


I. Introduction

\

Since Wilcéek's-profoundwpapers /1/ there is an increasing
aotivity in étudying tﬁe systems céntaining an élebtriozcharge
and a magnetio fluﬁ. These composites called anyons carry fractlo-
nal angular momentum and possess unusual statistics. Physically,
théy ére'manifested as quasiparticles'in-the fractional quantum
Hall effect /2/‘and probably in high-temperature superconductivity
/3/. Up to now ohly.twg;dimenéional,anyons were considered»(see,
ee8ey /A7), In'tﬁe_thrée-dimensional space they can bé realized
as a cylindrical Solenoid with an electric charge attachedito it.
It 1s the goal of the present paper to study the system composed
of a torbida1 so1eno1d and a. charged particie.'The;plan of our
exposition }é)as follows. In§ 2 we write out the Lagrangian and
the Schroedinger equation desoribing an 1nteract16n of two an&ons
“ without specifying the type of the solenolid used. In§.3 the main
facts concerning toroidal golenoid are presented. In§t4 the parti-
cular model of a toroidal anyon is proposed. The arguments for
existénce of multivalued wave functions in the field of 1mpenetra31e
toroidal solenoid are given 1n§55. Two interacting toroldal anyons
are consldered 1n§ 6 . 1t turns out that the statistical properties:
of their wave function depend on both anyons mutual separation and
orientation. The influence of the particular gaugé choice on the
exchange properties of wave functions is studied 1n§'7 « In the next
bsection we explaln why the arguments denylng the éxistenceybf
fractional statistios in thelthree-dimensional space do not work

in the treated case.
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2 . Be.sic eqnations

' A composite consisting of a particle with a cha:rge Q/ and a

' solenoid with a magnetic flux @
/5,6/

9(1 R (V- \f)

S —
.The evident notationm,‘u a.ndM ,-\r refers to the charged

is the vector potential Go)
— -

is called an anyon /l/ The
Lagrangian of this system is

zLE",i‘-““’”« LM )

particle and the solenoild; g
px;c')diiced by the solenoid situated - at R at the position ‘L of
‘the charged particle. The Lagrangie,n (2. 1) describes. both the
Aharonov — Bohm and pharonov - Casher /5/ effects. The latter was
're'cently ,/7/ confirmed experimentally. Consider two anyons
(R, ®, ") ana (@, @,
described by the following Lagranglan /6/

LZ‘E_ -{5\-\- lm‘LU‘L t Q:ﬁ ¥ _’_V-'

) with masses Im, and M, . They are

Here we put Qﬂ 0. g\tk'lq 'L')_) - O,q, 91\\11 FL ) 9\')..( ‘ﬂ').i)

"is the vp generated by the anyonl(l) at the. position of anyon

1(2) ‘U’ ‘U| and \[
between charged particles. It is suggested here that the particular

is the electramagnetic interaction

. anyon feels only the glectromagnetic field of the other. The self-

‘—int‘eraction between the magne tic flux and the charge of the same
_'anyon is disregarded. It 1s the routine operation in the anyon
‘theory. By quantizing the Lagrangian we obtain the following
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(2.3)

Schroedinger Equa.tion (SE):
L = L
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(2.2)
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If in addition Q\"_ Q.—,_:Q and M, V\,_-'—["\ » then this Eq. redu- -—v
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Separating the ct\a;ll'ter—of-mass coordinates (w Ql\)(LY\R) "\;\

we get

ces to
g

(T - L FVY + (e-0W =0,
G-M[ _ EL U:w\-\r/hq’ (2.5)
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Let the anyon's solenoid be toroidal. .8imilarly to the
term "cyon® used for the cylindrical anyon /8/, the term "toron" .
will be used for the toroidal anyon. Some’ facts concerning the
toroidal solenoid which are needed for the subsequent discussion

will be presented in the next seotion.
3. The electromagnetic fileld of the toroidal solenoid

The magnetic field of the toroidal solenoid (_P o\\"{-%"" Rz’
equalsH Q\g %/J) inside the solenoid and zero outside it. The
constant % 1s expressed through the magnetic ﬂux (P % nd
-0. [l\" d- So\”' R ) In the Coulomb gauge(d\LY ﬂ O) the VP
of the toroidal solenoild was obtained in ref. /9/. Later it was used
for the description of the electron scattering on the toroidal
solenoid /I10-13/. Here, we present its oomponents only for the in-
finitely thin (RU—o{ ) solenoid:
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" Here chv= " and Qq’ are the Legendre functions of the
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2-nd kind. ‘At large distances ﬂ falls as 'L
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" Ag outside the solenoid H:'Lot-qzo,_the‘v.p. may be presen-—
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This function turns out to be multivalued (more accurately? dis-

continu'ous) as'§ _a o\'_XY_ z @

o ’ ’,
ted as a gradient of some function ]E 8 ﬂ

for any contour passing through the

solenoid 's hole. To write out this function explicitly we introduce
the toroidal coordinates
Shy cos ¥ NSTEIVS sm 9
o B2 R N S et B
Chpr- w0 thp— €050 thapt - o5
o | (3.2)
(Depeor, “WeDefy 02Ye Qﬁ')'
Let M- }“0 correspond to the toroidal Soleﬁo'id S, Then for

M7 Mo (Lﬂo) the point P(')()\g) (where ‘)C}‘Q,?.- are given by
(3.2)) 1ies inside (outside) S. For M - fixed (say, M= Mo )
the points P(x)\a,"e\ ' £111 the surface of the torus ( P-d )"}
- L2
%"" R - with the parameters ol = @- d’.\\}]o 5 R= “’/“\ﬂo
The value of the angle 9

Jumps from -% “to T\/ . when one

e el I

intersects the circle of the radius d-R 1ying in the (= 0 plane. :
’fu‘notion' explioitly /9,10/%

p \ S\kk@

Now we are able to write out the ‘x

Here P ——- is the Legendre function of the 1-st kind;

Suz- Z Qv._\(()) Q\w (0)5 ]Co 1s given by
febafnsd bemelRg0 A RO

From now we do not inmdicate the argument of the Legendre
funotion if it equals C“JA s Purther, Q\; (0) = Q\, (ka}lo)
PV ('0) R’ (DL}J 0 Clearly,
for the infinitely thin (R“'O‘ or _Mo77d.i) solenoid. Ve see’
that ]Q suffkers a -;]ump from —2-.@ to ;-'(p when one intersects
the circle of the radius d'-R 1ying in the 2 = ) plane. 4t large
(this follows from .3

(‘,os 95

\cky\ cosB\ Z ﬁm (3.3)
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transforms into .

0

distances folis as T
L = Q4R
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transformation '1\)’: hy,, Qip(hex /)R(-)may be used to eliminate

v.p. outside the solenoid. The transformed wave function (w.£.)

are the usual spherical coordinates). The unitary

is a multivalued (mv) one if the initial w.f.
w is a single-valued (sv ) one}

'1'\;’(5)‘5 a-R,2= 0") -‘-l\rl L?f d—ﬂ,%=0+) : Q'D(F (—-\ K) (3.4



- Here K—qu/ﬁcﬂ The reverse is also true.
For the arbitrary orientatlion of the solenoid the v p at the

point.lis given by
\QL‘(FL 2 RLK(‘g 9 V) H\s ('i')

Here _ﬂ\g are given by Egs. (3.1), R
matrix and 8, 8,V

the solenoid fixed frame wrt

1s the usual rotation
are the angl@‘s defining the orientatlon of v

the laboratory one.
4. The particular realization of a toron

Usﬁally, treating the anyoﬁ problems one does not speolfy the
way in which the charge 1s attaohed to the solenoid. One of the
possible ways to do this 1s to charge the surfaoe ()q }10 ) of
the toro‘ida.l solenoid. To exolude the appearanoe of the currents at
'th‘e’As-olenoid surface the latter should be at the constant eleotro-
static potentié.l (Po . The elementary gﬁalculations show /14/ that
fhe'eléctvic ‘charge should be distributed éver the solenoid surface

with the density o S

; Sl" (U plo- CoSB) @ wShB [ P \ ] .
W - e — -
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Fr.dm now we suggest tha t the summation, if 1t is not
speclfied, e*ctends fromh 0 town= 00 -« The electrostatic poten-

} tial generated by this density equa.ls q)o
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inside the toroidal solenoid ()A’ﬂo ) and

Qv\—- 0\ OOS‘A (‘)
Ph 1+ Swo

may be expressed

outside it. The total surface charge

through @o t
p-ha®: 5 L QM‘O
« 1+ Swo P Vz,( O)

The subseguent consideration does not devend on this particular-

realization.

5. The possibility of the multivalued wave functlons
in the field of toroidal solenoid

We present he;'e tI}e arguments for the mv wf exlistence in the
magnetic fleld of an :meehetrabie toroldal solenoid. But at first,
we repeat bthe similar arguments /15—17/ for the weli—known c;ase of
a cylindrical sqlenoid. Consider two identical charged particles
1 and 2 in_ the field of an infinite cylindrical solenoid (fig.l).
Now we exchange particles 1 and 2. This procedure 1s path dependent
if the mv wf are used. The wf remains the same 1if there 1s no
net magnetic flux inside the closed contour cqmposed of .exchang‘e
paths 1 and 2=1\I(1 i\ :wi 1) On the other hand, the wf
changes when the finite magnetic flux is presented inside
the above closed contour w(l '1) 1\;(4 1) 01\9(\}( Xz QQ)/*\(,
Ir §= 'l(“w th:n \'(I('L \) ”l{f(’l ')_) i.e. the presence of the magnetic
f£lux does not affect the exchange propertles of wf. When ¥ 2 (JK{LV\\-\)
one has 'l_‘f(f)v)\) :-w

For the arbitrary ¥

), that 1is the particle‘s behave as fermions.
one has the intermediate Qbetween bosons

and fermions) statistics. The impenetrability of the solenoid



guaranteés that exché.ng’e,pat’hs shld_w'n at the lower part of fig;i
cannot be continﬁously deforme'd '(or shrinked 'to'a; p‘olint) ’inf‘o
that presented at the upper part of the same figure.

Now we tura to the behaviou:r of wf in the magnetic field of
) impenetrable toroidal solenoid. In fig.2 there are shown exchange
paths which do not embrace the magnetic flux (P . Each of them
can be contracted to a point without int ersecting the impenetrable
torus. Thus, W(l)‘):\}}(l)l)for them . Some of the topologioally'

nontrivial exchange paths are shown in fig.3 All of them cannot be:

~o - either shrinked to a point or deformed into each other without -

. n intersecting the impenetrable torus (and the flux q) ). If the mv
Fig.l. The trivial (u 4 i ’
g rivial (upper part) and nontrivial (lower part) ’ wf are used one has 1+r( 'L) \). = ‘Lp'(i 1) QQL?(_\_LK)

exchange paths in the field of oylindrical solenoid.. for the upper and middle parts on fig.B, resp., while ’\p'(l 1)

:'\J /l,l) . Q')(\) (-Q_LX) for its lower_ part (as before ZLQ‘PH.‘C
and (P is the magnetic flux inside the toroidal solenoid).

‘ The space reglon whereH :F O is darkened. The inaooessib-

le region is hatched.

This situation strongly resembles that of the cylindrical solenoid, -
) but there are moré topologically nonequivalent possibilities. As
for the cylindrical solenoiyd the doubie exchange of partlioles does
not in general 1ead to the initial wf; Fq;- example, undér 't<h,e

E double exchahge cbmposéd of the single exchanges (eéch in the ‘clock—
i i
‘ -wise direction), presented in the upper part of fig.3, the wf

‘ acquires the factor exp (_ LY D

6. The interacting torons

hJ

Now we return to the imteracting torons. Consider first the

simplified case whenthe symmgtry axes of toroidal solenoids 1 and

2 are parallel to the 2 axls., In addition, the solenolds are
assumed to be thin (R\LL d\ , Ry 22 o\,/ ). Then, it follows

Fig.2. 'The triviasl exohange paths in the field of toroidal '
g from (3. 1) that outside the solenoids one has

solenoid.
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Here Q)\ (’i).‘ Q (CL\\)‘) c—"‘vh %y J‘) ) = Ay~ xl. etc
o= S'X”-\-H rL (QL PV Zl 7. me vp ﬂ 1 1s obtained from ﬁz_,

by the 1nterchanging of particle indices 1 and 2. The vp thus

(6.1)

obtained are symmetrical wrt interchange of particle coordinates?

g - <& ¥ —+
OCARAE Q\m?, ), Al = fa (To,)-
(6.2)
The vp g\‘), and ﬂl\ may be expressed as gradients of

mv functions x\,_('l— ) and .XM ("L

\q %M‘A }“1“ ) U OJPL”‘" -"K‘?"

The functions X'L\ and K"L are obtained from Eq. (3 3) vy

making the su‘bstitution Q—? Q‘ ) Mo -?)A %0\—?%‘0\\___ LLH\ﬂ 1)
iy

,\ for_Ku and @—»(DL }Ao .M?— %a—-)%tcw_&. (LéAJA:. [)—4

for}ll . The linear combination QQ = 0, -ﬁizk"‘-) 0. j_)u{:L)
entering into (2.3) may be presented in the form

o =onadz €X , oY ze Y, (- ey, ()

: Now we can write the classical Lagrangian (2.2) in the gauge

invariant form . o . o |
‘ Y o d ‘ T) 20, < ;
; L= i““‘\mh{mtff + el,ofé[g.‘y't(?)_,, »Q?“Xu ‘1)]

The unitary transformation

10

4

Fig.3. The nontrivial exohange paths in the field of toroidal

. sol«-’uioidy.

g o

Fig.4. Two toroidal solenoids with equal (upper part) .and »

opposite (lower part) magnetic fluxes. -
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Wy atp (20 }’_)

w— (4 \_

eliminates vp from Eq‘. (2.3). Consider the particular cases. Let

the toron parameters be the same (W2, 2,020, 7 & di=dy= d}

=W, = &
Then,

% C\)L'Iﬁ‘r) )

) except for the magnetic fluxes (P‘ and (Pb-

y‘;’.\: q)\ ﬁ(’?) '

* . where I is obtained from Eq. (3.3) by dropping the overall fac—

tor P . Thus |
e, Xu_- @y yli'Q(@l @')I ~ and
V=T "oxp [ ¢ ¢ (@L @‘ X j (6.3)
Let in addition @ = (P,b . Then ﬂu Q.z, and W= \U—‘

From Egs. (2.4) or (2.5) 1t follows that vp drops out from the
£, This means that the presence of vp outslde the torons with

C\),:(D,_

change properties.If Q‘:"q)q_ = CP , then Eq. (6.3) gives

‘) K:QQ/kC— . (6.4)

changes neither the dynamics of torons nor thelr ex-

' l
If 'qj- is chosen to be sv, thenqj suffers the discontinuity,

W pe gog, 20 - )TBR A8 ) W' (pL ), 2= 04)-

It should be noted that the equality ® - (D'), does not mean that
anyons are different. To see this we turn to fig.4. A the upper
©:0,.

The signs + and - mean that the magnetic field ( H Q_\g %/P’

%:Q['LW ((}\_wﬁ-\-_\ ) 1s directed from and towards the

observer, resp. It has the same direction in both the solenolds.

part of it we see two identical toroidal solenoids with

12

(6.2)

i.«
i

Now we begin to rotate the second- solenoid around the axis ‘
normal to the glane of figure. After the rotation at the angle ‘v
it 1s performed, we obtain the. situation shown-at ’ the lower part
of the same figure. Ve observe that the dlrection of magnetic h
field in the second solenoid has been changed to the opposite. »
This means that for an external observer the magnetic flux. of the.
second toron has changed its sign and that torons with ®\- (pz,
are indeed the same. Now we try to. exchange torons with (D - Qq_
But at first we must know how the relative toroidal coordinates

, B ana 9.
particle exchange. It follows from (3. 2) that to- '1 (-’11. there -
M=p 0—-D+liw. , ¥ 9+ (Zway)) V-

This leads to the following changlng of y

X (-='L)' = - )c(f'u) -
If the: wfw

in the following behaviour of 'Uf

entering into In_ andxz'\ behave under, the

corresponds?

is-chosen to be symmetrical then this results
und er the particle

exche.nge

w (1,4) = Y M 1 QU(P[“ \xﬁ(l) ainl ‘>(.6.5)

We see that exchange properties of torons depend essentlally

on their relative positions and orientations. In particular cases
we obtain the situation similar to that of cyons. Let torons 1 ani
2 be in such»a relative position that 'I (4.,7—); O . From the -
explivit expression for K (see (3.3)) it follows that this
occurs, €.g., for 9— 0 . This in' turn happens either when the
equatorial planes of the solenoids lile 1n the same plane (this
corresponds to 1=22,-2, =0
enough separated. The latter 1s due to the fact that toroidal

in (3.2)), or when the torons are

13
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angle. 6 decreases at large distances ¢ 9~
for 'L-» ® ) . In this case Eqg.- (6.5) reduces to

uf‘ (1,4 =W (4,2) -0xp (- LLYR).

From this we obtain Bose, Fermi or intermediate statistilcs
depending en the value of ¥ Lz0QQ H;C,)

The fact that statlstical properties of anyons can depend on
their mutual separa.tion' is not new. For two—dimensional anyone
this has recently been proved 1h a very interesting ref, /18/

(in the framework of the Chern-Simons gauge theory). When the
torons dimensions tend to zero we ‘obtain the magnetic toroidal
moment /19/ with electric cha.'rge attached to it. The unusual
statistics is obtained for anyons with the opposite toroidal .
moments. There is an intuitive explanation of such a different
wf behaviour for(p\: Q)L and Q\Z—CPL. When torons with @Q Q'L
pass through each other (the upper part of fig.4) the net change
of the wf phase equals zere. In fact,the charged particle of toron
2 passing through‘ the hole of toron 1 contributes the value b/
to the phase while particle of 1 passing through the hole of 2
contributes — ¥ . “-‘lhen q>\:' (Da_, (the lowr part of the same
figure) both partioles contribute the same pha se X

When the symmetry axes of the torons have arbitrary orlenta-—
tion (i.e. they are neither parallel mnor antiparallel) one
should use in Egs. (2.3) the vp defined as

‘ﬁ"bi‘: - } RLKL\?‘)QHW‘) ‘ﬂl\K) ‘ '(6.6)
f‘\,\u' - 2 ‘R"K(\gl) By, Wa) ﬂ\'.\,\c . '

The angles ‘g 9 \}r define the orienta.tion of the particular
toron wrt fixed laboratory frame. The v.p. ﬂ').\ and ﬂn, in the

" r.h.s. of (6.6) are defined by Eqs. (6+1)

14

7. imbiguities arising from various choices of gauge’

At first we demonstrate arising uncerta;Lntie's using two
interacting cyons as an example. The v.p. of the cylindrical
solenoid in a Coulomd gauge is equal to- ﬁ Q? Q,P/Q-VK'L
inside the solenoid | P& R) . and ﬂ Qg Q)/luy outside 1t
lP7 R) . It falls as J’ at 1arge distances from the
axis. The magnetic fleld equals H Q%q) [ ¥R inside the
solenoid and zero outside it. On the other hand, one may equally
use the following VP /10,11,20/ 3 \91 =0 everywhere,

9 =Q- (x+§w— e /f'R inside the solenoid. Outside it .ﬂg

differs from zero inside the hatched strip (~R¢Y< R) A7 | pr-v* )

shown-in fig.5. It equals there 2Q.{R¥-ur /AR

This v.p. gene*ates the same magnetlc field as :ﬁ’ . For the
infinitely thin solenoid 1t reduces to: §% =0 ,R\, (P By . &ty
Now we return to :I.ntera.ct:l.ng cyons.. Inserting ﬂ\ into Eq.(2.3)
we obtain the following net cyon vp enterlng the*e- J)m( O)

fy: 1@9(-/‘“1 gor PR
ST &eu_r"‘am BT wl cor 97

(Here x,y and P are relative coordinates). This means that
inside the total strip composed of that shown in fig;5 and that
symmetrical to 1t} 9\511 lQ W /rﬂb for right and left
halfstrips, resp. For the infinitely thin solenoid \Q‘a q) S(‘))
[Qb(f) - 6\-')(\1 _From this it followe that anyons interact only
if their relative coordinates 1:&3 in the hatched strip. Such a -
distinct behaviour of ﬁ and ﬂ ‘ means that one should not pay
too much attention to the particular realiza ion of vp . According
Wu and Yang /21/ only the phase factor exp (;Q § j\ O\XM)

is physically meaningful and measurable. In fact, it is the same fc
-y - -5 ~ .

H and H . The vp .R and ﬂ‘ are connected by the

15



y o ;gau'ge transforma.tion. The corresponding w.f. W ) and V
l-—x ‘ : ' . connected by - the unitary transformation. This means that all
V "'// ’ 7 / ’ _ | ! observables are the same for ’\-\I and w‘ '
: Going olr'er to 1nteract1ng torons we o'bserve that in addition
' to the VI-)_. .ﬂ of the toroidal solenoid diqcussed injB there
A " exlists gl' © /10,11/ the single nonvanishing component of which

(ﬂ%) differs from zero in the nearest vicinity of the toroldal
solenoid. It equals% Pnldd “U' %-1) /f inside the solenoid and

Oa-Q\.\ e 2})/(*.&‘: ;_?—) outside it, in the hatched region (see

fig. 6). It is zero in other spa.ce reglons. For the 1nfin1te1y thin
solenotd ( Re4d ) 1t reduces to ﬂ%, Q. $12).8(d-p) /227,
The total nei vp for two identical interacting torons.
. - - —_ —f' -y - _ - - :
- (Q'= \ﬂ\,_("l,\- \H L=y, v = ALY 3 equals zero 1f ©,=@,
. ’ C )
and twice the value ofﬂl_ if (P:— @L This means that in such

‘Pig.5. The vector potential of the cylindrical solenolds 1n
a non-standard gauge. Outside the solenoid 1t differs .

- from zero in the hatched reglon .only.

a gauge the torons 1nteract only if- their relative coo*dinates
-

lie in the hatched reglon. It 1s easy to check- that both _9 and
—

1 (P
satlsfy the condition that _ﬂ o\'I T for closed contours
e Qe

passing through the solenoid's hole and:zero otherwise. The VP
sl

ﬂ and ﬂ are connected by the gauge transformation ﬂ =

= ﬂ + 9lad ad- . For the 1nfin1te1y thin ( R42dA ) torons the

(K
function o  equals /11,23/ d\- q> ($ cb:io\\:c;.‘

Integration 1s performed over the c1rc1e of the radius (A . lyling

’///// g 7 a . in the %;0 plane. The double integral may be expreesed through
/////’ , the 11near one /23/: S W= d d‘dl:l“u?-‘""d; '\%l)‘“

-l L dr
: : -1 S dac-X Q'/z(l 1;.3:;;

connected by the singular (for the 1nf1n1te1y thin torons)

_ although unitary transformation: w’ (\\)' Qatp (LQ %d’ )
toroidal solenoid. S | X8 '6'\‘.’

. Here,

). The corresponding' w.f. are

Fig.6, The ‘sa‘me as in the previous figure but for the
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Hence 1t follows that‘hr and 1V~ behave differently under the
particle exchange (in spite of the fact that they correspond to V‘D
.with the same circqlation). The main conolusion of this section is
- that exchéﬁge properties of the w.f. depend on the particular gauge

choiceQ Thus, some caution is needed in their lnterprétation.

8. Discussion

Here we anélyse the frequently”used assertion (/15-17/)
that fhere are no rontrivial exohange paths in the three-dimensib-
nal space.stually, one starts with the consideration of a plane
with a  singular isolated point F) in it. It turns out that for
the chargel partiole the mv wf are allowable if this point.carries
‘magnetic flpx q; . In fact, closed contour embrabing F>‘ ‘cannot
be shrinked into a point without intersecting F) + Going ovér
to the fhree-dimensional’space one encounters the followlng alter-
native. First, one may‘continue'to tréat P as an isolated singular
point. In this case the above contour may be shrinked into a point
without intersecting P (for this one at first rotates the half
of the contour around the axis lying in the initial plane and pas-
;slng through P). Therefore, the mv wf are not allowable. On the
other hand, one may treat P as a trace of an infinite singular
1line 28» plercing the plane at P. The contour enoircling ;f,
cannot be contraoted without intersecting it. The mv wf aze
/allqwable if Xl carries the magnetic flux q> s thus coinciding
wlth an infinitely thin cylindrical solenoid. Let us have on the
- plane two singular points with (P‘:—- (D'L . They can be viewed as
traces of two parallel singular lines which plerce the plane at

those points., For the charged particle'one easlly recovers

18

topologicall& trivial (which embrace either>both the'solenbids

or none of them) and nontrivial (vhich embrace 6ne of the sole-
noids) exchange paths /24/. Pnysically these singular lines can be
realized as two cylindriwl solenolds with Q:-@L . The charge
partiole scattering on them was studied in refs../11,13,25/. tThe
singular line may also have a form of the circular filament;whihh
carries the magnetio flux q> and which may be viewed as an
infinitely thin toroidal solenoid. For the charged particle mv

wf are allowable as the closed contours (passing the solenoid's
hole) exist which cannot be shrinked into a point. The above singu-~
lar lines may be oonsidered as tﬁe limiting cases of the finite
impenetrable cylindrical and toroidal solenoids shown in ‘figs. 1-3.
So far we have cohsidered the behaviour of charged particles ih the
field of cylindrical and toroidal solendids. Now we turn again to
the toroidal:anyons. We<have seen in”§6 that they exhibit fractio;
nal statistics w.r.t. their exchange. This contradicts the fre-
quently occurring aaagrtion (aée, e.g., review /26/ and refs.
therein) that ekotic‘statistlcs does not exist if the number

of spatial dimensions is greater than 2. The. proof grounds
essentially on the fact that after the removal of the points corres—
ponding to the coinciding pafticle coordinates the remaining
portion of space 1s multiconnected for d=2 and simply—connected

for 4 7% 3 /27,28/ . In the treated case the part of space occupied
by the coinciding identical torons is isomorphic to the torus . The
remaining portion of space (1ying outside that torus) is the multi-
connected one. The dimensions of the toron may‘be arbitrary small,
yet there remainé a finite possibility fof one particular toronrto

penetrate through the hole of the other. This is just the reason for
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the appearance of nonstandard statistics in fhe’three;dimensional
case. The reasoning of the cited referenoes falls as the particles
there were minded as point-like structurless obJecfs. The non-

standard statistics disappears when the hole of a toron is closed.

The smallness of the toron 1s not essential as the mutual penetrati-

on of torons does not depend on thelr dimensions. Only their
» nontrivial topology is important. The question arises how to choose
the mutual orientation of the inte*aoting torons? The angles
describing this orientation enter,into the Hamiltonian as Para-—
meters. The reason for this 1s that kinetlc energy of partioles
is taken to be coinciding with that for the point partioles. For
the toron (whatever small its dimensions are) the kinetic energy
should depend on the orientation angles and.correspondingwmomenta
(like for the quantum symmetrical top). At the present stage of
investigation the mutual orientation angles may be chosen from the
minimum energy considerations. We do not intend to elaborate
further'tﬁese questions here.

It would be appropriate to menfion that there are three~di-
mensionsl objects exhibiting fractional statistics. We mean the
so-called dyons which are composites of monopole and charged par—
ticle /6,8/ . Finally, there exists an excellent three—-dimensional
description /29/ of the quantum Hall effect which does not appeal

to 1ts two-dimenslonal nature.

9. Conclusion

The author being nonspecialist in the solid state physics
cannot appreclate the practical meaning of the results obtained.
Probably, they have some relation to the recently observed
fractional quantum Hall effect in the three-dimensiomal
structures /30/ .
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