


, INTRODUCTION

In many applications d1fferent klnds of approximate devia-
- tion equations, viz. the so-called first and. h1gh (second,
~third and so on) order deV1at10n equatlons/'G'/ found usage.
"Most frequently one comes .across. the first order dev1at10n
equations. and especially the first: order equatlon of geode51c
‘deviation which with-necessary prec151on are- used in the Ain-
vestigation of a.number of phy51ca1 phenomena’/1:7-9/ - :
' Flrst order’ dev1at10n equations, -or local dev1atlon equa-
tions, are .called the ordinary differential equations of se-’
cond order satlsfled by the first order deviation vector -
which practlcally everywhere is supposed-to be an infinite-
simal vector: Usually, these equations are derlved from the
- conditions: defining the concrete problem under con51deratlon
"and on their basis the corresponding high order dev1at10n
equatlons/1 2,69 by one or another method are derived.
-+ In this work, on the bedrock of the generallzed (nonlocal)
deviation-equation in an arbitrary space (manlfold) with af-

vflne connection:and general linear transport along curves/gs/‘j

" we obtain’ the most general concrete form of the first order
‘deviation equatlon for the first order deviation vector as
.well -as for some other 1mportant phy51ca1 quant1t1es connec—
ted with it.':
The paper-is' organized as follows' In Sec. 2 we deal w1th
. some ‘approximations to ‘the general linear transports along

curves by means of which some Approxlmate vectors are obtain-

ed and in particular, the first order deviation vector.

Section 3 is devoted to the first order deviation equations
satisfied by the first order deviation vectors. In Sec.4 we
~ find the first order relationship between the deviation ve-
locity and the relative veIOC1ty of two particles and an -
ordinary differential equation of the first order satisfied

- by the relative velocity (the first order deviation equations

for the relative velocity). In Sec.5 we derive up to second
. ‘order terms an ordinary differential’ equatlon of first order
 satisfied by the relative momentum of two' point particles:
(the first order deviation equation for the relative momen- .
tum) which has the meanlng of the first order equation of
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‘motion for these particles. In Sec.6, we consider similar to

Sec.4 problems but concerning the deviation acceleration and :

‘the relative acceleration between two part1c1es. Sectlon 7
contalns some concluding remarks.

>2. _ON 'THE APPROXIMATE TRANSPORTS ALONG CUf{VES

- AND APPROXIMATE DEVIATION VECTORS

) In /2 8/ we; proved that in any. local basis {6 } (for 51mp11—
city we shall use only coordindte bases). every general 1i-

' near transport (1- transport) of the vectors T%,,:T (M) > Ty(M) .

along the curve y:[r’, r”] » M M, 2,y € y@r ,.r”’]) (M is”
a d1fferent1ab1e manifold and T;(M)is the tangent to it
space at x) is uniquely defined by the matrix ||H; B(y,x EORIE
. (all indices run from 1 to n=dimM and the usual summaticn
. rule is understood), so that for any A= A a/ax € T, (M)

Let us note that for every X and Y

ﬂ(x X; ‘}’) BB, | _ o » : : » (2 2)’

“where 83—1 for a—ﬁ and 5g=0 for a # B. (Other spec1al

properties of ”Hﬁ (y,x y)I| Tare insignificant for us now).
If the functions H (v,%x;9) batlsfy certain conditions

(e. g.» 1f they are of the class cN*tlyith respect toy),

. there exists an integer N such that ‘they can be put in one

 of the follow1ng equivalent forms (see .(2. 2))

gt 2 . o
A‘ ﬁ (y x Y) 83+rnf1 m! H'Bal ..u dxrl(x,Y)x

o - | o @3a) |

x('y - 1) iy e +o((y-x)N+-‘),‘i

N 1 m
5('}'(1') y(rl) y) = BB+E—— H (r1 y)(r -r) +

—m B

N+t . , BRI S ‘(:2_3'5)

' +‘0((r2;-r1)“ y,

Y Soa B . . oa . : ’ ‘ :
1" :A:(H,lg(Y.X;-y)A )d/dy , i.e. (I:;‘y-A)a =H:8(y, X y) AB'. (2.1) -

e X-»y

where (7= '-[m‘”‘(y e NS O
L . ' E[l' 1] and o ' : '

: , a(H (y,x ) E .
'H.aaa (x; y): BY: pay L U e
SRS XL ' c?y mmayrl ':y=,xv . : |

; a“tH ﬁ(y(rz) y(ro y» S
1% (rg; y) — - 1o © (2.4b)
AT : ar"; o <'2="1 o

The functlons (2 4b) may ea511y be expressed through the
functions (2 l;a) for example, ; 4 ) ,

H?B(rl;y)—i B (x y)y 7t (r ). ' E | (2.»5a)

0" 04

- | g
TH ) = “B (i Moy ) -

.712 - S o o (2.5b)

+ H-aBUI(‘xf':y‘) d}',fi(r)/df I,r ;

and so 'on","‘ where o
'ya(r)' —-dy () /dr »‘ s : T (2.6)

are the components of the tangent to V- vector y - at relr’ r”].’
~ Remark. The expan51on (2.3a) is more general than (2.3b)"
because the. 'second one is valid only if y is a C +1 map. and -
‘the first one is valld for any map:y. . '

If.in (2 1) we replace HB(y,x y) by the N-th approxi-

i matlon‘
‘ (N) a . ” i a ¥ Y ma S ~ime
(y x; y) + 2 — Hg(r;9)(rg=ry) = o
N A Ge gy O O L
PR i_n“ () @ ox Dy —x ),
s B m=1 m! -ﬁal"'am" TR

we get a map ‘N)IV Tx‘(M’) ;Ty'(M) * which may be called the =



N-th order I-transport and it ‘;‘is defined by

1y e . B.- . 8 | N
K, 4= Cng x4 yosdyP. . (2.8)
).y . - ' '

Evidently = Ix,y describes -the I-transport up to the

(N+1)-order quantites, i.e., (N)I‘K.,y 'is an N-th approximation

to Ix-;y . ‘ S v ’ :

Further, in our paper we shall work only with the zeroth

(N =0) and first (N = 1) order approximations for which due

to (2.7) we have : 3

- . ) N
D% (v, 2:9) = 85, o o @)
(I)Ha (y x.‘ );Sd Hd (x: )_,(ya- o,

B Xiy) =0+ g (xiy)irT —x7) -

=98 + "M@,y (1, 1) = 55+ HE (xi9) 7)) (1)),

the last two equalities in the chain (2.9b) being valid if y
" is a Cl-curve. Note that the functions (2.9a) are simply
constants and thus they do not depend on X,y and y as well

as on the I-transport used. o .
- It is important to note and easy to prove that the func-

tions [—Hitga(x; ¥)] appearing in (2.9b) and defined by (2.4a)

for n'=.1 define an affine connection along y, i.e., they tran-
sform like coefficients of a generally nonsymmetric affine
connection. (This statement is a.simple corollary from the
fact (see (2.1) and’?3/ ) that HFB(y, X; y) are components
of a two-point tensor from Ty(M) ® T*(M):.) Let us note without
proof that the connection along "dexfinéd‘by (-Hgg (x;9))
is flat, i.e., its curvature tensor is equal to zerg. '

Let an affine connection with :(local) coefficients ‘l',% (x)
at x &M on M be defined, i.e., a covariant derivative v on
M to be defined so that with respect to the basic vector
d/dx" the covariant derivative of A(x) =Aa(x)é/éxa€ Tz (M)
to be with components ) . :

(V'BA(x)ﬂ)a': =ATB (1:{) - 9A° ) /.éxB+ -I‘;;B.‘(x)‘Aav(x)_ .

Tl.len, it is not difficult to brove (c£.”% ) that for the ‘de-
f;.ned ‘by this connection paralled transport ' '

a e e _ - B
Vﬂ.ﬁa(xfy:!ll)=.—F_';a_(x). , , (2.10) -

" independence of the curve y. -

(2.9p)

=D @ =) + OG0 =) +

. wl'&ere the ;{dditional' arg{uhéﬁt l[’”fi'ndicété's‘,vt‘:hiat the functions .
- H.go(xiy) are computed for the given parallel transport. .

An_important property of the functions (2.10) is their

As has been pointed out in/5/_‘,’;pért V, on the basis of

~ the expansions (2.3) one can déArirve, the corresponding: appro-’
- ximate displacement vectors, deviation vectors and deviation

equations. Now we shall get the-expression for the first
order deviation®vector and in Séc.3 we shall consider the

~corresponding to it deviation equation.

~ Let there be given curves xa‘:‘[As’a,s;’] > M,a =1,2 and -
x:[s?,5”}+ M and one-to-one maps r,:[s’, s8] 5 [s;,s]]

~which map the parameter s €[s’,’s”’]" onto the parameters s, =
=r,(s)els;, 8], a =1,2. Let also be given two one-para-

meter families of curves y :[rl, t%]1>Mand 5,:0p/, o1~ M,

~ such that ys‘(t;-): = xi(rl(S)s) B =7 ;"7)':’7(£7;) o5 (1) t=x,(5 (8))
and 7(pg’): =x(s) , s € [s’, 7] . Thus, defining .}}%(5: =

=. ay‘;(r)/ar,u.r €lr’,r”] we see’that the deviation vector of

.Xp with respect to x, relatively to x at x(s) is/2:%/ N

h=h(s;x) =1 " " [T e
: xl(si):a;;(s), r; 'ys(r)*,xﬁsi?

LIRS

e (r)d'GTx(s)(M) (2.11) |

' Using (2.3) for N ='0"and (2:1) from (2.11), we get

=506 K05 + 0@ =36 ) (ofor) 1SN+

+0((x(s) =%,(s,)) (xz(sz) EENE 1)’)2)7{+.;C:)_‘((x ‘z(.sz'f)‘.‘“;""1:(5;)”)‘21)'-,;' "
, RO N2 6 o e Sl (2.12)

£ 0oy ~7) (620= 1)) + O(E = 1)) .-

., q From ‘here we see. that ,x;(sz)yf"f;:"xa(:sl), ‘or_equivalently
v (€))7 - r)) . (with the same precision) is the lowest ap-

proximate expression for the deviation vector which will be
called the first order deviation vector and will be denoted

. ,fvby 4 =‘<(s)f

Further, for brevity’ and simp‘l'iicity we shall consider only
the cases 7 =id (i.e.rra’(’s) =s,=s), a=1,2 (this is '

"~ not an essential restriction: it simply means to denote

Xyor, by X, and to parametrize it'by s) and x = x;; one
usually finds these assumptions in the-literature/1.6-9/. Be-

. sidesy we shall use -the independent parameters s &{s’,s”].and -

rcfrs, ] such that r, =f (r), where R0 4 30 ele7]
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. is one-to-one C®-function and

f(r)_rsvand f(r”)_r
Thus, (2.11) and (2.12) take respectlvely the form
l" ys '. '
h- I}’(s.r)—»'x FORASTRMALE (2.11%)
B —xz(S)—x (S)+0((x (s) -x, (S)) )— :
. i (2:12%)
—y(S r’) (r —r)+0«ﬂ r) )_C +O«VLr) ), )
s
where
y(s, )=y (£())=(v o £) (), 7%(s,1):=9y%(s,1)/ar
and in this case the first order deviation vector is
'C=C(s)=.'y(s.r')'(r”-r') CT, ). (2.13)
' 1

The feature of (2.13) is 1ts independence of y up to
terms of an order of o((r”"-r ) ).
If r”” -r’ is an infinitesimal constant, this vector is
sometimes called .the infinitesimal deviation vector /2:68/
‘ At the end of this section we want to present one useful
‘approximate formula.
Let an affine connection be dellned on M, B be a- C1 vec-
~tor field deflned on {y(s,r)} and

Y ;
ABy 1= AB(s;x;1 %)=

Ys o (2.14)
= lxg(e) 'fxfx)B(xz(s)).‘B(xl(s)‘) € rI‘xl(s)(M) ‘

;App'lying (2.1) and (2.3b) for N=1 to the first term of

this 'definition and then taking into account (2.5a), (2.13)
and that 'x 1(s) =y(s,r’) and "’ xz(s)r.y(s r’’) we get after

. some 51mple calculations .

AB" _DB (y(S. r))

r’) +
21 .
o ar

l - (r” -
Soe il P c (2.15)
,+A'ﬁ‘0. (}{1(5))_‘B (x,(s)) ¢%(s) +'0.((r”._.-‘r')2') R

-

where. D/ar _y (s,r)V etls the covarlant der1va-t4f

6/6 y"( D)
tive along y(s, 1) for fixed s G)B /ar_.aB/ar+-F
and A is a tensor field of the type (1,2) define
with the components

L 855%s, 1)
on ly (s, 1)}

8%, (5, 1))t =T, (y(s, 1) +H",3¢;(vy<'s,r):-ys>'. 2. 16)

Note that if 1 Vs is a parallel transport along ys then

"~ due to (2. 10) the tensor f1eld A is identically equal to

Zero.

3. FIRST ORDER DEVIATION EQUATION
FOR THE;DEVIATION VECTOR =

Here and hereafter in our text we suppose to be defined
an affine connection on M’ ‘and a general linear transport
(see Sec. 2) having a needed number of derivatives (see be- .
low).

For any C® -vector field & = - £(s) defined along any C 2-curve
y:[s’ ,s’ﬂ.,Mthe follow1ng 1dent1ty/26/ is valid.

D 2¢8 ’d"» ﬁ}' 8 BD4

- R w'E” f F‘+u—-('I‘ §)+ | .
ds Bth |8 _ By 4 (3f1)
By£r

By

 where all quant1t1es are defined at ¥(s), s cls’s”] and

D/ds: —uBVf; oPi-ayP(s)/as, PO =Dut/ds . Tﬁy'""'rﬁyu

'+I’yB is the tor51on tensor,

a

RB3=_6FB /ax +ar38/ax —-l"B 8 +I'38 I:E

is the curvature tensor and 2 Cis the Lle derlvatlve

along &.

' For y=x and €&=h (the deviation vedtor - see Sec. 2)

the identity (3.1) with some ‘additional conditions which must
satisfy h is called the (generalized) deviation equatlon/zﬁ/
If the expansion (2.12”) is substituted into this equation,
then one can get the first order deviation equation which
must satlsfy the f1rst ‘order deviation vector (2.13). But

" the ‘latter equation may be obtained (as an exact equatlon)

d1rect1y from (3.1) in the following way
7 '



At first; we have to put in (3.1) y=x = Xy, so u = Vf":=
and then to use as an additional condi-

= dx§ (x) /ds and ¢=¢ , 7
“tion the equality d%y%(s,r)/dsdr - ag.y.a(s,r)/aras (y is a c?
map) which for r=t" is equivalent to £ V, = 0. Hence, using

the identities (for any V, and ¢; see’®)

PO_ps B e B o B
ET TTigl T Taf e

" and

. "
Buy a a -] . a B
Vlvlf r:ﬁ}' =§F —D(mz_ Vl)/ds—VllBé:V 5

"we get after some simple calculations:

1. 2,a - | 2o
D¢ _a By 8 a . B , y
F:R-ﬁyavlvnc +T-B-}'F (S,l‘y)C +
ey :
8%y ¢) D%y
A + 1, @7=r) = (3.2)
) ds ar =1 . 2

pa By,8 p a B,y ‘I’)‘,F“ v,
’-_R.ﬁ},(rs-vl \M4 +d—s(T.ByV1§ )V+,_'r(sr) |r= (r”-r )y -

’

where ¢ and V1 have an argument s, R?ByB’ T?By have an argument

7 xl(s), and

a: . - Qa
Fi(s,n:=LD (9 &0, (3.3)
as Jds . ;
Eq. (3.2) is the first order deviation equation. It was
obtained (in the general form) by another method in’/¥. Also
it was derived in a number of special cases on the bedrock of
other principles, e.g., in/1.79/ ) ' .
Let us emphasize two features of eq.(3.2). Firstly, it is
independent of the concrete choice of the used I-transport
and up to terms of an order of O(t” - r’)2) .of the family
of curves wy (r.) = y(s,r) . -Secondly, = it is an exact equa-
tion, ‘i.e., it does not contain any correcting higher order
terms like Q((r”” -1°)?) (if one. defines (noncovariantly) the
firstox_‘der deviation vector instead of (2.13) by the equa-
‘tion ;’a:x;(s) —’xal(s) » as it is done, e.g., in’%7? . then

8

‘equation

" 4. FIRST ORDER DEVIATION EQUATION
- FOR THE RELATIVE VELOCITY '

, o |
.,V:(s)_v‘:(us)ma%_ Ml

~in the -Léight-hand‘ side of ‘(3.2)iit}4‘1ére must‘:::’b/éuadded: ,0((l$é(s)'4
0. ey e At “ \

In the general form, the physical meaning of the deviation
equations was discussed, e.g., in/2,6.9/ 'This interpretation
is valid and for the first order deviation equation (3.2)
because it is a special case of the generalized deviation
/-, From this view-point, ‘in Sec.6 we shall pay

special attention to the last term in eq.(3.2)."

s

Let along the curves x; and xg“-_be moving,thparti’cles 1
and. 2, respectiVely, i.e., x4 and’xs to be world lines (tra-
jectories) of these particles. Then, their. velocities V, and
Vs have components LT T e :

a a dxg(s
Va =)Va(s)':; , ,~a7=v1,2

, (4.1)
ds o

and the relative velocity of the second particle with respect
to the first one is’® , T R '

. Y,
AV °

21° = Ixz(s) 4xi($) Vo =V

. o T (4.2)
First of all, we want to find ilthé qbnnécﬁf’iblﬂbétﬁeéen ,AVA:2‘1' ‘
and the first order deviation ‘velocity D{/ds which duejtof
(2.12°) is connected with the deviation velocity Dh/ds /5/ by
Dh/ds =D¢/ds + O((r =)y, - (4.3)
 Taking into account that %,(8) = y(s, %) 7 and x)2(s”) =‘-y(s, ry
from (2.13) and (4.1); we find: S e : e :

¢%s) =xg(s)}—,g‘:(s) £O(r7=t)2y, (4.4)

Bl (7T 0G0 (es)

Differentiating (4.4) covariantly él’ong: xi(s)i and usiﬁg :

(4.1) and (4.5), we get



D c“(s)

D 3y (s, 1) o,
ds : dr _as ,|r=r' (r7=1) + 5 ;
8 . (4.6)
+'1"3 (x BNV ()¢ (S) +0(C”~ r’)).

On the other hand, from (2 15) for Ba(y(s r) )= ay (Sr)/as s
(2.14), (4.1) and (4. 2) we derive

@ p 3y%s, 1) ‘
AV o T MO T s
- Rl qr ar Ir:r' (r7-13)+

| , (4.7)
a B o 2
+A.ﬁa (xi(S))Vl(S)C (s) +0(@”-r") ). :

Comparing.(4.7) with (4.6) we find the following relation- L

ship between the relative velocity ‘AVgy and the first order.
deV1at10n velocity [)C/d& both being the first order (in
r ’ ) quantities:

D¢*s) A B .,

" —AV [ B (X (S))— a(xl(s))]vl ()¢ ) + ' .
| - (4.8)
L0~ 1%y

.80 up to second order terms we can make the conclusion
‘that the deviation velocity describes the ''general relative
veloc1ty of the particle 2 with: respect to the particle 1
and it is caused by the (nongrav1tat10nal) interaction of the
partlcles as well as by all the properties (curvature, tor-
sion, I-transport) of the space M, but the relative velocity
(4.2) is called forth only by the (nongravitational) inte-
.raction of particles and by the used I-transport.

Substituting (4.8) into the left-hand side of (3.2) and
performing some evident calculations we find the first order
‘dev1at10n equatlon for the relative veloc1ty AVgy, in the
form: .

-'DAV21 a
— B 5(%, () V, (S)V (s) C (s) +
g [, (4 ) v @ 0 1+ (4:9)
"] ) 7 2 I
DEED ey ooy .
i ey © (

iy

PV

This equation up to second order terms describes the -
change of the relative veloc1ty of the second particle with
respect to the first one’ along the world 11ne of the first
particle. .

75. FIRST ORDER DEVIATIONVEQUATION

FOR THE RELATIVE MOMENTUM ; o
The momenta of the con51dered in sec.4 part1cles are/58/

a =P @);:na@)v ), a=1,2, (5. 1)
where ni(s) £0 and #2(5) #0. are some scalar functions of s .
(if, e.g., the first particle has a nonzero (rest) mass

m (s) #0 , then ny(s) = m(s); -see’%8/ ) and the relative
momentum of the second part1cle with respect to the f1rst

one is

! 5 R L
) Apzl =IX2(S)"'X1(55D25 —?1. (5.2)
Using (5;1) and (4.2), we derive (cf./S/, eq,(2.4))
Apyy =up(9) BV, + (uy® 7/, (6) = Dp, (). (5.3)

(The same result may. be. obtalned as an approx1mate express1on
from (4.7) and (2.15) for B%(y(s,r)) =u(s,r)94%(s,1)/ds, »

where u(S.O is a Ccl-function of r, (s r ) #1(5) and
pls, ) _uz(s)(see also below (7. l))
D1fferent1at1ng (5.3) along xl, we get
DAp., DAV, Cdpl(s) ©) A
21 Sl ~ D . He
. —'= 5 (8) - - “ AV, +— ~1 s)]- (5.4)
ds He ds * ds 21" ds t(ui(s) ) P, 2

and substituting here (4.9) we find:

DA a ' S) a . S Py S
: Poy _Hl ~Rpg.s (xi(s))_pfcs) pﬁc ) +
S (@ (s)) .
ug(s) a -
+ iy, () [ ( ) Ba(xl(S))p (S)é" (8)]+ ‘ sz1 + o

-

C11



D "[~ ny(s) U pE%e
+ES—, ("1(5) ar Tr=17"
+0((l'” r ) )'

where if it is needed, one can substltute AV 1from (4 7) or
it may be obviously obtained from (5.3). -

Equation (5.5) is the first order deviation equation for
the relative momentum Ap o1 0f the second particle with res-
pect to the first one and it describes up to second order
- terms the evoluation of Ap,, along the world line of the -

first particle. The physical 1nterpretat1on of this equat1onr

will be con51dered in sec. 7

6. FIRST ORDER DEVIATION EQUATION
FOR THE RELATIVE ACCELERATION

' The accelerations A; and A2 of the con51dered above par-
ticles are with components :

B a
v, (s) dx3 (S> : o
A2=Aaa(‘s)':=—%é““='x%(T),’ 2=1,2 (6.1)

'and the relative accelerat1on of the second particles w1th
respect to the first one 15/5/ IR

A21_=Ix2<s)»x1(s‘)‘A2 A - o (6.2)
From (6.1) and (3.3) we see that
So putting B(y(s, 1)) =F(s, 1) in (2.14) and (2.15), we obtain

a
a DF (s, 1) .,
A21=AF211-=—“5T_—-|,=‘{. (r—r )+, ‘ |
g . o (6.4)
(x (s))A OKA “(s) +0((r” ).

_From (3 3) and pny51ca1 1nterpretat10n of the deviation
equatlon (3.2) (see’2:4.8.9 ) it is clear that F(s t)has

-12

1 IO 14 up(®) —5——|  @"-t)+ . (5.5)

a mean1ng of a (nongrav1tat1ona1) force perf unit mass act-
ing on a part1c1e situated at the point y(s 1), i.e., F(s, 1) _
is the acceleration of this particle (cf.”* ). Thus, equali-
ty (6.4) shows that up to second:order : terms the expression’
(DF%Gs, r)/ar)] ‘1) which appears above in (3.2),
(4.9) and (5. 5), is equal to the relative acceleration:bet-
ween the considered particles (computed by means of an I-
transport) or, all the same, it is equal to the (covariant)
difference of the (nongrav1tat1ona1) forces' per unit mass, .
F(s,r) and F(s,r’) , acting on these particle which is de-
fined by means of - the g1ven I- transport along y(s, 1)  for
fixed s (c£./% ).

Expre551ng (D F%s, r)/ar[,_, ) @ - 1) from (6.4) and
substituting the so-obtained result into (3. 2), we find the
follow1ng relation between the first order deviation accele-
ration D2 (s)/ds® which due to (2:12%) is connected with
the dev1at1on acceleratlon D?h/ds? by

Dvh/ds ,.D C(s)/ds 4—0((r” ’)?);‘ o :‘_‘,,‘ u; (6.5)

and the relat1ve acceleratlon AA21.

52(5) _AA21 +Rﬁy3 (x, (s))vﬁ(s)v )¢ (S) to
- r
+T,“,3y(x1(§)')“A§ © éy(s>-Af'Ba(xl(S))A€@) \‘;a(s)f'*]‘,d,’ LR

B. p,.e" Y LR
+V1‘(S)J_ES—[T:BV (xl(S))C (S)]+0((r _r,) ).

where for some purposes one may substitute the first order
deviation velocity D{%s)/ds from (4.8).
We should like to mention that due to (2.13) and (6 4)
2é'(s)/ds and AA21 are first order quant1t1es in 7 ~1").
From (6.6) we can conclude that ‘up to second order terms
the deviation acceleration is a- consequence of the (non-.

‘gravitational) interaction of the. part1c1es as well as of

all the properties of the space M and the causes of the re—*'
lative acceleration are only the (nongrav1tat10na1) ‘interac-"

tion of particles and the used I- transport. , .
o If we express (DF‘(s £)/dr] _ )@~ ) from (4.9) and

substitute the obta1ned result into (6.4), we get the follo-.
wing relation between the relat1ve velocity AV’ and the:
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- relative acceletation ABgyy

. DAVy:

AA?T:

- RBya (x, (s))v’s(s> Ve 2% - |
g ‘ (6.7)
Y (s>_—[AB,,(x (s))c(s)1+o«r" ),

which due to the physical 1ﬁterpretat16n of the quant1t1es

in it may be called a deviation equatlon for the relative
acceleration of the second particle with respect to the f1rst
one.

" 7. CONCLUSION

"In this paper we have derived from a unified viewpoint
the first order deviation equations for the first order divia-
tion vector, relative velocity,- relative momentum and rela-
tive ‘acceleration. For the last quantity this equation. turns
out to be an algebraic one.and for other quantities it is
an ordinary differential equation which is of a second order
for the first and - of a first order for the second«and'third
ones. :

Besides we have found 1mportant relatlons connectlng the
deviation velocity and the relative velocity as well as the
deviation acceleration and.the relative acceleration.

Now we want to pay special attention to the deviation
equation (5.5) for the relative momentum. On the basis of the
. above analysis (see especially Sec.6) we can infer that equa-
tion (5.5) is a direct analogue (up to second order terms)
of the second Newton law, i.e.,  of the low of. motion (cf.(40,
in the case. To show thlS, we. shall put eq. (5.5) into a
_ slightly different form.

Let u(s,r) be a smooth function of r , u(s,t’):=p,(s), -
(s, T7) 1= py(s) and K(s, 1) :=pu (s, 1) F(s,r) . (see (3.3)). The
quantlty K(Sr)has a meanlng of a (nongrav1tat10na1) force
acting on a particle with momentum u(s, 1) 9y%(s, r) /ds at .
the point ¥(s,r) . Putting B(y(s,r)) =K(s,r) in (2. 15) and
taking into account (6.3) and

b 5®) (8 =u(sT7) —u(s, 1) =

=(éﬂ(s; l'v):/érl‘r:__:r') (}.”_ r’) +0((r,,_rf)2)f.
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D Ap21 “z(s)

we obtain

6F (s r)|

= A
1= (ng(d) - ul(S)) 1(S)+u1(s) T o

(rflf-_vrl) 4+
a B o ”', ;2
+ul(S)A.30(x1(S)) K@ 9 + 0@ -1 = -
. . ‘_ . ) s r ' ,(7.1)
) a a .
= () =y ) A% g Ty oy

" ﬁ 70’ V‘V” '2
u (s)AB (5, ) A, (9 £ +0@"-1) )+
Physically AK,, is the (covariant) d1fference of the forces

acting on the considered particles.
Expressing from (7.1) the term

1y ® OF .1 /381 ) (17 =x7)

and substituting this resclt intek(S.S),we‘find,(see also .

(5.1)):

: )
. aomferede
s (u (e Ry U
g (7.2)
L 2® e ga o
21

#1('5)

B o . 4
b ()_[AB KOOI

R (RO )
+u1(S) ds

o | VDRI A
@ + K 5yr 0C -1 ).

- This is JUSt another form of the first order dev1at10n
equation for the relative momentum. Tts left-hand side de-
fines the change of the relative momentum of the second par-
ticle with respect to the first one along the world ‘line of"
the first particle.The terms in its right-hand side describe
this change as follows: the first is due to curvature of the
space, the source of the second is a tensor A with compo-v

nents (2.16), the third and the fourth are caused by the

speed of change of the functions p, (8) and 4 _(s) (the rest-

masses of the particles if they are nonzerof the fifth is:
a result of the (nongravitational) interaction of the par—

. : : .15



ticles and '0((r”;-r’)2)' contains all high ordef~(at”léast
" second order) corrections in (r”’~r’) (all of the preceding
terms are of a first order in (t”~-r")), . . . L
At the end, we shall derive an equation which by analogy
with the above results may be called a first order deviation
equation for the relative energy. C S _
) Let M be endowed also with-a metric, i.e., a scalar pro-
duét,3§ the vectors which we shall denote by“*a dot: A.B-=
= A°B gaBQO, where A and B are vectors at oné‘and;the same
. point .y€ M with the‘compOnenthAa and B¥, respectively,
and gaﬁ(y) are the bova:iant components of the metric aty. .
_The relative energy of the second 'particle with respect -
.to the first one is (see'(5.2)'ahd/5/, egs. (3.1) and (3.6)) "
Fay =0UV, N V,6) rg(e) - xy(Pe®) = e o
=0V, ()% (Ayy- ¥, () +p,(9) - V, () ‘

where ‘@(A)t=+1 for A>0 and O(A)":=-1 for A<o0. -
- Differentiating (7.3) with respect to s along'xlr(hote,
that. Df/ds = df/ds ' for a'scalar f) and substituting in this
" expression eq. (7.2), we get' =~ ' = o i

AR, o SR a
LGP e PR LA S
HONEE |

@ 1 070 o

H2® B e ‘D.a , o

Ty MO ) 35 B C @)+
d Ca(, (s",’; ( )) .
PE) 1 9GE) - S’ P, ) -p(s) +

T+ AV, - V() +
e G @ s P

B,(x'l(é)) /ds ;

K- | o . L Ap% D
+;A 21 Vl (S) + Apzl’ A1 (s) + A;pf?,ivl (S) 8
dp, (s)
ds

+

V@V, © +n, ) @V () A, O +

+ v‘:(s) vf CLEM

s .

@, @)/l w0 ).
16

This is-the first ordervequati¢n of ‘the relativéﬁenefgy

~balance which may-be regarded as-a generalization of the

usual equation of the energy conservation. . . . .
The author thanks Professor N.A.Chernikov for the dis-
cussion. N . S :
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