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I. Introduction 

~vo _basic ~ssues, Lorentz and gauge·invariance, are of paramount 
importance to any realistic approach to strong interaction dynamics of 
v1hich QCD is the leading contender to-day. This phenomenon is being 
witnessed in almost all QCD~otivated models, especia~ly in lattice 
gauge theorles where gauge·invariance is meticulously observed 
(through Blaquette tech_niques), though a ,corresponding degree of con
fidenc~ in. the implementation of Lorentz invariance would probably , 
remain in doubt until· the limit a.~ 0 is rigorously found. A rela
t·ed question concerns the desirability of a common underlying dyna
mical. link all the way from low energy spectroscopy to high energy _,. 
parton distributions, but it is.not easy to achieve-in :Practice. 
Spectroscopy (mostly 6J~ systems) has 'been almost the exclusive pre-

, . . . 
serve of Ii. R. potential models which have been sharpened over the 
years through built- in techniques o.f gauge invariance /l/, but they 

·lack the Lorentz-invariant dynamics which is essential for carrying 
the extrapolation to the high energy domain. The latter is dominated . ,, 
by a different scenario - perturbative QCD, operator·prodqct expan-

' IU sions, empirical parton distribution,· e"~:c• QCD sum rules were 
~o doubt a major step for downward extrapolation from the•high·energy 
end, but the actual (Borelization) techniques employed. to determine 
tL.e wave function somehow tended to "erase" the low energy link, 
so that the method stopped short of the prediction of L -excited 
hadron spectra, and had to rest content with that of some ground. 
state_.masses. A.J!;tBamioal equation based approach, on the other hand, 
does this job more naturally, precisely because of its buil.t-in 
microcausal structure /J/. The links it provides between "low" and 
11hiejl 11 energy ph_ysic~ are therefore inore'.powerful in principle, and 
hence more reliable than in less microscopic methods, ~~ the. 
conditions of Lorentz and_ gauge invarianqe are satisfied. 

The need for.a relativistic dynamioai equation based approach 
is particularly acute in light-quark physics'where the standard 
available tools .are th7 ~chwinger-Dyson (SDE) and/or the Bethe-Salpe-

. ter (ESE) equations I 4 .• 'However the very complexities of .these 
eqUations have tended to enc~urage diff_erent versions mostly based on 
J-D reduction techniques.' A partial review of this history, lncluding 
some clas~i~ refeiences / 5/, wa~ given recently 161. In particular . 
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the BSE has come to play an increasingly active role in the context 
of resurgence of the Nambu.-Jonalasino (NJL) model / 7/ o~ dynamical 
chiral symmetry breaking (DCSB) for gene~ating constituent quark 
masses on the one hand, and almost massless pions on th·e other. Our 
preference for the BSE (with an effective kernel J< ) stems basi
cally from the ease with which it is able to keep the simultaneous 
link between spectroscopy and transition amplitudes through a vital 
interconnection /B/ between the wave function 4>- which satisfies a 
JD form of the ESE (to determine the spectra) and the hadron quark 
vertex r = D 4> which controls .the s1;;iucture of transition amplitudes 
on a .direct 4D pasis. (~{~)is a universal denominator function in 
JD foDll to be defined further below). This maintains Lorentz invarian
ce, while gauge ·invariance can in principle be monitored through the 
interconnection that exists betw~en the BS kernel k on the one ; 
hand and the Schwinger-Dyson vertex function Tf.. o-; the other, :via 
Ward-Takahashi identities. (Such 7ossibilities have also been indica-

ted by Miransky and co-workers ./9 ). -
In this paper we do not address the issue of gauge iDYariance, 

but· limit our study to the general structure of the BSE with an ar~ 
bitrary Lorentz-i:rrvariarit kernel, with a vi·ew to providing simulta
neous access to spectroscopy and transition amplitudes via the in-' 
terconnection noted above. This objective is certainly not new, ha
ving been addressed by Feynman et al. /IO/ many years ago, and had 
also ,figured in our (two-tier) BS programme since the early Eighties 
/ll/ ' ' • In·this paper we shall however refrain from making any expli-
cit appeal to this-model as such, but leave the structure general 
enough to bring out the basic connection between spectroscopy 
( 11on-shell 11) and transition amplitudes ("off-shell"), In this respect 
we shall find that a crucial role is played by the 'component 

~JA. = Cft/A-- P·'t P,.._ jp"l of the internal4-momentum q,f'-'. which is 
. always orthogonal to Pf'- ( ~· P = o) ; irrespective of whether 
~ ison.::.shelY ("•P= o) or off-shell ( '/,•Pf:.o ) •. In view of this 

--· ' ··-· ' ,... . remarkable prope~ty_of _q,f.:'·which makes it an effectively JD vector, 
our twin objective of (i) a JD structure of the BSE ')/ as the · 
controlling equation for. the spectra,. and (ii) a general enough 
(off-shell) structure of the BS vertex function r(~) to facilitai;e 
applications to transition amplitudes in 4D fo:rm, is largely met if 

' -"" ' ' ' 

the BS kernel !. depends on 'f-p. rather. than on . ~/"'. This formalism 
is briefly outlined in Seo.2, with emphasis on the generality of the 
v:ertex function r (~) = ]) ($) ® <P rzt) ' where the denominator 
function J> (~) is universal, while only the JD wave function 
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qb(~) is kernel-dependent. The generality of th~s framework 
makes it amenable to the evaluation of matrix elements without re

quiring an explicit ansa;6 for cp('t). ' and is 'easily adaptable to 
the null-plane language 1. In_~eo.J we igiokly trace the past 
history of previous appro~ohes since FKR I I, including our own, 
and draw attention to the new element provided by the role of the 
denominator function ]) ( £i:) ·.· as the connecting link between the JD 
and 4D formulations. Jir.JO:ng other things it reduces exactly to our· 
earlier derivation of the JD foDll of BSE in the on-shell ( 'Z • P = 0 ) 

limit 1121 , so as to be consistent· (except for small off-shell cor
rections) with our previous .results llJ-l51 on the mass spectra 

for the special choice (Vector-Vector) for the kernel employed the.., · 
rein 161, but the.basic structure equally well acco_mmodates other, 
choices (e.g., Scalar-Scalar) fork •. The important gain is that 

' -- . 
the ,off-shell form of 'he Vertex function. is now unambiguou,s, unlike 
our previous attempts 161 which had left· som_e ambiguishe s on this 1 • 

score. Sec~4. gives two simple appl-icatioi1s, Jp values for ·P-+.€[ 
and . F1r value for 7f0-+ 2 4' , as illustrations of the technology with 
the new vertex function r('i) whicl'l.· e:J..."Presses these amplitudes as 
JD integrations over d"3~. • The difficulties with arbitrary. ext.en
sions to bigger quark loops w1 th more such vertex functions are, 
traced to the appearance of unitarity. cuts. in the internal propaga
tors. A possibl·e cure to this· basically infrared problem of confine
:ment is suggested via a self-energy correction to these propagators 
usi~g the input kernel k{~,'i'Jof this :_;,eryfo~alism. Seo.5_ summa
r~ses our conclusions. 

2. Interconnection between 4D and JD Wave· Functions 

· Before addressi:O:g the dynamics of a :·<iq, hadron, it is conve--
~ . . 

nient to collect some kinematical ingredients first for a composite, 
of t~vo -spinless constituents 161 sin.ce the inblusion of spin is a 
straightforward matter. 

Kinematical preliminaries: 

. -·.Let. the constituents of masses ?YI 1 , -m 2 and 4-momenta·-_ p,:;_ 
interacting through a suitable mechanism produce a composite- of · 
4-momentum "'Pf'" and mass M • -The intern~i .4-mo~-entum ~ -
is related to the individual ones. by 'f""' 

P,~ == m~,.;~ ± ~~- (2.1) 
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where we have employed the Vlightman-Garding 
A 

(Y/G) definitions /17 I 
of the fractional momenta ~I ~ as 

.) '2- 'l.. A 'm,, 2. .L [ 1 + m, - m:z. J . 
2. - ---;;;-;.. -' 

1:>'2- '2-
I =- M (2.2) 

At this stage we also introduce·the inverse propagators ,Ljl,2. 
defined. as 

L1,,2.. 
'2-

m 1,2. 
2. 

+ r,,2. (2.J) 

associated with the two constituents.: In accordance with our earlier 
approach /ll-l6/ , we continue to u~e the constituent masses in 
(2.J) so that these inverse propagators are essentially non-perturba
tive in character. This is not inconsistent with the NJL pictur/71 
which is already supposed to incorporate the effect of dynamical 
symmetry breaking (DCSB) in the definition of. these masses. On the 
other hand, according to QCD perceptions llBI, these masses are 
supposed to "run 11 with their momenta, an effect we do not believe 
to be important for low and medium energy applications (e.g., the 
mass spectra), though it may well be so for h~gh energy applications. 
For the-moment however we shall consider these masses as constants 
in (2.J). 

The WG definitions (2.2) ensure that on the mass shells 
of the-respective constituents, the orthogonality condition 

~·P = 0 (2.4) 

is ~exactly. satisfied even when""' ?7J 1 :/= .,.,.,2. . On the other hand it is 
possible to define a 4-vector ~Lt. as . 

~ r ~ 

q,l'- : "'/A- - ct·P~ 
""\ 
'ft•P : o 

(2.5) 

such that' 

(2.6) 

irrespective of whether the individual (i=l,2) constituents are on 
shell C. A;, =o ) or. off-shell ( Llt: j o ). . 

Dynamical considerations 

With the kinematical background, we formally define the 4D 
wave function ?Q' ( ~ ~) of this sys tern to the gov~rned by a BSE 
with an effective kernel J< Ia/ : 

.i, ~;;)'-~ Ll, Ll ~ ~ (~ ~) = Jot\ I K ('11/t') p (~ 9J 1).(2. 7) 
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where we novr put an additioMl :m~atz 

k ( 't/t I) => K ( ~) i') (2.8) 

K ~ ~I 
to emphasize the dependence of _ on the quantities 1., J 't each of 
which identically satisfies (2. 6),. _in preparation for the objectiv·e 
stated in Sec.l. This equation does not of course represent the comp
lete dynamics of the system in a field-theoretical sense, but may be 
regarded as merely aladder app~oximation·to the fuller Schwinger
-Dyson equation, in the sense of an effective 4-fermion interaction 
of the UJL type 171, though with an extemed kernel. When the struc
ture of the two-body kernel I< is (m~~e microscopicall;) defined, . 
say in terms of the Schwinge;;:Dyson vertex function If.:. in QCD 1181, 
it should be possible to. address the formal.issues of gauge invarian
ce within the BSE language, but this aspect \Vill not be considered 
in this paper. On the other hand,· th~ ~orentz invariance of (2. 7) is 
exp:J:lcit, even with the fonn (2.8). ,1/e now do a JD reduction of (2.7), 
a task which is facilitated by noting that the longitudinal component 
M (]'" of 1t I'- defined by 

M cr :: M ?,· P /p 7- (2. g) 

does not 
"""-

in.the dei'inition (2.8) of the kernel. In terms of appear 
~ and 
I'" 

a- we now have the following results: 
.A 2. z. '2. 2.(-" )2. 4.1' -== ??11 r ?1 -=. w1 - M 7?11 -rrr 

..... 'Z.. 2.. 2. 2. ( ..... )2.. 
~2. ::: ,2- f- A :: CUz. - M. "h1;~- (J'" 

(2.IO) 

/'. ' '2... 2. -"\ '2. 
(..(../,,,_ -::: 171 1_,2. + 't _(2.11) 

Now ~ a JD wave function 4> (1,) as 
00 ' . 

J M d(T' -~ (~ ~) · 
-o4 

(?.12) ¢(~) == 

This definition can be directly incorporated on the RHS of Eq.(2.7) 
· under the ansatz (2.8), since the variable (J"' I is !!Q! involved in 

K, and 
. d.~~/ ::: d'3i/ M d. (1" I (2.1J) 

so that Eq. (2.7) may be recast as: 
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C!-rr)4.~.: Ll,42. ~(P;~) -= J cPi' K Ci;i' J cp (~'). 
(2.14) 

Dividing out by L11 .62 in (2.14) and using once again the formula 
(2.12), gives an exact JD reduction of the 4D_form (2.7) as: 

(27r)
3 D(~)_<P(~) =I d3i' K{~_,~') cp(~'). (2. 15) 

_,.) 

where the JD denominator function D [ 'i) is defined as 

.... -1 ~ M 
[D(q,)] .= ~L f J.a- -:;;-:;t · 

-od ""-~JL.l~ 

(2. 16) 

Integration over J.cr in (2.16) ma:y be carried out by noting the 
following pole positions of .61, ,_ in the (]""-plane in accordance with 
their representations (2.I0): 

Ll± 
I 

4;t 
2. 

• • 

• • 

M (cr + ~.) = 
M (a--~~) 

± cJ I + t.'£ 

± w2 + r:£ 
(2.17) 

-The final result .for ]) which is obtained by considering either 
' + ' '' -

the two poles Ll 1 2. , or tlie two poles Ll 1 2. may be expressed ' ) symmetrically as follows: 
' """ ...... ' ]) ( i ) = Do ( ~ ) / [ ?11/ + ?112. J (2. 18) 

2C.U( 2.C.U:z. 

'2. Z..-'\'2-
W:a- M ~~ w2. Mz.. .... 2-

'- ?111 . = -i J)o (~) (2.i9) 

q2. "': ( 2- z.: M 2) I z._ /'. m,) 'nz.; 1 LfM (2. 20) 
\ • 1 ~. •• , 1 r. 

~ M. 4 M'2.( '2.. '2.) : (. ,., -z_ ·-· 'Z.- .) z_ 
tJ ::: - ·2 ?11 1 rM2. + m 1- »1z. . c,i~~l) 

The more interesting thing is to observe the ~~ality of the ~ 
RHS of Eqs. (2.14) and (2.15) which provides ·the following inter -
.QQ~lli!! between the 4D wave function ~-('l;} and its JD counter-
part ~(~): · 
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r(i) = Ll,Ll:L ~ CF;~) = D(~) cp{~)~ni. (2.22) 

Thus Eq. (2. 22) directly defines the hadron-quark vertex funct-ion 
r (t£) in terms of the product ]) ® 4 where the appearance o-f ~f. 

(instead of 'trf" ) is a consequence of the ansatz (2.8)~ · ) 
The incorporation of the spin degree of freedom is a fairly 

straightforward matter. Indeed, under the on-shell conditions 
( ~·P=o ), see Sec.J below, the NPA results of ref. 6 (.§ 5;7) 
can be taken over to the present formalism, so that Eq.(2.22) may · 

·be simply replaced by 

If' cr, ~ ) = sF c p, J ru c i J ~ F c- ":I. J 
~- (i) = NH r:: D(i) cp(cf) /2irt 1 

(2.23) 

(2.24) 

where ~ is a constant Dirac matrix ( ·y!i' 
V-me son, etc.) and NH is the BS normalizer. 
to ?;·P-:f. 0 -corrections, in p~inciple) • 

Eq.(2.l5) and .Eqs.(2.22-24) respectively 

for _Ti , ~Y·V for a 
(This i~ again subject 

form a zer·o-order 
basis for making contact with the mass spectra-of hadronic stafes·on 
the one hand, and providing access to various types of transition · 
amplitudes on the other_(via appropriate 4D quark loop diagrams). 
This structure is fairly general and Lni!ill~nt of the detailed 
~ssumptions on the (input) ke'rnel k. . In particular the denomina
tor function])(~)', Eq.(2.18), h~ a _un!ve~sal anl well defined 
meaning .2!f.J::h.e mass shell of either quark, and COJ?.stitutes an 
important multiplicative ingredient of the hadron~quark vertex 
function C2.22) or (2.24). The function cp{i) is admittedly model
dependent, but together with ]) cq;). it cont-rols the JD equation · 
(2.15) for the determination of mass spectra, ~o that itsproper
ties are directly traceable to the latter •. Both qu~tities ]) (~)and 
,.hi"") . ' ""''2. "t' \.'f., have a common dependence on the quantity > q, whose most . 
important p,[operty is its £2~!!~-g~finiteg~ on the hadron mass 
shell ( P:: -Ml. ) throughout the 4D space: 

..-'\'2. 

~'t 
Cf; '2._ (~·P)2. 

p• 
2 ..L-

\ + 4Mf 
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We now turn briefly to the connection of this formalism vii th other 

approaches, including our earlier efforts. 

J. _ Past History:· New''. Aspects 

_ A;~itailed account· of this subject m_ay_ b: fo~nd in a recent 
review , We shall merely 'summarize some ·salient·· features which 

have a direct bearing on the present formalism. Many years ago, ·' ' 
Feynman et al. /IO/. (FKR) had advocated· a~ 'serious dynamical programme 

based on: ~·P=·o for' a !:!!!ifi!ll!.:... understanding of spectroscopy and 
transition amplitudes. The spect:;-.Pscopy was successful because· the· 
basical O(J) characfer of the data was con5ist'ent with Feynman Is 
covariant JD formulation. H0 wever their transition amplitud-e calcu

lations were more sensitive t_o the JD projections and had- to be 
tempered with additional ad-hoc_ form factors to maintain unitarity, 
thus pointing to the nontrivial ~ole ~f the fourth (time-like) direc

tion for a proper dynamical understanding of these amplitudes. The 
next serious attempt /l9 / which did' address- the issues of spectra and 

transition amplitudes unfortunately relied on a Wick-rotated descrip
tion of the· 4D BS.E which yielded an 0(4)-like spectra picture, 

again in disagreement with data. Some years later Leutwyler and 
Stern/20/ made a serious attempt to resurrect the FKR model th!ough 

their covariant·null-plane techniques, and indeed encountered- the 
> """?.. p 0 quantity Cf , but· they did not get-off the • v :. o surface, nor 

did they have anything akin.to the denominator function DC~). 
An important lesson /J,G/ to learn from these results is that 

the O(J)-like spectra are probably not very sensitive' to the 
time-like d.o.f., but the transition ~plitudes certainly requi.re 
all four d.o.f. 's.• Therefore the unfolding of the fourth d.o.f;, 
should be gradual enough so as to ~~e .1:t.s __ relative insensitivity 

to the. spectra compatible with its m::>re active role w.r.t .. to the tran

sition amplitudes. The formulation attempted in this paper is designea 
precisely to give a concrete shape to _this philosophy through the 
emphasis of interconnection between'the JD and 4D forms of the BSE, 
where-in the role of the former, Eq.(2.15),- emphasises the spectra, 

while'the latter, Eq.(2.22-24), forms the main ingredient for the 
evaluation of transition amplitudes. The exact coimection betwee-n' 
the two forms has admittedly 'been achieved with' th·e ·special assump.-

tion, Eq. (2.8), on the :SS kernel J< , btit it i's ·:reali:stic' enough 
to cover most cases of practical interest. In particular it coinci

des :with th~ definition of most confining. pote:tlt:i.'als ·,(linear, har
monic, ~to.)'in th~ instantaneous ap;~oximation,~tl_lat hav'a b~en:· 

/ employed in the literatur.e. Such an "instantaneous point of view", 

8 

It:_ 

' 

1~ 

It 

which automatically justifies the ansatz (2.8), ~as also 'been 
emphasized recently by Pervushin and co-v10rkers 

2~/ • 
\'le have for some years been stressing the- above interconnection 

between the JD and 4D forms of the BSE so as tc provide a simul ta
neous access to spectroscopy and transition amplitudes vathin a 
unified frDJ:Jework. This vt.as ori_rinally sought to be achieved in the 
instantaneous approximation /ll but its lack of Lorentz-covariance 

led us subsequently to formulate the same idea under the Null-plane
-ansatz (NPA) 112/ which exhibits a wider domain of stability under 

Lorentz transform!l'tions than does the former. This is most easily 
checked. on the hypersurface 't•P= o (on-shell) where the NPA. 

definition / 121 of t~e J-vector ct , viz [ ct.l.' cv3c= M~+IP+ )] 
agrees with that of 'lrr , Eq. (2. 5), as may be seen by making the 

'Z-A 2. . 
substitution ·'r-_ = -'f,+MI~ in Eq.(2.5). .,.... 

This coincidence of the definition of 'f,a with that of the _, - r 
NPA. J-momentum lf, on the surface ?;·P= o enables us to make con-

tact with our earlier results obtained under the null-plane foma
lism, while retaining the generality "of the present formalism for 
possible applications to other potentials or kernels. In particular 
the results on the mass spectra of both 'l-~ /lJ-l

4
/ a.lld tz,'t 'l,

hadrons /l 5/ which had earlier been obtained under a common ansatz 

for the kernel should be automatically valid under the present 
formalism under the on-shell ( ~· P= O ) conditions. The possible 

off-shell corre-ctions ( ~· P :f- 0 ) to the <t-Zb mass spe at raj . which 
will arise only from the spin-dependent effects (deviations from the 
conditions. of Gordon reduction due to off-shellness), are calculable 

perturbatively and are expected to be small. 
On the other hand the fo:r:mal short-comings of our earlier NPA 

programme /G/ have been more manifest at the level of the vertex 

function ret) through the' need for defining different forms of 
extension (termed on-shell, off-shell and half-off-shell) for diffe
rent types of applications /l6/, the preference for a particular for 

being governed by semi-intuitive considerations based on the topo
logy of the amplitude under study. None of these extensions was 
truly 4D but constrained to lie on specific hypersurfaces ( P• o: 0 

. L L nw D P:z. -1-IM;z. =- 0 , etc.). These have had some successes which are 
likely to be increasingly unreliable for arbitrary off-shell extensi 
ons. This is of course due to a formal lack of Lorentz covariance 
in these vertex functions . / 22/ which the null-plane definition of 

the J-vector ~ is not able to overcome fully. The present forma
lism has hopefully overcome this aspect of empiricity through a 
singl-e Lorentz-invariant off-shell EOCtension, Eqs. (2. 22-25), coverix 
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the entire 4D space, while retaining ground contact with the surface 

P·t: o in respect of the JD form, Eq. (2~15}, of the BSE. 
• - 0 

4. Sil.!!l!l~EElicat~!!§.! _ _P4 f{_~g_ TT ~-a){ . 

In this section we shall indicate the applications of the vertex 
- 0 

function (2.24) to some simple cases, viz Po? ee and 7r~2¥ , 
partlY, to. illustrate the general structure of these amplitudes within 
this formalism, and partly to bring out the nature of the difficul
ties encou~tered vrhe_n extended to m'ore complicated quark-loop 
diagrams. The calculational techniques Ylhich follow closely those of 

I 6 · the !iPA fo:rmalism 1 I will be omit'ted, except fox: drawing attention 
to the new features introduced by th:e off-shell structure, Eo. (2.25), 

. ~~ -
of the quantity ~ 

Thg_IE... -ampli tug~.:_ I 
6 

The quantity /p is defined by 
1 .1 

fp PIA :: i.f3 f d 4~ 7lt. [ 'J!p i ~ o~ ], 
(4.1) 

where 'lip is given by Eqs. (2. 2J-24)~ It reduces after some routine 
steps to the following• expression, in the notation of Sec. 2: 

f. -= J3 M Nr s~3i 1>(~) cp(~} I {~) p . (_2.1i) 3h ·' p (4.2) 

I p {~) :: -f.ui J d.cr [ 2. ;n J:z. (I~ s~~)- 4 .cr S -m) jcLl, L12) (4 .J) 

'1'Y)I2 : 171 I + rr}2. J d"m = m,-'h12 (4.4) 

where the numerator in (4.J) comes after trace ~valuation and use 

of the full projections 
A 

~p-pft 
1,2. 

~c-m~~2:±cr) + (4.5) ::::: 

to extract the 4-vector 1p.. from the RHS. The u:- -term is an 
off-shell effect arising directly from p, Z :f 0 •. The integral 

can be evaluated exactly as in Sec. 2 to give 

I ( ...... ) 2-m, ( d"trJ2..) -·c .... ). d'W) (..L ~ ) 
· P I} = · M

2 
/- Mz.. D ~ -1- f\13 A1:~.- CAJ

1 (4.6) 
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} 

The BS normalizer Np , as defined in Eq.(4.2), with a factor 
taken out from the definition (2. 24) for N;., , may be worked out 

. ... 1161 
from the current conservation condition · . . . 

. . ~ r ~ [ - J -• -1 )l '-l'y...(, =~n) JJ~ TJt .).J! oPrS·F._(h) lj SF (-h}J+Qt-z).-(4 • 7) 

The t;. -differentiation which must take account of the entire 
dependence of /01!'- , P2.f- in accordance with (4.5), is expressed 

. by .· . . > • 

l l- 1· f. · = .i ('"~.._ ( ~ 1 2. ::!: rr ). · (4 a) 
?>~ 17 2 · r· . ~ ., • 

The resulting structure for· Np, after evaluating the traces, etc, 
. . 16 16/ . 

works out from Eq •. (4. 7) as· ' · 

' f c,l~Q - 'Z. . II 

Np -::: 2 2TrL' 
])"L{ti Y</>z.{~J[rM :rl"1H2. +tJ 1)(~ +rr)~+ L1

1 
(~,+a-~ ) 

'2. . V.,l . (i.g 
4, .42- . . +- 0 ~ 2 ) .· 

where the () -terms represent the off-shell effects. due _to P. Z =/= 0 

over and above those considered within· the (earlier) riull-plane 
I I . 

formalism 16 • Before evaluating (4.9) further, a comment is in 
order regarding the appearance of' the term Ll2. ;in its _;tl.umerato~, 6 · 
since its effect had been zero in the null-piane pole .. formalism 

1 I 
due to its cancellation with t~e· corresponding denominator. Its 
present appearance must therefore be regarded as a specifically 
off-shell effect which characterizes the present formalrSin. It is· 
particularly vexing in view of the quadratic ·multiplying factor 
( -m, + a-)'l.which makes its contribution lli!gative, af'ter cr -inte
gration. This is on,e illustration'of' the kind of' ·problems that 
are likely to arise in the present formalism as a price for deman
ding too muCh Lorentz covariance whiCh- involves strong off-shells 
effects. We have not yet been able to overcome .this proble~ (per

haps: some regularization is ne.cessary) and in the m_eantime we are 
inclined to drop it, after proper identif'ication,~n strict fUl.B.logy 
with the (on-shell) NPA formalism ll61. The f'fnal result f'or (4.9) 

.) . 
after the (J -int~gration is:. 
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.N;i = f ,( .. i q:/-(~) [ Q- 6;~) ~ + 2~1h~ ])(~)] (4.IO) 

) -I 
. ( 

2.-"1-'\ )(..., .1\ 4 cv1 cv
2 

+ M ?11, ~l. ?1-11 + n,l-
cuI Ct.) l-

c;; (4.11) 

So far the results are independent of any model for cp (i} ,but 

a few general statements can be made regarding the large M behaviour 

o_f fp and Np ' especially for un,~qual mass kinematics ( ?n I >> #t.z ) , 
if we make the_reasonable assumption that the inverse length(~) 
associated with <j>( 'f,) is finite ( (!.:E. --m 2 << m, ......, M ) • 
In this liinit, one easily finds the following asymptotic results: 

Np ,..., 1M 
' 

f.p --v (4.12) -' 171 
This is in accordance with QCD predictions 1231 for the -.... M- "i be
haviour of /-p which forms the basis for lattice extrapolations 
I 24/ from f.]} to :?.s • However, the full structure of '.?p invol
ves two distinct components for -m 1 f-h1 1 and their relative strengths 
woula-determine its final magnitude. Some estimates 125/ based on 
the null-plane parameters 114~ for the wave function </> {ii) in 
fact suggest that the second component('¥ 6'm..} is particularly 
large in the (D,B) region, so that a single parameter extrapolation 
of the type (4.12) is likely to give misleading results. A detailed 
discussion of this problem, including the possible relevance of the 
second (- s~) tenn in (4. 6) in the context of some current contro
verties on two groups of lattice resuu/261 is given separatel/

251 

0 ...!! ~_::_'( _lim_p_litu~ : 

This is another example where the present formalism gives a 
clean result without the problems of too much off-shellness. The 

. effective coupling constant E. may be der'ined in the standard. 
. Tr . /27/ 

notation through the invariant amplitude 

A w ~ ~ 
e!f = t;,. £p.verr 8 /-" £y Pp '?cr, (4.13) 

l<t;",_ 
~ 

where the two outgoing photons have with 4-momenta 
p.olarizations e'~ 2) w~it.. 

? 

and 

. ·. l<, +-1<2 ::. p' ./<1 -J<2 = 2 f) ; p, £8 0 
(4.14) 

12 

For. brevity v1e omit the_. two standard triangle diagrams "16, 27/ whiah 
mal{e ~qual cant ribution's and give rise 'to the fo llovling. net resul't•: 

2. . 

= s-m1 e ·s i~.i Nrr 1J cfo ( 
!6. ~-il) '3h J 

Md(}. Fn- , 
..:1142..:13 '2.7r l . (4.15) 

. . . .. . 2. . . .'L, 

v1here all symbol_s" 3;re defined in sec.2 and Ll 3 : 711 1 +l~-:-~) . 
ta...1dng ?11 1 ::hit. • The final result on cr -integration is 

F- _ J6 Nu--rn, el-f d3 i cp (1). cv1~cJ.~"2-·. 
1r - (_211} 3(2. lj 

(4.16) 

In. the spirit of generality of this investigation we refrain-from 
discussing numerical values, but for purposes of ~llustration with 
an NPA wave function for the pion, viz 76,l4/ · · • 

A-. • _ - ctz.;; R 2 
't'n- . _ e l~ r- J . ~2_ =: O·t13/ c;;~:v2.), '(4.17) 

one gets 

J;.. :::: o. o 2'} ( Vs. o · 0.27 ~x;,i). (4.i8) 

!!ill:E!:LE!:QJ2llml 

.We conclude this section with some remarks ·concerning the . . - . 

difficulties of extending this method to. processes with quar~,loops 
involving more than one hadron-quark vertices: 

.P I I II 
11.-> { + ¥' ~ ~ {. + ~ } f. I).' etc. (4.19) 

In general such processes would be afflicted by Unitary cut-effect~ 
in the internal quark propagators, giving rise to complex amplitudes. 
It is only in simple processes involving only one hadron (e.g., 

p4.([ , 7T 0
4 2..Y ) or loo~s with two hadron ·vertices with

out external field lines ·(e.g., e.m. mass difference diagrams ) 
that such complex amplitudes do not occur. This is. because the appea~ 
ranee of all the four components of the common loop-integration . 
" . . I N 

variable 'l-,..._ · in the product of the JD wave f~ctions tj> ~ 4> 
generally.prevents the choice of a single component SaY ~- from 
appearing only in the loop propagators and not in the (gaussian) 

· 1 n · · 
functions representing the individual ·Juantities c/>1 4> , cp , etc. 
In the corresponding NPA formalism /_16 this problem was sought to be. . . .. . . . . . I 
circumvented by contraining these individual wave f~ctions ¢_, -~ J · 

to lie on specific hypersurfaces (on-shell, half-off-s.hell, etc~) from 
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where one would expect the main contributions to arise, thus keeping 
the variable ~- free . to appe'ar only in the propagators. This could 
at best be described as an intuitive physical procedure and cannot 
be regarded as a formal solution of the problem. 

A more satisfactory procedure from· the theoretical uoint of view 
has been developed by Efimov and co-workers "~ 281 in whic~ the confi
nement of the internal quarl{ propagators (and hence the prevention of 
unitarity cuts) is ensured by a mathematical "smearing device" 
weighted by a suitably chosen, highly covergent, distribution func
tion. They get 7ood fits to process...9s like (4.19), similar to our. 
NPA results 116 , but their point-like hP.dron-quark ,vertices, noti
vated by non-local field considerations/ 281, do not yet incorporate 

. the information on spectra as do. the N?A fern factors 116/ or the 
ones represented by Eq. (2.24). Our present approach, which may be 
termed as a covariant instantaneous description has some obvious 

· In! 
overlap" with that of ref. which would presumably have to face 
a ,similar problan. 

A formal solution to the problem lies in the recognition of :its 
basically infrared nature, namely, the need to modify the simple 
propagators SF with fixed masses ?n 1> Wlz due to the gluonic self
-energy corrections in the low momentum regime. These gluonic correc
tions in turn are non-perturbati ve &'ld are· in principle already 
il:lplied in the structure assumed for the effective BS kernel K . 

. ""',.., -
Indeed for a kernel k{'ft·'i) the self-energy correction 2(/01) 

to the propagator SF ( Jo1 ) may be written down from the identifica

ti·ons 

~ .:: h./ ) ~ = P, I.:: ):; _J: ; 
I . 

tt==-tt .::-..k, -p;:: 2/1-.1< 
A 

2k·P 'R 2 ¥.?- .= 2 kr _ p2. ,. 

~nus in the ladder approxL~ation 

-z c r, ) =- ~ ,, f sF ( ~ ) 0 x c~ ; J d ~ 
(3.1i) 7 . . 

. (4.20) 

-'I 

!Iote the appearance of the 4-vector J<.p- instead of the more 
usual symbo.l l<,r. in Eq_. (4. 20). This is in accordance with the 
ansatz (2.8) on J< • The effect of this correction for confining
kernels of the general type 

14 

• '2.. 

k { ~ ) = L·m ( -j, ) ~ A!+ ~ 2-
?1 r 11 _, o /1 .,. (4. 21) 

is currently under investigation 1291 • This representation was first 
employed :in rer/121 wit.~ n=J corresponding to harmonic confinement. 

5. Summary and Conclusions 

In this paper we have tried to put in perspective the interrela
tion between the JD and 4D forms of the BSE when its kernei k. is a 

function I<{~} ~I) of the internal 4~omenta ~ ~/A- which areorthogo 
nal to the hadron 4-momentum ~ ( 'f,• P = o ). Under these condi
tions the hadron quark vertex function is expressible as a product 

]) ® </> of a universal denominator function 1> {~ita) and a JD wave 
function cp(1,) both of which are functions of the invariant Ci) 7., 
and are defined over all space, on and off the energy shells,of the 
respective constituents. The quantity</(~} satisfies a JD form of the 
BSE which is appropriate for making contact with the O(J)-like mass 
spectra. The vertex function D@cf> . in turn represents the main 
ingredient for a fully Lorentz-invariant evaluation ·of ·hadronic b:an

sition amplitudes. Though the role of quantities like ~ 2 
has 

been long knovm /IO/ the ~~-~~ lies in the use of this quantit 
in the context of the interconnection between the JD and 4D forms of 
the BSE which is articulated through ·the universal denominator funct
ion D C'i.) as the main connecting link between them. This l~st is 
what ha~ been termed as a two-tier basis in our earlier effort/11- 16 

in this direction in terms 'of null~plane dynamics/6/. The present 
formalism shows its Lorentz-covariance over all. 4D space and is pro
perly calibrated with the older form1121 on the mass shell (JP·~ =c) 
in respect of the JD structure of, the BSE, Eq. (2. l5Y, so that the 
results on the mass spectra /lJ-l5/ will remain essentially unalte
red if the same parametrization I 61 is emplo,ed for the ge.ne ral BS 
kernel f< described here. . . 

As simple illustrations of tliis new formalism we take o.;ffered 
two examples, viz. the general structures of the two amplitudes 
f: (P~ fl) and J;, (TT0~ 2."1) with a.Dy ~bitrary JD wave fu~ction 
r;p {~) without' reference to a spe~ific ~odel. These quantities· .fp 

have been shown to fall off-like· M. Y.z for markedly heavy-light 
mesons, in. accordance with QCD ·per?eptions 12JI, but their two-;.compo
nent structure additionally shows ·a strong off-shell sensitivity 

for such mesons. ... , 
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The formal difficulties of extension of such calculations 
to bigger quark loops with more vertices and propagators have been 
traced to unitary cut effects· on these propagators, a basically 

·infrared problem of confinement is also recognized by other authors 
/28/. A possible line of attack has been suggested via a self-energy 

correction, Eq.(4~20) 7 to the internal propagators arisin~ out of 
the non-perturbative imput kernel f( within this very formalism. 

- . 129/ A detailed investigation of this effect is in progress 
Most of this work was performed during A.N.M.'s visit to JINR 

(Dubna), where he has enjoyed fruitful discussions vr.i. th G.Efimov, 
. • .J 

V.Pervushin, _M.Ivanov and especially A.G.Rusetsky, among others. 

He is indebted to S.R.Chaudhury (Delhi) for the initial suggestion 

oi7 the "Ctr vector and to O.Pene (ORSAY) for several clarifying 

remarks on Jp values. Finally he is grateful to Prof~D.V.Shirkov, 
and Prof. V.Kadyshevsky for the warm hospitality of the· Institute. 
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