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1. Infroduction

Dirac’ equation with extern&l Coulomﬁ poﬁential is used
successfully in atomic physics, and at the same time, it is one
of the rather few éxactly sqlvablé .models in .”relativistic
quantum - mechanics”.. Another solvable model (up to numerical
zolution of a transcendental equation for eigenvalues) 1is the
Dirac Equaﬁion with spherically symmetric shell interactions like -
the potential'éff—R), R=cons£ (Dittrich et at 1989,‘Dominguez—
Adame ;990). The combination of both Coulomb and contact shell
interactions still gives a solvable model as we are going to show
in this paper.

In addition to extension of the list of solvable models, the
results might be of some phenomenological -interest if the contéct
cshell interaction 'is used aé a simulatidn of strong interaétion
in hadronic atoms {(Mur and FPopov 1985). For- the Schrodinger .
Hamiltonian the problem of “Coulomb ~pluz - =shell éontact
interactions have been studied in a number of papers (é.g., Mur
and Popov 1985, Antoine et al 1087) .

In the present paper, we consider‘Diréc‘Hamiltonian with
Coulomb potential and contact ihperaction on the sphere of radius
kX with Coulomb' source in its centre. We cdnsidef only
Hamiltonians which are symﬁetric with- respect to the space
rotations and reflections. This allows us to separate different
partial waves with given angular momentum j, parity (—1)1, and
the third component of angular momentum (Dittrich et al 1989).
Then we may_dbnsider ordinaryvdifferential radial operators for
eaéh partial wave bnly., .

The shell contact interaction is constructed by the known
method based on self—adjoint extensions (Albeverlo et al 1988) :
the sought Hamlltonlans . H are self- adJoxnt extenSLQns of the.
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operator H. in-the Hilbert space x = L (R ) ® € where
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¥ = D(H) ;=,QO(R‘\({01 LS §<@? R (1.2)

in other words, HO
Hamiltonian to the functions which wvanish. in the v1c1n1tv ‘'of the
In (1.1), ¢, 154

"is the charge number, ¢ -

shell—interactlon ‘support. are Dirac matrices,:m

is the particle mass. ; 2° is' the fine

structure constant; and

“e1.ay

2, Tha radial eperatorsi

From now on. we shall con51der cne partlal wave with glven J,

(- 1) and ’j3-. After separatlon 01 the angular variables and

the unltary transfomatlon remov1ng the welght factor ra from the

- .measure, we)ehall use - the Hilbert space

e

:\..—, 2 ‘,’ - . : P )
¥ =L (R+) ® C’ 5 . : (2.1}

the construction starts from the operator ﬁ of the form

0
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DU :=.¢%((0,R) U (R,®) ® €
o ¢ o , (R,w)) & C (2.3)
: e g_aydT l+1/2
and 3 =-(-1). v Cj + 1/:) ‘We are 1nterested in self adJolnt
ext i H i e
enelons of the operator Ho-‘ in L whlch correcuond to
-~
: 2

is the reetrlctlon of the Dlrac Loulomb :

‘ Lthe deficiency spaces are written in the form

spherically symmetric self-adjoint extensionslof'the operaﬂdr Hd:
in ¥ . o
First of all, we have to calculate the deficiency indices d;

:= dim Ker(Ho* F i) o it-requires to =olve the equations

To this end, it is necessary to find square integrable solutions

of the_equaﬁion with ﬁo* feplaced by the differential operator
of the form (2.2) in (0,R) and (R,w) (Dunford and Schwartz 1963).
The differential équations corresponding to (2. 4) can be solved
in a similar way as the equations 1or the stationary states of

the hydrogen atom (Beresteckii et al 1980). The functions from

o= (7] < =
corresponding to the matrix form of the operator (2.2). Since the
latter 'is real, d+=d_ and‘we‘may consider the upper signs in

{(z.4) only. We denote
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(2.9)

and we assume O < IZIa < 1 for simplicity (the case Z=0 have

been studied in Dittrich et al (1969) ; “on the other ' hand, the

is not very 1ntere°t1ng from the phy51ral polnt

case |“|a > 1

of view, but probably can be treated ‘in a similar manner with a

if necessary). We use the supstltutlon

complex ¥ following

(Beresteckii et al 1980)

) = mr) M2 eT97F oF [ (@) + Qyled]
(2.6)
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The function Q1 here must satisfy the degenerate hypergecmetric

. equation with the parameters

Ai , ©=2y + 1, : (2.:)



l’"
and Q k should saticfy that equation w1th the paranetera a+i,

The general solution is of the xorm R ; §

Ad(a,c;0) + B¥(a,c;0)

Ql(Q) =
jBSe L ~sf~ '(2.3)
, _ ~ - - . » )
QZ(Q) = — Zom Adla+1l,c;p) +,[n +‘—7TJ_BW(a+i,C;Q).
- . ; . i

Here -®&- is the degenerate hypergeometric lunction and ¥ is the
other solution .of the degenerate hypergeometric equation in . the
notation of Bateman and Erdelyi (1953) .. .Under our assumptions,
l_uml < |2Za| <1 < fe| and (2.8) is defined for all values of
the parameters ; A ‘and B yere constants in theiintervels (O,R)
and (R, o).

The square 1ntegrdb111ty of the functions (2.6) in QD,R) ig

governed by the dsymptotics cf the SOlUthﬂ° (2.8) at o — O+

Pla,c;0) =L ;. Platl,c;pi - 1

o o rzy) -2y B - rez oy
¥la,c;0) = —e=d’l . a 2y) 2y
3¢ e © . ¥larl,cie) ® ity e
. . . .
The leading terms.- ¢ ¥ of .Ql, Q2 cannot cancel in both the

functions (2.6) for  B=Q, i.e. » At least one of f- and g then
has . the asymptotics of - the  order of : Q—y which is square
1ntegrqble iff.

2 2 2 1 ' -
2% > » I - ' : 1 =38 ))
Since #° > 1 , the i ity ¢ "
nce » =1 , the last. inequality can be solved for some values
of irf ‘ » '
. "fé.‘ . . . ) .
(2] > —5g T 118.68 . B ~ (2.10)
In the following, we assume’ z] o= ;S " There are two
o ;
reasons for this dssumption TheAfirst is that - 2 < 118 is

b

surficient for all physical atoms, heavy ion collision= being at:
the best only roughly approximated by ouf static one-centre
problem. On the other hand, it is well known that for -2 > 118
the Dirac Hamiltonian with Coulomb  field (without ' a " shell
interaction) is not self-adjoint and additional reeuiremente,are
used to specify the _ceorrect” self-adjoint extension (Rellich
1943-44, Nenciu 1976 and 1977, Klaus and Wist 1979, Klaus 1980,
Karnarski 1985). It follows for cur problem that the case Z.>
118 can be treated in the same way as that of -2 =< 118 ,. the
only difference being an additional boundary condition which.must
be imposed at the ofigin.

For [2] = , the square integrability requires B = ¢

while A may be arbitrary in (0,R). The integrability of (2.6)

in (R,®) is governed by the asymptotics of (2.8) at ¢ — ® :

ree) o _a-c ree) e jari-c

dla,c;0) = —‘—r(a) e e . @(a:.'l'l,C‘,Q) x F(a+1) e ?
¥a,c0) o >, (a+l,c;0) = o & %
Tﬁeﬁsquare integrability of (2.6) now requires ‘A = O while.: B

may be arbitrary in (R,w). Consequently,~thereeare'two linearly .
independent sclutions of . the equation .(2.4). (within D(HO*)) and

d, =d_=2

~ ~ ~

The self-adjoint extension H of the operator HO in %
is then defined by imposing two linearly independent boundary
conditions on the functions from D(ﬁ). The presence: of " the
Coulomb potential, which is regular in the vicinity of R , deoes
not affect the construction of boundery} conditions and, other
considerations from Section= III-V and Appendix of (Dittrich et
at, 1989). ¥We may therefore adopt the main results of this baper
without any modifications ; we shall formuiate here only the main
theorem on the form of boundary conditions. Forr Y e D(ﬁo*) , the
finite limits

w(RE) = lim y(r)
r—Rzt




exist and fbnm a complete set of boundary valiles.

Theorem. Any self-adjoint: extension ' H -of ﬁo in % acis as
- formal dlfferential operator of the form (2. 2) in D(H). The
domain D(H)
(1) w o is absolutely contlnuous 1nside the 1ntEPleS (O,R)

and (R m) ST S

con51sts .af ‘all functlons Y e x such. that

(i) formal- dlfferentlal operator (2 2) maps w. to a function
‘ .. from x .

(&_{\ IS

_(iii)Aw_satisfles cne-of the’ following boundary conditions

w(R) = e®A yre (2.11)

where .@ is.real (. @ can be taken in {0,m)) and A is a real

2x2 matrix with ' det(a) = 1 , or -

w(R+)

]
e

w(R-)  + (2.12)

where ¢ c d d are real.and'both matrices in (2.12)

1 T2’ 17 .72
are nonzero. Conversely, any operator of the described form is

a self—ad301nt extension of H in x.

. Both the boundary conditions (2.11), (2.12) can be written

'1n the form

SCw(R-) + DY(R+) = 0O

(2.13)
wlth sultable matrlces ¢ ‘and D We can always take c, =1, c,
real or €, = 0’;“cé =1 'and similarly for d,, d.
-~

o . : o 4

o
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. 3. The point spectrum

This section is devoted to diszcussion of spectral pﬁoperties

of the radial operator H Before we pass to. the point spectrum

which is our main topic, let us comment on the essential spectrum

~

.Proposition. oéSS(H) = (~w,-m} U {m,w).

Proof. Since the essential spectra for all self-adjoint

extensions are the same prcvided- the deficiehcy indices are
finite (Weidmann 1980) which iz our case, it is sufficient tor
prove the statement for the birac—Coulomb operator without the
shell interaction, i.e., for @ = 0 and A= I and arbitrary j,

1 which we shall assume in the rest of the proof.

Hotice first that UESS(H) = (=w,-m)] U [m,w). Weidmann (1980)
proves this for Zal < 12 , however, the restriction is used
only to check the self—adjointneSs. We know that H is

self-adjoint for all |2«]| = ¥3r2 so the remaining part of the
proor -in wWeidmann (1980) can be used for the respective values of
(H) < d ess (H)  holds for all j,1l.

(H) > (-w,-ml U {m,w).

Z. Naturally, It remains

to prove that a

For any E e ( —w,-m) U (m,w) ., we-shall construct a sequence

% = H - ] ic
{wn)n 1 < 4 such that Hwnu 1{ I (H ﬁE)wn — O which proves
that E e U(H) , and also E e Oéés(H) =ince E is not an

isolated point of d(ﬁ). To construct the sequence (wn)nfl R

denote by n the formal differential opéﬁator in (z2.2). One has

to solve the equation®

(n ~E)p=o0

< .
We use a substitution similar to (2.5-7) with i 1is replaced by

E, i.e.,



A := (m- - ED) i(ES - m5) ,
- . > ;
o := 2ar = 2i(E° - mH)¥Er
Zaf 2,-1/2
- - m )"

aﬂd take*the4sol¢tion with the degenerate hypergecometric function

P "(i.e., A=1 ,‘B=0 in (2.8)). The sclution is regular at [8)

‘and its absolﬁte value approaches-A non-zero constant as r — w.

Co(R)  such that (hG)| = 1. for
1

<
‘xe® h(x) =L for x ¢ 0, and h(x) = ¢ for =x >

Next we choose a function h
T e

»

define hn(x) :=ih(x-n) = and

1
wn(r) :='hnqr)w(r)

Now o Il — ®, for n — @, e, € D(ﬁ),

and ,N(H—E)@nﬂ EWC for.all n and a suitable C. The functions
o |

Y, = wn/ﬂwnn thgn form the sought =zequence. |

e

Lo _ R
According to the proved Proposition, the spectra o(H) of

various 'self—adjoint extensions 'H may differ only in

-eigenvalues lying in (-m,m). To be exact, we have in mind here
diffefences in spectra in the set-theoretical sense ; possible
eigenvalues embedded in the continuum (which are expected to
egist ~in the case of impenetrable sphere)‘ may be different
too. ' ‘

‘We are looking for the eigenvalues E = (-m,m) and eigen-

functions y satisfying

H - By =0 . , (3.1)

NS

For T # R, 'w must satisfy;the’corresponding diffehential

equation whose solutions aﬁe‘ wéll known (Beresteckii’ et ‘al,

1980) . We use again the substitutidﬁS»

y = (2 22a2)1/2 , A o= (m2 E2)1/2 ,. @ 1= 2Ar
rem = meE) 1% 6702 o (g (o) + o (@)1 ,
: ' (3.3)
gir) = —m-E) 1% 7% 0¥ (g (o) - (@] ,
2o : ' i :
a:=y-S-E , c:= 2y + 1, (3.4)
First we have to find Ql; QE‘ which yield: £, g square

ihtegrable in (0,R) and (R,w). To find  two linearly indgpendent
scolutions and to look for their‘ﬁsymptotics at’ 0 and "o .is
ratherl straightforward but a little 1tedious‘ ;. we sketch this
procedure;only briefly. .; »  ‘V )

It i=s known that Qllsatisfies the'dggenerate hypergeometric
Q, obeys thg same

equation%with the parameters a,i ¢

equation with.the parameters a+1, c. Let us dendte"

“while:

_ o Zx _ 2o
a, 3 —Xf m a, = x.t ~ m o,
Q;l)(b) = alé(a,c,g) » Qéx)(g) := —ad(a+l,c;p)
) o . 2) Lo NPT
Q1 (p) := ¥(a,c;90) -, 02  (9)’. azwﬂa+1,c,g)
Q(B)( ) = a e w(c-a c;—) Qéa)(gl := EQ’W(C*a;l c;-e)-
1 Q 1 L] » ‘r’,
o (o) = (1+a—e)@(alc;o) (D) 5y 1= a_a(atl,c;0)
»Ql Q - a »a ,Q 1) Qz Q . 32 ’ R



(Q(l) Q(l) and (0(2?.0(2) are two 1lineobly independent
solutions of the equations for (Qr Q) it a * b,_l;;z;_“
since c > 0 holds alwvays under our assumptions H XQ(Z),QEC’

and (Q(3) Qé3)_ are linearly lndependent solutions in all cases.

Furthermore, (Q(l) Qél?) and (Q(4) (4))

dependent but one of them can be zero for some value or the

are always linearly

energy. g( )
z2

For al# 0,-1,-2,... , (Q(a) Q2 ) does not yield .

(f,g) square integrable in (O,R) ‘if {Z|sY37(2ci ;  then

>(Q(1) Qél)) gives the only square 1ntegrable soluticn.
the case a = 0,-1,-2,... when @{*,ei?)  ana @0l

(Q(B)’&§4)

* Ia *

Consider

are linearly dependent. For a<0 and |2|<13/(£a) ,

_ does not give square integrable (f,g) in (O,RJ). if |a|
# 0, (Q(l),Q(l) leads again to a nontr1v1al sduare integrable
) (1) (1),

solutlon. If a=a, =0, we have (Q;77,0;"") = (0,0) but
o al?)

1s not true for Q

integrable
(Q(4) (4)

% 3 (é)‘"
In the interval (R,mw), (Q1 ',Q2 does not yield a square

(f,g) d) (2)

-.while (Q( ) does.
the .function given by (Q1 (1))

1(3.3) 3 .if a = a, = 0, we replace (ol Qél)) by (Q(q?,Q(Q))

Similarly, w2 s given by (Q “) (é)).

leads to a square integrable solutlon while the same
2) (2)

-2

(f£f,2) . in (O,R)

) in all cases.

' the only. square

is. given by (Q l),Q(l) or

As  a result,

integrable solution
(1)

Let us

denote by w

be then of the form

N . uy (r) for. r < R
wr) =4 . (o
vw(‘)(r) for r » R
.where the complex numbers u,v are chosen in such a way

tha; the boundary condition (2.13) is satisfied, i.e.,

1) 2)

ucCy (R) + va( (R) = 0.,

Hontrivial .(u,v) . exist iff-

10

according to

The eigenfunotlon must -

‘det[Fw(lj(R),Dw(d)(R)] =0 (3.5)

R

. ; o

which is the sought equation for -eigenvalues E (in the "used
and Dw(d,(R),“

in the squafe bracket).

; (1), o o
notation, Cw'l'(R) are two columns of the matrix

4., Numerical results

Equation (3.5) can be solved numerlcallv and we are bolnE to
present here several examples 111ustrat1n5 how the elgenvalues of .

the radial operator ﬁ with (oulomb potentlal and scalar 5 shell
(gimulating strong interaction) 31tuated in the gap (—mc ,mcéj
behave with respect to ‘the coupllng constant In the following,

o . .
the units where mc~ = 1 are used xor “simplicity, 'i.e., the
energies are normallged to mc: : e

The scalar 6&S-shell 1nferact1on w1th a ccoupling constant g,

which mean= symbolically the potentlal

£ R

g B S(r-r) : TR o TS

in the Hamiltonian of a Dirac particle, corresponds to - the

boundary condition (z.13) with matrices

1 gr2 . “10 grm
c o= - s D= Lot : 4.2)
g2 1§ : g2 -1 ) o

llke in the case w1thout the Loulomb potential'(Dittrion et al,

1989 ; the relatlon to alternatlve deflnltlon or Domlnbuev—Adame

'(1990) is dlSCUaSEd in the Appendlx).”

Because our purpose is only lllustratlve ‘we have not tried

to make the computer program for solving equation (3.5) ‘very

sophisticategl. It has two major shortcomlngs First of'all it

cannot handle the cases with R 2 8 .which ‘means most hadronic -



qtome in the model ment icned below. In addiﬁion, the procedure
becomes numer1Cally unctable at’ the points cloze to. the edgez of
the gap. For this reason, we restrict our. attention mostly to the
energy interval [-0.90, 0.99]. Of course, these 1iimitatiohs of
numerlcal accuracy are not a matter of principle and could be
undoubtedlv overcome if necescary ' ‘

The system we consider is a natural model for a relativistic
atom with one -orbiting particle and the strong " interaction
.supported by the nucleus surface. . In particular, one can trv to
"model in this way the 2eldovi6% (1959) effect, 1i.e., level
'shifting and rearrangement due  to ﬁhev strong interaction for
atoms with a heavy orbiting partlcle '

: In order to illustrate the main features of the relativistic
Coﬁlomb plus strong sphere’ inLeraction, we calculate the spectra
for two values of the sphere radius, namely R = 6 and kK = 2.71.
"Recall that the seemingly dimensionless'quantities refer in fact
to the Compten wavelength of the orbiting particle. Adopting
therefore R = 1.2 ”115 fm as the nucleus radius, we see that
two cases correspond roughly to the éntiproton hydrogen atom and
to a muonic heavy atom, respectively. ) v

on Fig.t1a-d, several "lowest” elgenvalues for R = 6 and a
few values of nuclear charﬁe» 2 are plotted versus the coup;ing
consténil'As we remarked, only the first of them borresponds in

=ome sense to a. real physical system, however keeping R fixed

makes' it possible to show how the spectrum changes when the

Coulomb interaction becomes stronger. We see that the shell is

most ”attractive” at the value g = -2 at which the inner and

outer part of the sphere are separated we also see that there is

a crltlcal value g < 0 such that for g > g,  there are

N

=]

positive elgenvdlues in the gap only. For larger values of z,

~the effect of almost level crossing (or cascading - see Gesztesy

2t al, 1988) for ux = -1 begins to appear; comparing to Fig.3a

below we see that the large =zhell diameter is important here
In  order not to burden the picture with too much

information,. we have not plotted here all the eigenvalues

appearing 'in . [-0.99,0.99]. . To illustrate the full picture, we

plot in Fig.2a,b the spectral dimensionality, ie., lhe dimension

. of the projection"EH((—O.99,~)) for the two values of 2 in

12
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the ”meximally‘attractive” case. We see thet while’ror 2 = 1 the
couldmb interadtion represents a weak perturbetidn ed fhe’bicture
is nearly symmetrlc {the difference in modules for the pairs of
" eigenvalues is ¢ 2-10 3), in the Case of Z = 92 " the <pectrun iz
ocbviously  -asymmetric. Since every eigenvalue is lel—times
degenerated, theee'graphs also show to which values of j the
eigenvalues belong. .
'For a smaller sphere, R = 2.71, the spectrum is less

»dense’. ¥e illustrate itrshowing in Fig.3a the *“uranium p—atom™.

~Another reature which can be seerf from this picture as well as -’

from Figs.1a-d is the invariance of the spectrum with respect to

_ the transformation g -+ 4/g. In order to make the symmetry even
more obvious, ‘we/show in Fig.3b the positive part of the previous

graph but now in a wider scale of g. Looking at the lcwest # = -1

level, one- can Ibserve that the invariance holds for positive

RS

vdlues of' g to

The transloematldn g +— 4/g 1is equivalent to the change of

sign of the matrlx D in (2.13) with (4.2) as can be easily'

.=een. The!: operators defined by matrices c,D and C,-D are
unitarily 5equ1va1ent and therefore have the same spectra. .The
unltary equlvalepce is ‘given: by the .change 'of  sign of wave
runctlon ror # . More generally, all operators corresponding

' but the same A . in (2.11) are unitarily

to dlfferent =
chh et al, 1990).

equ1valent (Ditt

FlnaLly, Fig.3c s=show= a smaller part of the previous two
] E .

pictures éround =0. For comparison, the well-known eigenvalues
of the relativisﬁid "one—-electron® atom are plotted here by dots.
We see tdat the‘ strong interaction ' removes the degeneracy’ of
the=se elgenvalues with respect to . the sign of x, i.e. with

respect to the parlty. It is also clear that the levels may cross

for g £ —-0.105 the‘2p3/'2 level is lower than 231/2, and the
level crossing can be seen also in the next batch of eigenvalues
(where the 3d5/2 level is not included from technical feasoné).

This prings Zeldovich erffect in mind, howeverAits thorough study

in the present model deserves a more detail examination.

1, L

Energy
0.80_4
0.30
~0.20
] 1
~0.70 3
3
"’120~lllllllll|llllllIllll;l!lllll'lll—lllllf] .
-4.00 -2. QO .- 0.00 2.00 - 4,00
o “ -Coupling constant
Fig.3a A few "lowest” eigenvalues for the
Yuranium pg—-atom ‘
Energy |
R [k P i PP Semmivtsbiubiivtsiiutubiulebiniotatet —
0.80 -
: 7 =92
] R : 2.71
0.40 -
]
] -1
0.00 ll]lllll]lllll!llll—llllllllll lIl‘llllll
~10.00 500 : - 0.00- 500 10, 00
’ ’ <. Coupling constant
Fig.3b

The ‘same in a broader scale of g
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1.10

Energy

~1.00

0.90 02

2.71

TN

0.80

0.70

gty vyt ot b g e e drgrengreslen

0.60 l|lllllll]llll!llll]llllllllllllll;(ll

-=0.40 - -0.20 0.00 0.20 0 40
- Coupling constant

Fig.3c Detail of the previous picture with the purely

Coulombic eigenvalues indicated -

,Appendix: Relation to an alternative defiﬁitidn of &-shell

Our boundary condition (2.13) with the matrices (4.2), or
wmore generally (Dittrich et at,

1989) with
c = ( 1 (gg - gv)72
L (g + g2 1 } -
(A1)
b = ( -1 (g, - g/2
L (g + g /2 R ]

follows  from formal integration of the radial equation

corresponding‘to'the stationary Dirac equation

pd

18

v

i

[ 1&-9 + BAm - _52 + g, Bd(r—R) + g 6(r- R)]$ k Ey

)
uszing the formal definition.
R+s

f S(r-R). p(r) dr =
k-

D=

[W(R+) + w(R-11 - (A.2)

and the limit € — O+.

Dominguez—-Adams (1990) proposed recently another definiticn;
(g) . . < (g)

ol &-shell. Let F R+ — R+ be a function with supp F <
R+eg . o . o .
[R-g,R+e} and S F(EJ(P) dr = 1 We consider the stationary
R-g .
Dirac equation
[ %9 + gm - —35 + spF () + vF‘S’(r)]$ = Ep

and the corresponding radial equation

d *'5

(r) wy(r

~(€)

where G (r) is a 2x2 matrix. For the radial wave functicn we

then have

_ ..le)
w(r) = U .(r,ro) w(ro) R

¢ r) ar ] : (A.3)

0

USE)(P,PO) = P exp[

et

where P 1s the ordering of operator product - according - to r

decreasing from right to left. Now we obtain

O (R+,R-) := 1lim lim u‘€)<r,r0) (A.4)
r—R+ £—0+
ro—aR-

19



“in the form

o) , 2 2 1,2
ut “(R+,R-) = ch[(sa-v2,1/2] + [ 0 s_v] sh[(s__vh)lzL]
s

ti

+v &) z z
(_SZ_VC,I/d
5 . 2. 2 2
= cos[(vd—sz)l/a] . [ 0 s—v] sin{ (v -sd)l/d]
sS+v 0 z  ; E
(Vd_se)l/d
J~ (A.5)
and define (Dominguez-Adame 1900)
E @ | .
: (0)
w(Rf) = U ""(R+,R-) w(R-)
The boundary conditions with «A. 1) end with (A.8) are
-equivalent iff |
a-g," +g" .
———s———— = cosl(v=-s%, 172,
4 + g - = ’
v B¢
ag
_S = g 31n[(v «sd 1/d]
P 2 z >
4‘:‘;;’“j‘;;— E2, 172 (A.6)
dg 2 2 {¥
v -, sin((v¥-s%) 172
2 2 F z
4 + gv - gs ('VE_SE) 1/2
i.e., if
o . . -1 .
g = 2s {1 + cos[(vg—sd)l/zj} sint(v"-s%, 172,
(.VE_Scjl/E ?
A7)
_ . P S
g, =av {1 + cos[(vd—se)l/al} sinliv —cc)llc]
(v2~52;1/%,
n these formulasg : 2 2
' » We assume 4d+4g “~g “ # 0 and cos[(ve-s%)1/2
-1 (for v2k= 32 Y s Lvemsy ’

they hold if the singularity is removed) .
~

.20

‘FOE;théTQEfF' 4¥gv248821= 0 when the'sphebéiié”iﬁﬁenetrable
(bittrich =t aL,‘1989); the finlte v, s do: not exlst but 1n the
rimit 4 + g, e -'g IR 0 clearly [s] — ®. The 1mpenetrab111ty

'condltlon thererore means 1nr1n1te coupllna constant s of the

scalar G-Shell if the deflnltlon of Domlnguez Adame ls used For

cos[(vd—sz)l/d] = -1, the constants g, = do not exxst The

s
2
limit cos((ve- 52)1/2] - -1 corresponds to g, | — = g,

352 — (and alsa lgsl - » 'lsl > CPFSt'>,° )t

For g, = v = 0, (A.7) simplifies to

Here gy = (-2,2) for s e~(—m,w)_and By — 02 fori s — oo,
We see that only the set of Hamiltonians with By < (~2,2) - is
covered by all choices of s but the set with "g | >.2:, which is

redundant due to above mentloned symmetry g’~= 4/gs-leading to

unitary equ1valent Hamlltonlans has no counterpartf?Since the
definition of Domlnguez Adame is ahalogous B te the"- ?non—%
relativistic scaling argument (Albeverio et al, 19885,’ the
comparison between'the two definitioné‘iﬁ‘tﬁe noﬁ?relativistie

limit deserves a deeper study.
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