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INTRODUCTION 

In many applications different kinds of approximate devia­
tion equations, viz. the so-called first and:high (second, 
third and so on) order deviation equations11•6•91 found usage. 
Most frequently one comes across the first order deviation 
equations. and. especially the first· order equation of geodesic 
deviation which with necessary ·precision are. used· in the in­
vestigation of .;__number of phys·ic~il phenomema/1,7-9/. 

First order deviation equations, or local deviation equa­
tions, are called the ordinary differential equations of se­
cond order satisfied by the first order deviation vector 
which practically everywhere is supposed to be an infinite~ 
simal vector~ Usually, these.equations are.derived from the 
conditions defining the concrete problem under consideration 
and on their basis the corresponding high order deviation 
equations /1, 2, 6·91 · by one or another method are derived. 

In this'work, on the bedrock of the generalized (nonlocal). 
deviation/equation in an arbitrary space (manifold).with af­
fine connection ·and general linear transport along curves / 2-51, 
we' obtain' the most general concrete form of the first orde~ 
deviation equatl.on for the first order deviation vector as 

.well as for some other important physical quantities connec-· 
ted with it. · , · 

The paper is organized as follows: In Sec.2 we deal with 
some approximations to the general linear transports along 
curves by means of which some approximate vectors are obtain-
ed and in particular, the first. order deviation vector. · 
Section 3 is devoted to the first order deviation equations 
satisfied by the first order deviation-vectors. In Sec.4 we 
find the first order relationship between the deviation ve­
locity and the relative velocity oftwo particles and an 
ordinary differential equation of.the first order satisfied 
by the relative velocity (the first order deviation equations 
for the relative velocity)._ In Sec.5 we derive up to second 
·order terms an ordinary differential'equation of'£irst order 
satisfied by the relative ~'~!Omentum of two· point P,articles 
(the first order deviation equation for the relative momen­
tum) which has the meaning of the first order equation of 
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'motion for these particles. In Sec.6, we-consider similar. to 
Sec.4 problems but concerning the deviation acceleration and 
the relative acceleration _between two particles. Section 7 
contains some concluding remarks. 

2. ON THE APPROXIMATE TRANSPORTS ALONG CURVES 
AND APPROXI~~TE DEVIATION VECTORS 

In 12•31 we,provedthat in any.local basis {aal (for simpli­
city-we shall use only coordinite bases) every general li­
near transport (!-transport) of the vectors Ti ... y:Tx(M) ... Ty(M). 
along the' curv_e ·y: [ r', r"] ... M, .x, y G, y([ r' ,; r"]) (M is -
a differentiabie manifold and Tx(M)is the tangent to it 
space at x) is uniquely defined by the matrix II H~ap<y; x; ·rHI 
(all indices r:un from 1 to n= dimM and the.usual summation 

- rule is understood) ' so that for any A = :l a iax a E T X (M) 

y a {3 . . a y a a {3 
I. A=(HfJ(y,x;.y)A )a/ay, i.e. (I A) =H_a(y,x;.y)A 

X->y • . X->y "fJ _ (2.1) 

Let us note that for every x and ·Y 

a - a 
H.~ ( X • X ; ;y) = 0 fJ• (2.2) 

. a a 
where 813 = 1 for a= /3 and 8{:3 = 0 for a !- fJ. (Other special 
properties of II H~fJ (y,_ x; y)ll are insignificant for us now). 

If the functions H~a(y,x;y) satisfy certain conditions 
(e.g.', if they are of the class cN+lwith respect toy), 
there exists an integer N such that they can be put in one 
of the following equivalent forms "(see.(2.2)) . 

a - a N 1 a 
1t.a(Y,X;y)=8o+k-Hn _ (x;y)x 

fJ ,.. m=l ml .,._,a1 ··· am 

0'1 ° 1 a in a 11\. N + 1 -. 
X ( Y . - X ) ••• ( y - X } + Q (( y - X) . ) , 

(2.3a) 

_a · a N 1 m a m· 
· H.f3C:r(r2 ), -y(r 1); -y) = o13 + k _- H.a<r1 ; y} (r

2 
.- r

1
) + 

m=lml /J 

N+l 
+0((r2 - r1) ) , 

(2.3b) 

2 

I 
I 
I 

j 
-- . '-I 

- - - · N+1 · · a a ._ N+i 
where (y-x) :=[maX.(y -x )] · . . . 

x = .y(r
1

) Y =•y(r2) 
a 

r 1 , r 2 E [ r' , r"] and 

a .· H am(Ha -
·/3a

1 

••• a (x; y): = .fj(y, x;.y)) 
m . a O'm • 0'-- :1 

Y ••• ay 1 Y = x 

(2.4a) 

_ a~H~fJ(.y(r2 ), -y(r1) ;-y)) 
m a . 

H.f3(r 1 ;-y)·:= . · __ I 
arm . r2= rl 

2 

(2.4b) 

The functions (2.4b) may easily be expressed through the 
functions (2.4a), for example, 

- a 
1Haf.:>(r

1
;y) =H a (x;y)ya1 (r ), 

.,._, .,._, 0' 1 . . 1 
(2.5a) 

2 a _a · .al .a2 
H a ( r ; y) = H tJ ( x ; -y) y ( r ) y ( r ) + 

• .,._, ~ "j.J0'10'2 . 1 2 (2.5b) 

a . a 
+ H.f3a /x; y) d y 1(r)/ dr lr = rf 

and so on, where 

·a --a 
y ( r) : = d y ( r) I dr (2.6)' 

are the ·components of the tangent to ·Y vector. ·Y at r E-[r',r'1 
Remark. The expansion (2-.3a) is more general than (2.3b) 

because the ~econd one is valid only if ·Y is a eN +l map and 
the first one is valid for any map y. · 

If in (2.1} we _replase H.~ (y, x; -y) by the N-th approxi­
mation ·,7 .•. 

; 

(N) a _ a N 1 m a. -_ . . m 
H.fJ (y, x; -y)·: = o fJ+ ~1 ;t H./3 (r1 ; ·r) (r2 -h) ~ 

(2.7) 

a N -1 _a 0'1 0'1 am - um 
=Oa+ k -_-H

0 
(x;.y)(y -x ) ••• (y -x ), 

JJ m·=l ml .,..a1 ••• am 

we get a map {N)Iy : T (M) ... T (M) which may be called the 
X-+y X Y 
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N-_th order· I-transport and it is defined by 

(Nl y .!N). a {3 · · . f3 
1 A : ~ l H 13 c y. x ; ·Y > .A: ) a 1 a y • X->y • (2.8) 

. (N) y • 
Evidently Ix .... y descr1bes the I-transport up to the 
(N+1f-order quantites, i.e., <N>ri .... Y is an N-th approximation 
to lx~y • 

Further, 
(N = 0) and 
to (2. 7) we 

in our paper we shall work only with the zeroth 
first (N = 1) order approximations for which due 
have 

a (O)H.~ (y • X; •Y) = 8{3, 

.... 

(1) a · . a . a .. a a 
H.f3(y,x;y)=8f3+H.,aa(x;y)·(Y -x )= 

a 1 a · a a ·a · 
=8{3 + H.f3(r1 ;-y) (r2 -r1) =8{3+H·f3a(x;.y) ·Y (ri) (r

2
-r

1
), 

(2.9a) 

(2.9b) 

the last two equalities in the chain (2.9b) being valid if y 
is a cLcurve. Note that the functions (2. 9a) are simply 
constants and thus they do not depend on x,y and y as well 
as on the I-transport used. 

It is important to note and easy to prove that the func­
tions [ -H~Ba(x; ·y)] appearing in (2. 9b) and defined by (2.4a) · 
for n=1 define an affine·connection along y, i.e., they tran­
sform like coefficients of a generally nonsymmetric affine 
connection. (This statement is a simple corollary from the 
fact (see (2.--i) and 12,a/ ) that H~,e (y, x-; -y) are components 
of a two-point tensor from 'ry(M) ® T*(M).)Let us note without 
proof that the connection along ·Y d~fined by (-H.~u (x; y) ) 
is flat, i.e., its curvature tensor is equal to zero. 

Let an affine connection with (local) coefficients r.~-y(x) 
at X~ M on M be def-ined, i.e., a covariant derivative V on 
M to be defined so that with respect to the b~s~c vector 
a/axf3 the covariant derivative of A(x) =Aa(x)a/oxaE Tx(M) 
to be with compon~nts 

a a · · a · S a u 
(V,aA(x)) ·: ~ Al/3 (x) = oA (x} I ?x + •f.a/3,(x) A (x~. 

Then, it is not difficult to prove (cf. 121 ) that for the de­
fined by this connection paralled transport 

a - a 
H_ t:J (x;.y;ll)=-r·Q (x), (2.10) 

•tJCT .- •~-JU . 
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where the additional argument II indicates that the functions a . . - -
H.f3a(x; ·Y) are computed 'for the given parallel transport. 

An important property of the functions (2.10) is their 
independence of the curve ·Y. - --_ ·. 

As has been pointed out in151 , part V, on. the basis of 
the expansions (2.3) one can derive the corresponding appro­
ximate displacement vectors, deviation vectors and deviati~n 
equations. Now we shall get the-expressionfor the first 
order deviation-vector and in Sec.J we shall consider the 
corresponding to it deviation equation . 

Let there _be given curves xa:[ 5 , s"] ... M, a = 1,2 and a a -
x:[s', s"] ... M. and one-to-one maps ra: [s', s"] ... [s;, s~'] 
which map the_ parameter- s G- [ s ', s "] onto the parameters sa = 
= ra(s) E-[s~ •. s;;J. a = 1,2. Let also be given two one-para­
meter families of curves y :[r',.r"·]-'>M and '1] 8 :[~',-'p"] ... M. 

s s·s s s 
such_ that y8 (r~): = x 1(r1 (s)) : = _._·_71 (p~-) , Y. (r") : = x2 (r~ (s)) 
and :'1/ 8 (p~'.): = x(s) , s E [s', s"{ Thus, -d~fi~ing ·Ys'Z(r): = 
= CJJ{(r)/ar, r E-[r', r"] we see ·that the devi.ation vector of 
x2 with respect to x 1 relatively to x ·at x(s) is 12·31 

. r ~,. 
. - '1/s . • • 

h = h (s ; x) = I ( I -- __ •. y ( r) d r E .T . . ( M) .• 
x1(s1)--> x(s) , y (r)--> x (s · ) 8 .. · - x(s) 

. -- r
8 

- s 1 1 · . · · 
(2.11) 

Using '(2.3) for N=·O·and (2/1) from (2.11), we get 
a -a a ·._," - • ... 

h =x2 (s2 ) -x1(s 1 ) +O({x(s) -x 1(s 1)) (x 2(s2 ) -x1 (st)))+ 

- . 2 . - . - :2' . -
+O((x(s) -·x1 (s 1 )) (x2 (~) -x 1(s 1)) ) +0((x

2
(s

2
) ::-x

1
(s

1
)) ) = 

=ya(r')(r"-r') +0((-p"-p')- (r"-r'))+ 
s s s s - s s s s :- _. 

(2.12) 

+ O((p" -p') (r''- r' /) + O((r"- r ')2
) • 

s s s s s s 

- ,-. a ·a - --
. From here we see that x2 (s

2
) _..:.: x {s

1
) or. equivalently 

/Cr') (r"- r') (with the same prec1sion) is the lowest ap­
p:m~imafe e:pression for the deviation vector which· will be 
called the first order deviation vector and will be denoted 
by ( = ((s). 

Further, for brevity and simplicity we shall consider only 
_the cases ra =.id (i.e .. r (s) = sa ;.,s), a = 1,2 (this is 
not an essential restriction: it simply means to denote 
Xa ora by Xa and to parametrize it by s) and x = x \; one 
usually finds these assumptions in the literature/ • 6·9{. Be­
sides • we shall us'e .the independent parameters s E- [ s', s '1. and 
r <;[r', r"] such that r

8 
= f {r), -where f ·:[r: r"] ... [r',· r"] 

s s s s 
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is one-to-one c2 -function and fs(r') ='·r's and fs(r") = r-;; 
Thus, (2.11) and (2.12) take respectively the form · 

r" Ys 
h = r 1 . • r' .Y(s,r)-ox

1
(s)'y(s,r)dr, (2.11') 

a a a 2 
h = x2 ( s) - x 

1 
( s) + 0 ( ( x

2 
( s) - x 

1 
( s)) ) = 

= ya(s, r') (r"- r') + O((r"- r')
2

) =(a+ O((r"- r')2
), 

(2.12') 

,.,,' 
where 

) ·a · a · 
y(s,r):=y(f(r) =(yof)(r), y (s,r):=ay (s,r)/ar 

s s s s 

and in this case the first order deviation vector is 

(=((s) =·y(s,r') (r"-r') CTx (sfM). (2.13) 
. 1 

The .feature of (2.13) is its independence of ·Y up to 
terms of an order of O((r"- r') 2 ). 

If r" - r' is an infinitesimal constant, this vector is 
sometimes called .the infinitesimal deviation vector /2,6 .81 • 

At the end of this section we want to present one useful 
approximate formula. 

Let an affine connection be defined on M, B be a·cl vec­
tor field defined on I y (s, r) I and 

Ys 
~B21:=~B(s;x 1 ;I )·:= 

Ys 
= Ix

2
(s) ->Xfx) B(x2 (s))- B(x1 (s)') E Tx

1
(s)(M). 

(2.14) 

Applying (2.1) and (2.3b) for N=1 to the first term of 
this definition and then taking intO' account (2.5a), (2.13) 
and that x 1(s) = ·y(s, r') and ·x

2
(s) , . .y(s, r") we get after 

some simple calculations · , . 

~Ba 
21 

a 
DB (y(s, r)) I , 

· r= r ar 
(r"- r') + 

a · ~ a 2 
+ ~. f3 a ( x 1 ( s)) B ( x 

1 
( s)) ( ( s) + 0 (( r ",- r') ) , 

6 

(2.15) 

. I 

I 

where Dlac=.ya(s,r}Va';a· a is thecovariantderiva-
Y ( s, r) . 

tive along ·y(s,r) for fixed s (DBa/ar=aB;ar+·f.'~aB~ya(s,r)) 
and~ is a tensor field of the type (1,2) defined' on {.y(s, r) l 
with the components 

~~pa(y(s, r))': = r.a,Ba (y(s, r)) + H.af3a(·y(s, r); ·y8 ). · (2.16) 

Note that if IYs is a parallel transport along ·Y8 then 
due to (2.10) the tensor field ~is identically equal to 
zero. 

3. FIRST ORDER DEVIATION EQUATION 
FOR THE DEVIATION VECTOR 

Here and hereafter in our text we suppose·. to be defined 
an affine connection 'on M' and a general linear transport 
(see Sec.2) having a needed number of derivatives (see be­
low). 

For any C2 -vector field f "'f (s) defined along any C 2-curve 
y : [ s', s "] _. M the following identity /2,6/ is valid. 

D2fa 

ds2 

a · /3 y 8 a fJ {3 D a ·Y 
R.fjy[) u u ~ + {l/3 F + u d; (T.f3y f ) + 

f3 y £ ·[a. a .' + u u ·e .,_,y 

(3.1) 

where alL quantities are defined at y(s), s ~ [s', s"] and . 
D/ds:=Uf3Vf3• u{3:=dyf3(s)/ds, Fa:=Dua./ds, T.~y:=-·f.~Y+ 
+ r ·~13 is the torsion tensor, 

R
a · a: · 8 · a · · y . E a , E a 
D ..,.=-afa /ax. +aofa~:>faX -fa··.f.·~:> •+"f{J"' f. .,_.yu '1-'Y •pu . ~,_,y •w • u ~ey 

is the curvature tensor and -~ is the Lie derivative 
along f. . 

For y = x and f = h (the . deviation. vector - see Sec. 2) 
the identity (3.1) with some additional conditions which must 
satisfy h is· called the (generalized) deviation equation 12,61• 
If the expansion (2.12') is substituted into this equation, 
then one can get the first order deviation equation which 
must satisfy the first order deviation vector (2.13). But 
th.e latter equation ~ay be obtaine.d (as ~9i e:cact equation) ' 
duectly from (3.1) 1n the followmg way· 61

: 
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At first, we have to put in. (3.1) Y= X= x1' so ua = vf':= 
:= dx~ (x)/dsand g=.( and then .to use as an a.:.Id~tional condi­
tion the equality a 2.y!Z(s. r)/ asar = a~y?(s. r)/aras (.y is a c2 

map) which for r = r' is equivalent to .£ V 
1 

= 0. Hence, using 

' the identities (for any V
1 

and (; see IG! ) 

· a a /3 a {3 a /3 ·y t F = F~l/3 ( - (lf3F + T.f3l ( 

and 
. a 

vlJvlY .£ r:f3y 
1 ' 

,J 
a .a · a {3 

=£F -D(.£ V1 )/ds-V
1
1a.£ V

1
, ' ' .~, 

we get after some simple calculations: 

·o
2

(a=Ra V/3vy/; +Ta F~s,r') (y+ 
2 ·f3y8 1 1 ·f3·y ds 

D(Ta (y) 
f3 ·f3y D Fa(s, r) 

+ v1 + · 1 , c r,- r') = 
ds ar l= r 

(3.2) 

=Ra Vf3Vy(8+_Q_(Ta V/3(y) + DFa(s,r) I (r"-r') 
·f3y8 1 1 ds ·f3y 1 ar r= r' ' 

where ( and V1 have an argument s , Ra,; .,. , Taa have an argument 
··,..yo ·~y x1(s), and 

a· · a 
F (s, r): =_Q_( cJ.y (s, r)) 

as as • (3.3) 

Eq. (3.2) is the first order deviation·equation. It was 
obtained (in the general form) by another method in 1·41 • Also 
it was derived in a·number of special cases on the bedrock of 
other principles, e.g., in1 1,7·91. · . .. 

Let us emphasize two features of eq.(3.2). Firstly, it is 
independent of the concrete c~oice of the used !-transport 
and up to terms of an order _of O((r"- r') 2 ) of the family 
of curves •y (r) = y(s, r) • :secondly,. it is an exact equa­
tion, i.e., 

8
it

8
does not contain any correcting higher order 

terms like O((r" -r')2) (i;f one. defines (noncovariantly) the 
first order deviation vector instead of (2.13) by the equa-
t . ;-a· a(·) :a() 't' d .·/6,7/'th l.on <:. =x2 s - x 1 s , as 1. l.S one, e.g., 10 , en 

8 

j 
;l 
I 

- . - . 

in the Vght-hand side of (3.2) th~re must be added O((x
2
(s)-. 

x 1 (s)) ) ). _· .· 
In the general form, the physical meaning of the deviation 

equations was discussed, e.g.i in 12• 6• 91• This interp~etation 
is valid and for the first order deviation equation (3.2) 
because it is a special case of the generalized deviation 
equation

121
• From this view-point, in Sec.6 we shall pay 

special attention to the last term in eq.(3.2) .. 

4. FIRST ORDER DEVIATION EQUATION 
FOR THE RELATIVE VELOCITY 

Let along the curves x 1 and x2 be moving two particles 1 
and 2, respectively, .i.e., Xt and x2 to be world lines (tra­
jectories) of th~se particles. Then, their. velocities V

1 
and 

V 2 have components ' 

. a 
a a dxa(s) 

V =V (s)·:= . , a=l,2 (4.1) 
a a ds 

and the relative velocity of the second particle with respect 
to the first one is 151 · 

·Ys 

11 V21·: = 1 < >-. < > v 2 - v 1 • c 4. 2) . x2 s x
1 

s 

First of all,· we want to find the c;onnection betweeen 1:!. V
21 and the first order deviation velocity D(/ds which due ,to. 

(2 .12') is connected \..rith the deviation velocity D h/ ds 15/ by 

D h/ d s = D (Ids + O((r"- r ')2
) • (4.3) 

Taking into account that x 1(s) =·y(s, r') 
froin (2.13) and (4.1), we find: 

and x2(s) =•y(s, r"). 

a a a 2 
( (s) = x2 (s) - x

1 
(s) + O((r"- r') ) , 

a a . v2 ( s) - v 1 ( s) = ..2_ a.ya(s, r) 
., ar as 

2 
(r"- r') + O((r"- r') ) • 

r=r' . 

(4:4) 

(4.5) 

Differentiating (4.4) covariantly along x
1 

(s). and using 
(4.1) and (4.5), we get 
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D(a(s) D a.ya(s, r) 
-·-=- I (r"-r') + 
ds dr as r=r' 

+ 'r:~cr C x 1 (s)) V ~(s) t(s) + O((r"- r') 
2

) • 
(4.6) 

a · a · On the other hand, from (2.15) for B (y(s, r) )=ay (s,r)las 
(2.14), (4.1) and (4.2), we derive 

a · a 
!!. v

2 
= _Q_ a.y (s, r) 

1 dr- I , (r"-r') + r=r · ",J 

a {3 a . 2 
+ll a (x(s))V

1
(s)( (s)+O((r"-r') ). .,.. a 1 

(4. 7) 

Comparing (4.7) with (4.6) we find the followin~ relation­
ship between the relative velocity llV21 and the first order 
deviation velocity D(/ds, both being the first order (in 
r"- r' ) quantities: 

. a 
D ( (s) a a a {3 a 
--=llV21 +[T~ (x (s))-1'\ (x (s))]V (s)( (s)+ 
ds · ·,..a 1 ·f3a 1 1 

+ 0 ((r" - r' ) 
2 

) • 
(4.8) 

So up to second order terms we can make the conclusion 
that the deviation velocity describes the "general relative 
velocity" of the particle 2 withrespe~t to the particle 1 
and it is caused.by the (nongravitational) interaction of the 
particles as well.as by ail the properties (curvature, tor­
sion~ .I-tr~nsport) of the space M, but the relative velocity 
(4.2) is called forth only by .the (nongravitational) inte­
raction of particles and by the used !-transport. 

Substituting'(4.8) into the left-hand side of (3.2) and. 
performing some evident calculations we find the first order 

·deviation equation for the relative velocity llV21 in the 
form: 

a 
D ll V21 a 8 y o 

ds = R.,e.yo(xl(s)) V1 (s) Vl (s) ( (s) + 

D a 8 a 
+crs[ll.fja~.~~(s))Vl (s)( (s)l+ (4.9) 

DFa(s,r) 
+ ' 

ar r= r' 
(r"- r') + O((r"- r'/) . 

10 

. ! 
t 
' 

L 

n' .\ .~t ! ~ 

r 

This equation up to second order terms describes the.· 
change of the rel?tive velocity of the second particle with 
respect to the first one·along the world lirie of the first 
particle. 

5. FIRST ORDER DEVIATION EQUATION 
FOR THE RELATIVE MOMENTUM 

The momenta of the considered in sec.4 particles are 15•8/ 

Pa = Pa (s) : = lla (s) Va (s), a= 1, 2, (5.1) 

where J.L 1 (s) f, 0 and J.L 2 (s) ~ 0 are some scalar functions of s 
(if, e.g., the first particle has a nonzero (rest) mass 
m1(s) ~0, then J.L 1(s)= m1(s); see15•81 ) and the .relative 
momentum of the second particle with respect to the first 
one is 151 

·Y 
1'\p =I s 

21 x2(s)-.x1(s~P2 -pl. • (5.2) 

Using (5.1) and (4.2), we derive (cf. 151
, eq,(2.4)) 

llp21 =J.L 2(s) llV21 +(J.L 2 (s):!tL
1
(s) -l)p 1 ~s). (5.3) 

(The sam~ resultmay be obt~ined ~san appro~imate exP.ression 
from (4.7).and (2.15) forB (.y(s,r))=J.L(s,r)a.ya(s,r)/as,, 
where tL(S, r) . is a C1-functiori of r, J.L(S, r') = J.L

1 
(s) and 

J.L(S, r") =J.L 2 (s) (see also below (7;1)). 
Differentiating (5.3) along x

1
, we get 

D llp21 . D ll V 21 dtL 2(s) D J.L
2

(s) 
-. -. =J.L2 (s) + . llV21+-[(-- .:.1)p (s)]·· (5.4) 
ds ds ds ds J.L·(s) 1 

1 

and substituting here (4.9) we find: · 

Dllp;1 J.L 2(s) a fJ · ·Y o 
2 R.,eyo (x t(s))pl (s) pl( (s) + 

(J! (s)) ds 
1 

1 a ,8 a dJ.L ·(s) a 
+p.

2
(s)_Q_[-·(-ll ~ (x

1
{s))p

1
(s)( (s)]+ 2 llV

21 
+ 

ds J.L s) .,..a n C! 
1 . . 
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D ·ll2(s) a .. DFa(s,r) , , 
+-d [(---t)p 1(s)l+tt2(s) a 1 (r -r )-+ 

s /ll(s) r r=r' 
(5.5) 

. 2 
+ O((r"- r') ) , 

where if it is needed, . one can substitute. ·6 V 21 from ( 4. 7.) or 
it may be obviously obtained from (5.3). · · 

Equation (5.5) is the first order deviation equation for 
the relative momentum 6p21 of th~ second particle with res­
pect to the firsc one and it describes up to second order 
terms the evaluation of 6p21 along the world line of the 
first particle. The physical interpretation of this equation 
will be considered in sec.7. · 

6. FIRST ORDER DEVIATION EQUATION 
FOR THE RELATIVE ACCELERATION 

The accelerations A1 and A2 of the considered above par-
ticles ~re with components · 

a 
A:=A:(s)·:= dVa(s)- D dx!(s). 

ds - d8 ( ds ) , a = 1 , 2 (6.1) 

and the relative acceleration of the __ second particles with 
respect to the first one is/5/ , · 

Ys 
6A =I .._.A -A • 21 x2(s)-+ xt.s1 2 1 (6.2) 

From (6.1) and (3.3) we see that 

At. ,;,F(s,r'), A2 =F(s,r"). (6.3) 

So putting B(y(s,r)) =F(s, r) in (2.14) and (2.15), we obtain 

a 
6Aa. =6Fa=DF(s,r)l , (r'~-r')+ 
. 21 21l a r r = r 

a a u 2 
+ "'·f3u (x 1 (s)) A i(s) ( (s) + O((r"- r') ) • 

(6.4) 

From (3.3) and p~~ical interpretation of the deviation 
equation (3.2) (see 2•A• 6• 91 ) it is clear that F(s, r)has 
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a meaning of a (nongravitational) force per unit mass act­
ing on a particle situated at the point y(s,r), i.e., F(s,r) 
is the acceleration of this particle ( cf .' 41 ) • Thus, equali­
ty (6;4) shows that up to second order terms the expression~ 
(DFa(s,r)/ar)lr=r' (r"-r') which appears above in (3.2), 
(4.9) and (5.5), is equal to the relative acceleration bet­
ween the considered particles (computed by means of an !­
transport) or, all the same, it is equal to the (covariant) 
difference of .the (nongravitational) forces per unit mass, 
F(s, ("':) and F(s, r') , acting 'on these particle which is de­
fined by means of the given !-transport along ·y(s, r) for 
fixed s .. (cf. 191 ) • 

Expressing (DFa(s, r)/ar lr=r' ) (r" :_ r') from (6.4) and 
substituting the so-obtained result into (3.2), we find the 
following relation between the first order deviation accele­
ration D 2( (s) I ds

2 
which due to (2 .12') is connected with 

the deviation acceleration D2hfds 2 by 

D
2

h/ds
2 

=D
2
((s)/ds 2 +O((r" -r')2

), 

and the relative acceleration 6A21: 

D 
2 
(a ( s) a a ,. fj . Y 8 

---= 6A21 + R.f3y8 (x1 (s)) V1 (s) V1 (s) ( (s) + 
ds 2 

a ' · f3 ·Y ' a {3 · u 
+ T.fjyC~ (s)) A (s) ( (s)- "'·f3u(x 1(s)) A1(s) ( (s) + 

{:3 D a .. ·Y 2 
+V1(s)-[Tf3 (x

1
(s))( (s)]+O({r"-r') ), 

· ds · Y 

(6.5) 

(6.6) 

where for some purposes one may substitute.the'first order 
deviation velocity D(a(s)/ds from .(4.8). · 

·We should like to mention that due to (2.13) and (6.4) 
D

2
(a(s)./ds 2 and M 21 are first order quantities in (r"- r'). 
From '(6.6) we can conclude that up to second order terms 

the deviation acceleration is a consequence of the (non­
gravitational) interaction of the.particles as well as·of 
all the properties of the space M and the causes of the re-· 
lative acceleration are only the (nongravitational) -interac-
tion of particles and the u~ed !-transport. · . . . a . . . . 

If we express (OF (s,r)/arjr=r') (r"-r')i from (4.9) and 

substitute the obtained result into (6.4). we get the follo_­
wing relation between the relative velocity 6V

21
and the 
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relative acceleration uA 2 : . . 1 

a 
AA21' 

a 
DAV21 a . {3 o 

ds - R.f3yo (x1 (s)) Vt(s) v[Cs) ( (s) -

{3 D a a 2 
- V

1 
(s) ds [ A.f3a(x1 (s)) ( (s)] + O((r"- r') ) , 

(6. 7) 

which due to thephysical interpretation of the quantities 
in it may be called a devi~tion~quation for the relative 
acceler~tion of the second particle with-respect to the first 
one. 

7 .· CONCLUSION 

In this paper we have derived from a unified viewpoint 
the first order deviation equations for the first order divia­
tion vector, relative velocity, relative momentum and rela­
tive acceleration. For the_ last quantity this equation turns 
out to be an algebraic one and for other quantities it is 
an ordinary differential equation which is of a second order 
f~r the first an~ of a first order for the second and third 
ones. 

Besides we have found important relations connecting the 
deviation velocity and the relative velocity as well as the 
deviation acceleration and, the relative acceleration·. 

Now we want to pay special attention to the deviation 
equation (5.5) for the relative momentum. On the basis of the 
above analysis (see especially Sec.6) we can infer that equa­
tion (5.5) is a direct analogue (up to second order terms) 
of the second Newton law, i.e., of the low of. motion ( cf .141), 
in the case. To show this, we shall put eq. (5.5) into a_ 
slightly different form. · 
_ Le;, /L(S, r) be a smooth function of _r , J.L (s, r') : = IL 1 ( s), 
IL(s.~ ) :=J.L2(s) and K(s,r}:=J.L(s,r)F(s,r) (see (3.3)). The 
quantity K(s,r) has a meaning of a (nongravitationa)_) force a . -
acting on a particle with momentum 1-l(s, r) a.y (s, r) los at 
the point y(s,r). Putting B(y(s,r)) =K(s,r) in (2.15) and 
taking into account (6.3) and 

J.L 2(s) -1-l 
1
(s) ~ J.L (s, r") -!L (s, r') = 

. . 2 
= (o/L(S, r) I ar I ,) (r"- r') + O((r"- r') ) 

r= r • 
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we obtain 

. a 

AK~1=(1-l2(s) -1-lt(s))A~(s) +ILt(s) oF (s,r):l , (r'~-r') + 
. ar r=r 

a {3 a 2 
+J.L 1(s)A.f3a(x 1(s)) A1(s) ( (s) +O((r"-r')) = 

(7.1) . - a 
a ) a F (s, r) I ( , ') =(J1.2(s) -l-l 1(s))A 1(s) +J.L2(s _, r -r + 

ar r-r 

· {3 a 2 
+!-1 2 (s)A~{3a(x1 (s))A 1 (s)( (s) +0((r"-r')). 

Physically & 21 is the (covariant) difference of the forces 
acting on the considered particles. 

Expressing from (7.1) the term 

. a . 
f.L 2 (s) (a.F (s, r) / ar lr=r') (r"- r') 

and substituting this result into (5.5) we find (see also 
(5.1)): 

a 
DAp21 

ds 

J.L2(s) 
Ra (x (s') /3( •Y · o 

(p.l (s))2 ·f3yo t ' P1 s) P1 (s) ( (s) + 

JL2 (s) {3 .D a a . d~-t 2 (s) a 
+ --pl(s) -[AD (xl(s))' (s)] + - /), v21 + 

J.L 
1 

(s) ds .,..a · · · 

2 1 d(J1.2(s) - ~-'t (s)) a(s) + AK + O((r"- r') ) • _....!:,.. __ _:___ Pt 21 . +-(-) ita 
l-It s 

(7 .2) 

This is just another form of the first order deviation 
equation for the relative momentum. Its left-hand side de­
fines the change of the relative momentum of the second par­
ticle with respect to' the first one along the'world 'line of 
the first particle.The terms in its right-hand side describe 

- this change as follows: .the first is due to curvature of the 
space~ the source of the second is a tensor A with compo­
nents (2.16), the third and the fourth are caused by the 
speed of change of the functions /-L 1 (s) and it (s) (the rest 
masses of the particles if they are nonzerof, the fifth is 
a result. of the (nongravitational) interaction of the par-

_15 



ticles and O((r"- r')
2) contains all high order (at least 

. second order) corrections in (r"- r') (all of .the preceding 
terms are of a first order in · (r "- r' ) ) • 

At the end, we shall derive an equation which by analogy 
with the above results may be called a first order deviation 
equation fo:.; the relative energy. 

Let M be endowed also with a metric, i.e., a scalar pro­
duct, o!_ the vectors which we· shall denote by "a dot: A • B = 
= A a B gczf3(Y), where A and l3 are vectors ~t on:e and. the same 
point . y ~ M with the components _...A a and B , respectively, 
and ga{J (y) are the ·covariant components of the metric at y • 

The relative energy of the second particle with respect 
.to"the first o~e is (see (5.2) and 151 , eqs. (3.i) and (3.6)) 

2 Ys • 
E2:l =E>((Vl(s)) ) V1(s). Ix (s)-.x (s)P2(S)= 

2 l . . 

= E>((V 1 (s))
2

) U.p21 . V 1 (s) + p
1
(s) ·. V 

1 
(s)) , 

(7 .3) 

where E>(A)·:=+l for A20 and El(A)·:=-1 for A<O. 
. Differentiating (7 .3). with respect to s along x

1 
(note. 

that Df/ds = df/ ds · for a' scalar f ) . and substituting in this 
expression eq. ( 7. 2), we get · · · 

·dE . , (s) 
--..$!. = El((V (s)) 2 )[ ,.. 2 · · 

ds 1 (p (s) )3 
1 

u {3 y 0 
.xp1(s) p

1
(s) p1(s) ( (s) + 

. a 
gau(x 1(s))R.f3yo (x 1(s))x 

f.t2(s) /3. ·Y D a u 
+ 2 pt(s) p1 (s) gay(~1 (s)) -d (~ {3/X 1(s)) ( (s)) + 

{J.tl(s)) . s . 

dfJ.2(s) 1 
+. d ~v2t" V(s) +--

s . (fJ. (s)) 
1 

+~K ·V (s)+~P ·A (s)+~PaV,8(s)Dg D(x(s))./ds+ 
. 21 1 21 1 21 1 a,.. 1 . 

d{,.i2(s) -lll(s)) P (s).pls) + 
ds · · 1 

(7.4) 

d~t1 (s) . 
+ V (s) • V (s) + IJ (s) (2 V (s) . A (s) + 

ds 1 1 1 · 1 .1 

a . f3 . · · 2 · 
+ V1 (s) V2 (s) D ga{J(xi {s))/ds)] o+. O(r" ~ r') ) • 
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This is the first order equation of the relative energy 
balance which may be regarded as ·a generalization of the 
usual equation of the energy conservation. 

The author thanks Professor N.A.Chernikov for the dis­
cussion. 
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