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1. Intr-oduction 

Dedicated to the memory of recently deceased 
Professor Vaclav Votruba, the founder of modern 
Czech theoretical physics 

Dirac equation with external Coulomb potential is used 

successfully in atomic physics, and at the same time, it is one 

of the rather few exactly sqlvable models in "relativistic 

quantum mechanics". Another solvable model (up to numerical 

solution of a transcendental equation for eigenvalues) is the 

Dirac equation with spherically symmetric shell interactions like. 

the potential ·6(r-R), R=const (Dittrich et a~ 1989, Dominguez

Adame 1990). The combination of both Coulomb and contact shell 

interactions still gives a solvable model as we are going to show 

in this paper. 

In addition to extensiqn of the list of solvable models, the 

results might be of some phenomenological interest if the contact 

shell inter-action is used as a simulation of strong interaction 

in hadronic atoms (Mur and Popov 1985). For the Schrodinger 

Hamiltonian , the problem of Coulomb plus shell contact 

interactions have been studied in a number of papers (e. g., Mur 

and Popov 1985, Antoine et aL 1987). 

In the present paper, we consider Dirac Hamiltonian wit,h 

Coulomb potential and contact interaction on the sphere of r-adius 

R with Coulomb· source in its centre. We consider only 

Hamiltonians which are symmetric with respect to t~e space 

rotations and reflections. This allows us to separate different 

partial. waves with given angular momentum j~ parity (-1) 
1

, and 

the third component of angular momentum (Dittrich et aL 1989). 

Then we may. consider ordinary differential radial operators f'or 

each partial wave only. 

The shell contact interaction is constructed by the known 

method based on self'-adjoint extensions (Albeverio et at 1988) 

the sought Hamiltonians H are self-adjoint extensions of ·the 

operator H
0 

in-the Hilbert space 
2 3 4 

~ = L (~ ) ® ~ , where 

f'or . 

H
0

1p , = (-iiX-; + f3m - ;()( )1p 

r - . -

1
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1p .:'D(H0 ) C~(~3,({0} U SR)~ 0 ~4 ( 1.2) 

in other words, Ho is the restriction of the Dirac-Coulomb 

Hamiltonian to the functions which vanish in the vicinity of the 

shell-interaction support. In (1.1), a, ~ are Dirac matrices, m 

is the parti~le mass. , Z 

structure constant, and 

SR ·= { x -= 3 
~ 1x1 ~ 

2. The radial operators 

is the· charge number, « is the t·ine 

R } r' l1.3). 

From now on we shall consider one partial wave with given j, 

.l-1) 1 and j
3 

. After separation of the angular variables and 

r 2 from the the. unitary transfomation removing the weight factor 

measure, we,shall use the Hilbert space 

X:= L2(~ ) 0 ~2 
+ 

the construction starts from the operator H
0 

of the form 

Ho .. . = '.[ 

with 

D(H
0

) 

··Zoe m - r 

_..;! + ~ 
dr r 

·d• ;It 
- +dr r 

- m 
Z<X 
r 

·=.C~((O,R) u (R,ro)) 0 ~2 

. 

l 
... 

\2. 1) 

'I 

(2.2) 

(2.3) 

and ;It =·(-l)j-1+1/2 . . (J + 1/2). We are interested in self-adjoint 
~ 

extensions of the operator HO in X ·which correspond to 
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I 

spnel- ically symmet.r ic self-adjoint extensions of the operator 

in 'Jt • 

H,) 

First of all, we have to calculate the de.f'iciehcy indices d+ 

dim Ker<H
0
* + i) ; it requires to solve the equations -

" * cH
0 

+ ilq:> 0 . •.2. 4) 

To this end, it is necessary to find square integrable solutions 

·::>f the. equation with H
0 
* replaced by the differential operator 

of the form (2.2) in (O,R) and (R,ro) (Dunford and Schwartz 1963). 

The differential equations corresponding to (2.4) can be solved 

in a similar way as the equations for the stationary states of 

the hydrogen atom (Beresteckii et a~ 1980). The functions from 

the deficiency spaces are written in the form tp = (~) .: X 
corresponding to the matrix form of the operator (2.2). Since the 

latter is real, d =d 
+ -

and we . may consider the upper signs in 

(2.4) only. We denote 

i' := (3/ 22«2)1/2 A. • = 2 1/2 
(m + ll , Q := 2A.r (2.5) 

and we assume 0 < 12 tc:.: <, 1 for simplicity (the case Z=O have 
l 

been studied in Dittrich et al < 1989)' on the other hand, the 

case IZI<X > 1 is not very interesting from the physical point 

of view, but probably can be treated in a similar manner with a 

complex y if necessary). We use the following 

(Beresteckii et a~ 1980) 

f ( r') <m+i) 1/2 e -q/2 Qr [Ql (QJ + Q2.(Q)] 

g(r) .)1/2 e-Q/2 ny [Q (Q) - Q~(Q)] 
-(m-1 "' 1 c. 

substitution 

( ~~. 6) 

The fun·ction Q
1 

here must satisfy the degenerate hypergeometric 

equation with the parameters 

a 20t: i 
y- -x- c 2y + 1 • (2.7) 

3 



n 
and Q2 should satisfy that equation with the parameters a+1, c. 

The general solution is of the. form 

Q~(Q) A¢-(a,c;Q) + B~(a,c;Q) 

i Zu: <2.8) 
A. - :r · ( . 2oon] A¢(a+1,c;Q) + :n: + .--x- B~Ca+1,C;Q). Q2(Q) 
~= 

:II! - --x-

Here ·¢.· is the degenerate .hypergeometric function and <I; is the 
.... ~' '· 

other solution of the degenerate h:ypergeometric .equation in. the 

notation of Bateman and Erdelyi. (1953). Under our assumption.s, 
,.,can . • 

I"";..._ I < l2cxl < 1 < l:n:l and (2.8) is defined for all values of 

the parameters ; A and 8 are constants in the .intervals ( o, R) 

and (R,oo). 

The.square integrability of the functions (2.6) in CO,Rl is 

governed by the asymptotics of the solutions (2.8) at Q --> 0+ 

¢-(a,c;QJ ~ 1 , ¢(a+1,c;p) ~ 1 

rc2:;-J -2:;-
r<al Q <Jt(a+1,c;Q) ~ r<2:;-J -2:;-

r<a+1) P · 
· llt(a,c;Q.l ~ 

of Ql, Q2 cannot cancel in both the The leading terms Q - 2 r· 
functions (2.6) for B~o. 

has the asymptotics of 

integrable iff 

i.e. ,. at least one of f and g then 

2 2 2 2 ex > :n: 1 
4 

the order of Q-y which is square 

(2.9) 

ince 2 
:II! 2: 1 , the last inequality can be solved for some values 

:II! if 

. -(.:"7 
IZI > 2~ ~ 118.68 

In the 

asons t'or 
following, we assume· 

this assumption. The 

4 

IZ I 
l'irst 

(2. 10) 

< Y"":::i' 
- 2cx: There are two 

is that 2 < 118 is 
l 

sufficient for all physical atoms, heavy ion collisions being at 

the best only roughly approximated by our static one-centre 

problem. On the other hand, it is well ~nown :that for Z > 118 

the Dirac Hamiltonian with Coulomb field (without a shell 

interaction) is not self-adjoint and additional requirements are 

used to specify the .. "correct" self-adjoint extension (Rellich 

1943-44, Nenciu 1976 and 1977, Kl<!;.US and Wlist .1979, Klaus 1980, 

Karnarski 1985). It follows for our problem that the case z, > 
118 can be treated in the same way as that of Z 5 118 , the 

only difference being an additional boundary condition which.must 

be imposed at the origin. 

For 121 5 ;s , the square integrability requires B = 0 
_(;( 

while A may be arbitrary in (O,R). The integrability of (2.6) 

in CR,ool is governed by the asymptotics of (2.8) at Q --> oo 

¢(a,c;qJ 

<Jt(a,c;Q) 

r(c) Q a-c 
~~e Q w(a+1,c;Q) ~ 

~ Q -a 'l'(a+1, c;Q) ~I? -a-1 

r(c) Q a+1-c 
r<a+1) e Q 

The square integrability of (2.6) now requires A = 0 while B 

may be arbitrary in (R,oo). Consequently, there are two linearly. 

independent solutions of the equation . (2. 4) (within DCH0 *>) and 

d+ = d = 2 

is 

The self-adjoint extension H 

then defined by imposing two 

of the operator H0 
linearly independent 

in ~ 

boundary 

conditions on the functions from D(H). The presence of the 

Coulomb potential, which is regular in the vicinity of R , does 

not affect the construction of boundary. conditions and, other 

considerations from Sections III-V and Appendix of (Dittrich et 

aL, 1989). We may the~efore adopt the main results of this paper 

without any modifications ; we shall formulate here only the main 

theorem on the form of boundary conditions. For we DCH0*> , the 

finite limits 

W(R±) lim 
r->R± 

W(r) 
. -~ '' .... 

,5 



exls):.. and .form a complete set o.f boundary values. 

Theorem. Any sel.f-adjoint extension H o.f H
0 

in z ~cts as 

.formal di.f.ferential operator o.f the .form (2.2) in D(H). The 

do~ain o<ii> consists_o.f all .functions 'P e i: such that 

. (i) 'P is absolutely continuous inside the intervals CO,R) 
and (R,oo)·, 

( i i) .formal~ dif'.ferential operator C2. 2) maps 'I' to a l'unctio;a 

.from Z, 

(iii). 'P .satis.fies one· o.f the' .following boundary conditions 

lp(R-J 
·'ie 

e A .. lp(R+) 

where 19 is real ( 19 can be taken in { 0, n>) and A 

2x2 matrix with det(A) = 1 , or 

[
c1 c2) lp(R-) 
0 0. [

0 0 ) 'f'(R+) 

d1 d2 
+ 0 

l2. 11) 

is a real 

(2.12) 

where c 1 , c 2 , d 1 , _d2 are real and both matrices in (2.12) 

are nonzero. Conversely, any operator of' the described .form is 
~ ~ 

a sel.f-adjoint extension of H
0 

in X. 

Both the boundary conditions (2.11), (2.12) can.be written 
in the .form 

Clp(R-) + Dlp(R+) 0 (2.13) 

with suit~le matrices c and D • We can always take c
1 1, c2 

real or c 1 = 0 ; · c
2 

= 1 and similarly .for d
1

, d
2

. 
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3. The point spectrum 

This section is devoted to discussion of spectral properties 

of the radial operator H . Before we pass to. the point spectrum 

which is our main topic, let us comment on the essential.spectrum 

.Proposition. JesslH) (-oo,-m] u [m,ool. 

Proof'. Since the essential spectra for all self-adjoint 

extensions are the same provided the deficiency indices are 

finite (Weidmann 1980l which is our case, it is sufficient to 

prove the statement for the Dirac-Coulomb operator without the 

shell interaction, i.e., fo~ e = 0 and A·= I and arbitrary j, 

1 which we shall assume in the rest of' the proof. 

Notice f'irst that Jess(Hl = (-oo,-m] u [m,oo). Weidmann <1980) 

proves this 1'or 12~1 < l/2 , however, the restriction is used 

only to check the self-adjointness. We know that H is 

self-adjoint for all 12~1 ~ --/3/2 so the remaining part of the 

proof-in Weidmann (1980) can be used f'or the respective.values of 

2. Naturally, Jess(_':!) c Jess(H) holds for all 

to prove that Jess(Hl ::;, ( -.:v, -m] u [m,ool. 

j, 1. It remains 

For any E e (-oo,-m) u (m,ool we·shall construct a sequence 
00 

{lpn)n=l c X ~uch 

that E e J(H) 

that ll7pnll = 1, 

and also E E 

II(H -El'P II--. 0 
" n 

a nn since ess 

which proves 

E 

isolated point of' J(H). To construct the sequence 

is not an 
00 

{'f'n}n=l 

denote by ~ the f'ormal differential operator in (2.2l. One has 

to solve the equation 

(~ - E)ip = 0 . 

.., 
We use a substitution similar to (2. 5-7) with i is replaced by 

E ' i.e., 
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~ ' (m- -·E2)1/2 i(E2 _ m2)1/2 :>... . = 

Q : = 2>.r. 2 .i(E2 _ )112)1/2r 

a : = y - :zcxl E 
AI 

I . 
Y + i2c.:ECE2 - m2);-1/2 

and take the sol$tion with the degenerate hyper-geometric function 

<1> ·(i.e._, A=1 ,iB=O in (2.8)). The solution is regular at 0 

·and its absolutelvalue approaches<A non-zero constant as r-+ ro. 

Next we choose a!function h € C~(~) such that lh(xl 1 s 1 for 

X € ~. h(x) = 11 for x <. 0, ·and h(x) 

define hn(x) :=jh(x-n) and 

I 
;pn(r) := hn~r)!p(r) 

Now llq:~nll -+ ro, ~or n-+ oo, 'Pn.: D(H), 

I 

[
:0 

(H-E)q:~n = 1 
-1 

0 ) < 'P 

0 for x > 1 ; we 

and II(H-El_'P II ::;1
1
'c for-all n and a suitable C. The functions n . 

'~'n := lfin/llipnll tt\en form the sought sequence. 1 

'According to the proved Proposition, the spectra a( H) of 
various self-adjoint 

eigenvalues lying in 

extensions H may differ only in 

(-m,m). To be exact, we have in mind here 

differences in spectra in the set-theoret leal 

eigenvalues embedded in the cant inuum (which 

exist in the case of impenetrable sphere) 

too. 

sense possible 

are expected to 

may be different 

We are looking for the eigenvalues E 6 (-m,m) 

functions 'I' satisfying 
and eigen-

~H - E)>p = 0 (3. 1) 

8 
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For r "' R 'I' must satisfy: the corresponding differential 

equation whose solutions are w~ll known (Beresteckii' et ·az., 

1980). We use again the substitutions· 

'JI [~) 

;y : = (~2 _ Z2cx2)1/2 , A : = (mt- E2)1/2 , Q 2Ar (3.2) 

f(r) (m+E) 112 e -e/2 er [Ql<q> + ~<e> J 

g! r) -(m-E)l/2 e-Q/2 Qy (Q1~Q) 

a : = y - 2cx E 
A 

c := 2-y + 1 

~ 

Q2(Q) J 

which yield f, First we have to find Q1 , 

integrabl~ in (O,R) and ~R,oo). To find two linearly 

solutions. and to look for their r-symptotics at 0 

rather straightforward but a li~tle ·tedious : we 

procedur~ only briefly. 

. (3. 3) 

(3.4) 

g square 

independent 

and oo is 

sketch this 

It is known that Q
1 

satisfie~ the degenerate hypergeometric 

equation .with the parameters a,\ c while ~ obeys the same 

equation with.the parameters 

Za 
a

1 
:=. x- -x- m 

Qi1)(Q) : = a_1<P<a,c;e) 

! 

~ 

a+1 c. Let us denote 

I ~ 
:It + "-C.:' j-A. m 

Q(1)(Q) 
2 

: = -a<P(a+1,c;Q) 

(2) Q1 (Q) : = W(a, C;Q) ~2)(Q) := ~W_(a+1,C;Q) 

(3) Q (3) - Q Q
1 

(c;>) := a
1 

e W(c-a,c;-e), ~ (c;>) .:= e_ W(.c-a-1,c;-e). 

(4) . Q
1 

(c;>) := (1+a-c)<P(a,c;e) ~4)(Q) := a 2<P(a+1,c;c;>) 

9 
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(1) (1) (2) (2) .. 
(Q

1 
,0

2 
) and (Q

1 
,Q2 J are two linearly 1ndependent 

solutions of the equations for <Q1 ,Q2 J if a "" .o,-1,-2, ... 

since c.> 0 holds always under our assumptions ; tQ_!-
2

) ,Q.~.2 ) 1 
(j) (3) . . 1 ~ 

and (Q •02 ) are linearly independent solutions in all cases. 
1 (1). (1) (4) (4) . 

Furthermore, (Q
1 

•02 ·) and (Q
1 

. ,0
2 

I are always l1nearly 

dependent but one o.f them can be zero for some value of the 

energy. 

For a . "" o, -l, -2, ... 
(Q(2) .Q(2)) 

1 , 2 . does . not yield 

(.f,g) square integrable in <O,R) -if IZI5;1'3/C2u:i ; then 

(Q( 1 ) .~ 1 )) gives the. only squar'e integrable solution. Consider 
1 . 1,1) (1) '.2) !2) 

the -case a= o,-1,-2, ... when lQ
1 

,0
2 

I and (Qi ,Q2 l 

- . !3) - (31 
are linearly dependent. For a50 and IZI~;I'3/t.2u:) , (QJ, ,Q2 2 
does not give square integrable (f,g) in (O,R). If lal'- + la

1
1<:: 

o< o, (Q~ 1 ) ,Q~_1 >) leads again to a nontri~_ial ~quare integrable 

solution. I.f a= a
1 

= 0, we have <Qi >,Q~ )) = (0,0) but 

(Q~4),Q~4 )) leads to a square integrable s.;lu\:.ion while the same 

is 'not true for (Qi2 ) ,~2 )) As a result, the only square 

integrable (f,g) in _(O,R) is. given by <Q~l) ,Q~1J 1 or 

(Q~4 ) ,Q~4 )) in all cases. • 

In the interval (R,oo), (Qi31 ,Q~3 )) does not yield a square 

integrable solution ( f ,g) .while (Qi
2

) ,Q(
2

)) does. Let us 

denote by 'I'( 1 ) the function given by (Qi d~,Q.~.1)) according to 
. (1) (1) ~ (4) (4) 

(3.3) ; _if a = a
1 

= 0, we replac~ (Q;2- ,Q2 J by (Q 1 . ,Q2 ) · 

Similarly, '1'(
2 ) is given by <oi"') .~ 1

). The eigenfunction must 

be then of the form 

'I'( r) 
{ 

U'JI\ 1) ( r) 

V'JI(2) ( r) 

for r < R 

for r > R 

where the complex numbers u,v 

that the boundary condition (2.13) 

are chosen in such 

is satis~ied, i.e., 

UC'JI( 1 )(R) + VD'JI( 2 )(R) =·o. 

Nontrivial _(u,vJ exist iff 

•/ 

10 

a way 

)
,. 

,. 

. l'J 

ff 

! 
·, r: 

·det C>J! 1 Ri, D'l' ~ (R) 
[ 

(1) (~") ] 
0 (3.51 

which is the sought equation for 

notation, Ct/ 1) (R) and D'I'C 2
) (R) 

eigenvalues E (in the tised 

are two columns o.f the matrix 

in the square bracket) . 

4. Numerical results 

Equation (3.5) can be solved numerically and we are going to 

present here several examples illustrating how the eigenvalues of 

the radial operator H •With Coulomb potential and scalar 6-shell 

(simulating strong interaction) ·situated in the gap 
2 2 

!. -me ,me· J 

behave with respect to the coupling constant. In the following, 
·;_, 

t .. he units where me- = ·1 are used for simplicity, i.e., the 

energies are normalized to 
·::.· 

me-. 

The scalar 6-shell 'interaction with a ·coupling cons(ant g, 

which means symbolically the potential 

g (3 6(r-R) ( 4. 1) 

in the Hamiltonian of a Di1·ac particle, corresponds to the· 

boundary condition (2.131 with matrices 

c [ :/2 g/2 ] 

1 . [ 

-1 
D -

g/2 

g/2 ] 

-1 
\4.2) 

like in the case without the Coulomb potential· (Dittri-ch et aL, 

1989 ; the relat'ion to alt;ernative ·definition of Dominguez-Adame 

(1990) is discussed in the Appendix). 

Because our purpose is only illustrative, we have not tried 

to make the computer program for solving equation (3.5l very 

sophisticate;;!. It has two major shortcomings. First of' all, it 

cannot handle the cases with R ~ 8 which means most hadronic 

,11 



atoms in the model mentioned below. In addition, ,the proceoure 

becomes numerically unstable at' the points close to, the edges of 

the gap. For this reason, we restrict our attention mostly to the 

energy interval [-0.99,0.99]. Of course, these .limitations of 

numerical accuracy are not a matter of principle and could" be 

undoubtedly overcome if ne_cessary. 

The system we consider is a natural model for a relativistic 

atom with one -orbiting particle and the strong .interaction 

supported by the nucleus surface. , In particular, one can try to 
~ 

model in this way the 2eldovich (1959"1 effect, i.e.'· level 

shifting and rearrangement due to the strong interaction for 

atoms with a. he.avy orbiting particle. 

Irt order to illustrate the main features of the relativistic 

Coulomb plus strong sphere'interaction, we calculate the spectra 

for two values. of the sphere radius, namely R = 6 and R == 2.71. 

Recall that the seemingly dimensionless "quantities refer in !act 

to the Compton wave length 

therefore R =::: 1. 2 2 1 / 3 1m 

of the orbiting 

as the nucleus 

particle. 

radius, we 

Adopting 

see that 

two case~ correspond roughly to the antiproton hydroger. atom and 

to a muonic heavy atom, respectively. 

On Fig.1a-d, several "lowest" eigel!values !or R = 6 arid a 

the coup! ing few values of nuclear charge' 2 are plotted versus 

constan"t. As '<Ne remarked, only the first of them corresponds in 

some sense to a. real physical system, however keeping R fixed 

makes it possible to show how the spectrum changes when the 

Coulomb interaction becomes _stronger. We see that the shell is 

most "attractive" at the value g = -2 at which the inner and 

outer part of the sphere are separated. We also see that there is 

a critical value g
2 

< 
positive eigenvalues in 

o such that 

the gap only. 

for 

For 

g > g~ 
"-

there 

larger values of 

are 
... 
"'• 

the effect of almost level· crossing (or cascading - see Gesztesy 

et al, 1988) for lf = -1 begins to appear; comparing to Fig.3a 

below we see that the large shell diameter is important here. 

In order not to burden the picture with too much 

information, we have not plotted here all the eigenvalues 

appearing in [ -0. 99; o. 99]. To illustrate the full picture, we 

plot i'n Fig.2a.,b the spectral dimensionality, i.~., the dimension 

of the projection EH< [ -0. 99, ·}) 1'or the two values of 2 in 
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Energy 

0.80 

0.30 

-0.20 

-0.70 

···--··-----·----- ·--··-·"77?;..,-________ _ 

~ 

~ 

z = 1' 
R = 6 

-1.20 I I IiI I.- I I I I I I I I I I I IiI I I I I I I I I I I I I I I I I I I I I 

-4.00 -2:oo 0.00 2.00 - 4.00 
Jl: 

Coupling constant 

Fig. 1a A few· "lowest" eigenvalues for the "hydrogen" 

atom with a sc·alar 6-shell 

---· ..................................... :.. ...... ;.:> : 
Energy -r---· . -1 

0.80 

0.30 ""N-

-0.2Q 
""N-

-0.70 

Z·= 47 
R = 6 

.-1.20' I I Iii I IiI I IiI I I I I IiI Iii IiI iII I I I I I IiI I I I I 

-2:oo -4.00 0.00 2.00 4.00 

Coupling constant 

Fig.1b The same .for "silver" 
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·:· :, '' ~nClrgy ;,, r-~--,--.-------------~- ----------------------------------- -· 
l'' '!/ It '•' I 'I' ' I J ' ' ,'_,',! I ,·, + 

• r 1 ~ , t , , 

i. I ,'('II• 
0 

I ,0',80, • 
, ; , I 

<· '• ' ' , '· •' ,. \' .J..... /II Z 79 
,I I I ·, . .........._ ~ ///1 :. 

. .. R = 6 

0.30 

-0.20 

-0.70 

-1 .20 l I I I I I I I_ i I ( I L I I I I i I I I I I I I I i I i I I I I I I I I I i I j 
-4.00 -2.00 0.00 2.00 4.00 

Coupling constant 

Fig.lc The same f'or "gold" 

Energy 1-----. ----------------------"------ ---- -----·- ----------- ----· . . /? . . . 
0.80 . -1 

0;30 

-0.20 

-0.70 

.. - . 

z = 92 
R = 6 

·-----------------------------------------------------
-1.20 l 1 1 1 1 I 1 1 I i i I I I I I I I i I I I I I I I I I I I I I I I I I I 1 1 1 1 

' -4.00 -2:00 0.00 2.00. ,.4.00 

' C~upling constant 

Fig. 1d The same for "uranium" 
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the ••maximally attractive" case. We see that while for 2 = 1 the 

coulomb interaction represents a weak perturbation sp the.~picture 

is nearly symmetric (the difference in modules for the pairs of 

eigenvalues is i 2·10-
3
), in the case of 2 = 92 the spectrum is 

obviously asymm~tric. Since every eigenvalue is 2l;;,:j-times 

degenerated, these graphs also show to which values ol" j the 

eigenvalues belong. 

For a smaller sphere, R 2.71, the spectrum is less 

"dense". We illustrate it showing ~n Fig. 3a tt-.e "uranium ~-ato.m". 

Another feature which can be seet't from this picture as well as 

from Figs.1a-d is the invariance of the spectrum with respect to 

the transformatifn g ~ 4/g. In order to make the symmetry even 

more obvious, ·we/ show in Fig.3b the positive part of the preyious 

graph but now in a wider scale of g. Looking at the lowest :~t = -1 

level, one can )ybserve 

values of g to6. 

The transfo~mation 
sign of the matrix D 

that the invar iance holds for positive 

g ...... 4/g is equivalent to the change of 

in (2.13) with (4.2) as can be easily 

.seen. The: operatiors defined by matrices C,D and c,-D 
unitarily: equiva;lent and therefore have the same spectra. 

are 

The 

unitary et:Iuivale;nce is given by the change of sign of wave 

-function for r } R. More general: ly, all operators corresponding 

to diffeir~nt el but tl)e same A in <2. 11) are unitarily 

equivalent (Dittrttich et aL, 1990). . i 
Finally, Fi .3c shows a smaller part of the previous two 

pictures tround =0. For comparison, the well-known eigenvalues 

of the rel'ativistic ''one-electron" atom are plotted here by dots. 

'-He see that the strong interaction removes the degeneracy of 

these eigenvalues with respect to the sign of :~t, i.e., with 

respect to the parity. It is also clear that the levels may cross 

for g ~ -0.105 the .2p
3

;
2 

level is lower than 2s112 , and the 

level crossing can be seen also, in the next batch of eigenvalues 

(where 'the 3d5/2 level is not included from technical reasons). 

This b_rings Zelqovich el"f'ect in mind, however its thorough study 

in the present model deserves a more detail examination. 
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Appendix: Relation to an alternative definition o:f 6'-shell 

Our boundary condition (2.13) with the matrices (4.2), 

wmore generally (Dittrich et at, 1989) with 

c = 
[ (g~ + lg )/2 

(gs -1gv)/2] 
, 

.,. v 

(A. 1) 

[ -1 (gs - gv)/2 ] D = 
(g + g )/2 -1 s v 

follows 

or 

from formal integration of the radial equation 
corresponding to the stationary Dirac equation 

18 

[-iiX·; + (3m 
Zu: 
r 
~) 

+ g {36(r-R) + g 6(r-R>];;i f E;;i s v 

using the formal definition 

R+o: 

J 6'Cr-R) ~Cr) dr 

R-o: 

and the limit s ~ 0+. 

~ (~CR+) + ~CR-i] 
~ 

(A. 2l 

Dom~nguez-Adame (1990i proposed recently another definition. 

of 6-shell. Let F<s>, ~+ ~ ~+ be a function with supp F(s) c 
R+s . 

(R-s,R+sJ and f F<sJ(r) dr = 1 We consider the stationary 
R-s 

Dirac equation 

[ 
. ... ... Zc.: . ( s i ( s) ] .... 

-1c.:·"l + (3m - r- + s(3F Cr) + vF (r) ~ 

and the corresponding radial equation 

d A~ C") 
dr ~(r) = G - (r) ~(rl 

•'-
E~ 

A(si 
where G (r) is a.2x2 matrix. For ~he radial wave function we 

then have 

~(r) = u<s)(r,r
0

> ~<ro> 

u< s) < . r, roJ = P exp f G s l~) 
A ( r A( ) 

dr J 
ro 

A 
where p is the ordering of 

decreasing from right to left. 

U(O) (R+,R-) : = lim 
r~R+ 

ro~R-

lim 
c~O+ 

operator product 

Now we obtain 

u< 6 > cr, r,} 

19 

<A.3l 

according to r 

CA. 4) 



in the form 

U(O)<R+,R-) ch[(s2-v2J1/2J + ( 0 
s+v 

2 2. 1/2 ( 0 cos[(V-sJ )+ 
s+v 

_.; 

-:;· ? l/2 
s-v) sh[ <s--v-) · J 

0 2 ~ 1/2 
· (s -vc.J 

•;> 2 1/2 
s-v] sin[ (v--s J J 

0 2 2 1/2 (_v -s J 

<A. 5) 

and define (Dominguez-Adame 1990) 
.. 

>p(R+) u<O)(R+,R-1 >p(R-) . 

The boundary conditions with (A. 11 

equivalent iff 
and with (A.5) are 

4 - gv2 

2 
4 + gv 

2 
+ gs 

2 
- gs 

4gs 

2 
4 + gv 

4 + 

.e., if 

4gv 

2 
gv 

2 
- gs 

- g 2 
s 

2 2 1/2 cos[ (v -s J J 

= s 
' 2 2 1/2 SLn((V -s I ) 

2 2 1/2 ( v -s ) 

v sin[ (v2-s2l i/~ 
2 J 

(_V -s2J 1/2 

·gs 2s {1 + cos[(v2_8 2 1 1/2J}-1 ~ 2 "/2 sin[(vc.-s )L. ] 

2 2 1/2 
(V -s 1 

gv 2v {1 + cos[(v2-S2J1/2J}. -1 sin[(v2-s2)1/2] 
(V2_

8
2

1
1/2 

(A. 6) 

(A.7) 

2 2 . 2 2 1/2 these formulas, we assume 4+gv -gs ~ o and cos[(v -s ) ] 

-1 <for v
2 

= s
2 

they hold if the singularity is removed). 
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2 2 ... ··. . . 
For the ~:f 4+gv -g

8 
= 0 when the sphere is· impenetrable 

(Dittrich et al, 19891, the finite v, s do not exist but in the 

limit 4 + g 2 - g 2 
-+ 0 clearly fs f -+ oo. The imp~netrability 

v s . • . 
condition therefore means infinite coupling con-stant s of the 

scalar 6-shell ·if the definition of Domingu~~-Adame is used: For 
2 2 1/2 . cos[ (v -s ) ] = -1, the constants g , g . do not exist. The 

2 2 1/2 . v s 2 
limit 

2 
cos( (v -s ) ] -+ -1 corresponds to · fgvf - oo, gv 

g - (I) ·S - 00 
if fsf >canst.> 0 ). fgsf (.and also 

For gv = v = 0, (A.7) simplifies to 

gs 
2 sh s 

1 + ch s 

Here g € (-2,21 for s e (-oo,oo) and g - ~2 for s - ~oo. s . . s 
We see that only the set of Hamiltonians with gs € · (-2,2) is 

covered by all choices of s but the set with ·fgsf > ·2 , which is' 

redundant due to above mentioned symmetry g~ = 4/gs ·leading to 

unitary equivalent Hamiltonians, has no cotinterpart. 'Since the 

definition of Dominguez-Adame is analogous 

relativistic scaling argument (Albeverio 

comparison between the two definitions' in 

limit deserves a deeper study. 
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