be shown that the probability density for positions 
of system in the ground state is given by 

. -1 

'Jio (u, u ) lJI*(u, u ) ; ___ 1 ___ exp{- /lx'O ~~ l 
11+1 o II+ 1 1112· -- h ' 

Crr h) v' II a II 
(4.4) 

where ~x = x- x, and xis given by (1.10). 
Let us now introduce a function lJI

0
(u - iv , u 

1
- iv 

1 
) 

th~ condition that V+ v+ 
under 

1 -1 i -1 + 
v 1=- -- vQ v' - -- vQ (u' - u ) 
V+ 4 2 ' 

(4.5) 

i.e., function 

.lJI(u, u
11 1

; v) = 'l'
0
(u, u 

1
)exp{ v·f~_:- ~ v•fO•f'v' }. 

+ V+ h 4h 
(4.6) 

It follows from (4.2) and (4.3) that 

00 

f lJI (u, u ; v) 'l'*(u, u 
1

; w) dx 
- V+ 1 II+ 
-oo 

(4. 7) 
1 -1 + 

= exp {- v Q w I. 
2h 

It can be seen from this that the derivatives of lJI(u, u
11

+
1

; v) 
with respect to the va, of different orders, taken at v = 0, 
are orthogonal to each other. In order to orthogonalize the 
derivatives of equal orders it is necessary to represent the 
matrix. Q in the form Q = A' A. This is accomplished in the pro-

12 

cess of-reducing the quadratic form x'Qx to a sum of squares 
y'y by .!!!_eans of a linear transformation y =_Ax. If w replace 
v by y' 2h vA , we get as our result a function 

'l'(u, "v+l; v) = lJI(u, "v+ 1 ; y'2h vA) = 

(4.8) 
v2 _ 1 

= 'l'
0

(u, u 
1

) exp I--=- vAr ~x-- vAfQf'A'v' I, 
v+- vh 2 

all of whose derivatives with respect to the Va, taken at v=O, 
are orthogonal to each other and normalized to unity. These 
derivatives can be expressed in an obvious way in terms of Her
mite polynomials and form a basis in the space of the lJI func-

tions. 
All of these derivatives satisfy the Schrodinger equation 

under consideration, since the function (4.8) satisfies it for 
all values of v. We accordingly get a complete system of so-

lutions 

a
1 

.•. a . s 

lJI(u,u )H 
9

(U)= a lJI(u,u 1;v)l 
0 v+1 CJV av II+ v=O 

a •• • a 1 s 

(4.9) 

of the Schrodinger equation (1.1) with the Hamiltonian (1.2). 
Owing to this the function (4.8) is to be called the genera
ting lJI function. We note, however, that another convenient 
form of generating lJI function is 

qt ( u, u 1 ; v) = 'l' (u • u 1 ; v2h v ) 
V+ V+ 

(4.10) 

'1'
0

(u,u 
1
)exp{ v' 2 vr~x- ..!:_v·ror'v' 1. 

II+ /h 2 

Let us expand an arbitrary qt function in a series of the 

functions (4.9): 

oo 1 - a1 ... as 
'l' (u, u ) ~ - ca a H (u). 

0 V+1 ••• 
s=O y'Si 1 s 

(4.11) 
qt 

The coefficients of this series are to be regarded as symmetri1 
in the indices a • If these coefficients do not depend on the 
time, the function (4.11) represents the general solution of 
the Schrodinger equation. 
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Let us calculate the norm of the qt function (4.11). We have 

00 

f iii (u, "v+ 1 ; v) lP*(u, u
11

+ 1; w) dx 
-oo 

vw+ 
e 

Differentiating this integral with respect to v, we get 

oo a
1 
... a

8 
_ 

f 'P (u, u ) H (u) 'l'* (u, u 
1
; '?i;) dx 

· 0 V+ 1 11+ ' 
w* ••• w*. 

a1 as 
-oo 

Consequently, for the 'l' function ( 4.11) we find 

"" 
·¢(w*) f 'l''l'*(u, u , w)dx 

. 11+1 
-oo 

00 1 c w* .•• w* • ~ 
a ... a a a 

1 s 1 s -s=O y'sl 

Differentiating (4.14) with respect tow* , we get 

oo a
1 
... a 

f 'l' [ '1'
0 

( u, u ) H 
8 
(u) ]* dx = J$i. c . 

11+1 a •.• a 
-oo 1 8 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

From this we find the square of the norm of the 'P function. 
(4.11) 

00 00 

( 'P'P * dx = ~ c c * . 
-·oo s=O a1 ••• as a1" .• as 

(4.16) 

Equations (4.11) and (4.15) enable us to solve an arbitrary 
Cauchy problem for the Schrodinger equation (1.1) with the Ha
miltonian (1.2). 

5. THE FOCK REPRESENTATION 

The results of the preceding section show that thecoeffici
ents c0 , c , c , .•• form a Fock column 141 • In the termino
logy used i~ qu~~tum field theory we shall call the fundamen-

/ 
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tal solution the vacuum state, and the solution (4.9) on.S:-par
ticle state. The configuration space of a "particle" here con
sists of only 11 points. Equation (4.14) gives the Fock func
tional/4/ • 

Let us now find the operators for annihilation and creation 
of particles. For this purpose we note that besides the Schro
dinger equation the fundamental solution also satisfies the 
system of equations 

{p(K+LS) _;'(M' +N'S) -ui'P0 (u,u11 +~ =0. (5.1) 

Equation (5.1) can easily be verified directly. It corresponds 
to the classi~al equation (3.18). One further classical equa~ 
tion holds, namely 

(K' + S*L')p'-(M+S*N)x-u' = 2iQx0 • (5.2) 

We can arrive:.at this very simply if from the left side of 
this equation we subtract the transposed form of (3.18) and 
then use (3.13). The quantum equation corresponding to the 
classical equation (5.2) is 

l(K' +S*L')p'- (M+S*N)i u' I 'P 0 ( u • u 11 + 1) 

(5.3) 

= 21Qx
0 

'1'
0 

(u, u
11

+ 
1
), 

which can also be easily verified directly. 
From (5.1) and (5.3) there follow at once analogous equa

tions for the generating 'P function (4.8), which by definition 
is equal to 'P0(u - i v, "v+l- 1 v 11 + 1) • On the other hand, when 
we differentiate with respect to x the condition (4.5) is qui
te without effect. Accrodingly we have, first, 

{p(K + LS) - x'(M' + N'S) - u I q, (u, U11 + 1 ; v) 

(5.4) 
iy'2h vA'P (u, U 11 + 1: v), 

and second, 

{(K' +S*L')p'- (M+S*N)x- u' + 1y'2hA'v' I~ 
(5.5) 

= 21Qr(x- Lu' + iv2h LA'v') q;. 
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When we substitute (3.27) here we get 

~ ~ +l -
{(K' + S*L') p' -( M + S*N) x - u 'I' (u, uv+ 

1
; v) = 

= {2iQ·r ~x -iv'2hQfGf' .i\'v' l ~ (u, u ; v), 
11+1 

i.e., finally 

{(K' +S*L')p'- (M+S*N)x- u+!W(u,u ;v) =· 
. 11+ 1 

~ a . -
=iv'2h.i\' -'P(u,llv+t;v). av 

_.! 

(5.6) 

(5. 7) 

Already it can be seen from this that the desired operators 
for annihilation of particles·form the row 

z=i-tp(K+LS) -x'(M' +N'S) -ulA-
1

, (5.8) 

J2h 
and the operators for creation of particles form the Hermi-
tian-adjoint column 

z+ =--LA'-
1

!(K' + S*L')p' -(M+S*N)x- u+l. (5.9) 
v2ii 

Let us verify this assertion. According to (5.4) and (5.7) 

ziii(u,u11 + 1 ;v)=vW(u, u
11

+
1
; v), 

+- a -
z 'I' ( u , u 11 + 1; v) = -;,-; 'I' ( u , u11 + 1 ; v) • 

(5.10) 

Let us consider the series 

. ·s 

'I'= £ _!_ c -.---a___,..__~ (u u · v) 
S=O yS! a 1 •• • as a V ••• a V , V + 1 • 

al as 

(5.11) 

which is more general than (4.11). The latter is obtained from 
(5.11) if after differentiating with respect to v we set v=O. 
On the basis of (5.10) we conclude that when the operators 
are applied to (5.11) we get 

·S a oo v's+1 
z/3111 = v/3'1' + I --=- cBaC.as av ••• ava 

·s= 0 v' s! a
1 

s 
w (u, u

11
+ 1; v), (5.12) 

16 

+ 00 1 as+ 1 -
zfJ'P= I -:::..ca ... a 'P(u,u 11 + 1;v). 

s=O ys! 1 s avQav ••• av 
~ a1 as 

(5.13) 

It follows from this that the operator z converts the Fock co-. 
lumn c

0
, ca , ca a , ••• into Fock column !?o, !?a, !?a.

1
a

2
, ••• , 

1 1 2 
where 

(5.14) 2a ... a =~Ctl ' 1 s ~a1 ... as 

and that the operator z~ converts this same Fock column into 
the column c

0
, c , c , ... , where o0 = 

a a
1
a

2 
0 and 

c =-
1-ta/3 c + ••• +SQ c l. (5.15) 

a ... a r::;-
1 

a 
1 

a
2 

.•. a ,_.a a 1 ... a 1 1 B VS! S s · s-
Accordingly14~the operators z13 and z~ are indeed. the operators 
for annihilation and creation of a particle at the point {3. 

It is also interesting to give a direct derivation of the 
result of the action of the operators z and z+ on the Fock 
functional (4.14). By (4.12) we have for the series (5.11) 

oo-

J 'I'* ( u, u ; w) 'I' dx 
11+1 

-oo 

00 1 . 8 
= I - c a vw+ + 

S=Oys! a
1 

••• a a a e = ¢(w*) e vw s v • • • v • 
al . a s 

From this and (5.10) we get 

00 -

J 'P*(u, u11+ 1; w) zf3'Pdx = 
-oo 

oo ··s· 
=I..Lc a. 

B =0 v'Si .a1 ... aS a Va • • • a Va 
. 1 8 

a + = ~ [ ·¢ ( w*) e vw ], 
aw* 

f3 
00 

J lP*(u, uv+l; v) z;'l' dx 
~00 .... ~. 

vw+ 
v

13
e 

,. a . .., . . + , ... + 
- [ ¢(w*) e vw ] = w*'¢(w*) e vw 
avf3 f3 

.• 
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(5.16) 

. (5.17) 

(5~18)' 



Consequently, as must be the case, the operato~ z
8 

converts 
the Fock functional ¢(w*) into the functional a·tlJ(w*) law~, and 
the operator z~ converts it into w~¢(w*) • 

Let us now consider the general Schrodinger equation 
. aw A A 

ih-- = IH+V(t,x,p) I'P, 
at (5.19) 

where as before H is given by (1.2) and Vis some operator 
added to the Hamiltonian H; this is a problem typical of per
turbation theory. 

For the series (5.11) we have~ 

oo_ a 
f 'P*(u, u ; w) [ih- - H] 'Pdx 

II+ t at -oo 

a + 
ih,.;_- <ll(w*) evw 

at 
(5.20) 

i.e., tpe oper~tor iha;at-·H converts the Fock functional ·¢(w*) 
into ihacll(w*)/at. This follows from (5.16.). Consequently, in 
the Fock representation Eq.(5.19) can be written in the form 

tha<ll;at-= vet. x, p) ell, 

~ A + 
where x and p must be expressed in terms of z and z . 

For this purpose we note that 

(
- M - SN 

- M- S*N 
K '+ SL ' ) ( K + LS* - K - LS ) 

K'+S*L' M'+N'S* -M'-N'S = 

= ( --21Q 0 .) • 
0 -2iQ 

(5. 21) 

(5.22) 

The first of these matrices is taken from (5.8) and (5.9). 
The second is constructed from the first according to the model 
of (3.11). In calculating their product we must use (3.12). By 
means of (5.22) it is not hard to show that 

vli -1 -1 + 
x = x + - { ( K + LS*) A z' + (K + LS) A z ] , 

v2 

p = p + vh [ z A'-
1 

(M + S*N) + z-+ A'-1(M + SN)], 
.j2. 

(5.23) 

where x and pare given by (1.10). We nqw_have onl¥ to substi
tute (5.23) in (5.21) and replace z by a;~• and z by w*. We 
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can also omit doing the latter, by the way, if we use for the· 
Fock functional the notation 

00 1 + + 
:£ -C z ••• z IO> 

0 . 1- a ... a a a 
·s= vs! 1 s 1 s 

<ll (5.24) 

and em~loy the commutation relations zaz ~- z~za = oaf3 and the 
normal1zation of the vacuum <0 I 0 > = 1. · 
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