


1. Introduction

The description of fundamental,éarticle interactions with the
help of gauge fields introduces superfluous degrees of freedom into
the theory. This manifests itself in the singular nature of the
corresponding Lagrangians or in the presence of constraints in the

equlvalent ham11ton1an formulation s, All constrained systems can

be described naturally in terms of symplectic geometry /2/_ However,
there are two symplectic manifolds assoc1ated with each constrained
system: the extended and the reduced phase spaces respectlvely.
C1a551ca11y, there is no formal distinction between working in the
extended phase space with allowance for the constralnts and solv1ng‘
the constraints, reduclng the system and working in the reduced phase
space. But these two approaches are not necessarily equlvalent on the
‘quantum level and may -engender real and 51gn1f1cant physical
differences in the quantum behaviour of the system. For example, the
reduced phase space method 734/ fails to give the correct results in
the cases where the degree of freedonm corresponding to the constraint
in pr1nc1p1e could be quantum mechanically excited 5’. However; this -
is not the case we meet in gauge theories. On the other hand,. there
are examples where Dirac method 72,6/ leads to negative-energy states
.due to a quantun tunnelling into a classically forbidden (by the
constraints) region /7. As has been pointed out m/’ this is an
artifact of the canonical quantlzatlon which originates in fhe choice

*)

of polarization 1ncompat1b1e W1th the constraints.

' " ros .
)From a geometrlc—quantlzatlon p01nt of view canonical

quantlzatlon is equivalent to a- geometric quantlzatlon "in ‘the
tyertical’ polarization, . the leaves of the latter being the fibers of
the cotangent. bundle - projection 70 -— . Q, where Q@ is.  the
configuration space of the system. : : e :
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In the present ‘paper, a new quantlzatlon procedure for
linearized gravity is Proposed without gauge fixing as an initial
preposition. The results obtained point out the importance of
physically motivated assumptions about the small metric-tensor

components to be neglected. The main pecullarlty of our approach is -

that after reduction of the configuration space the theory is
formulated and quantized in the space of gauge orbits of the
dynamical fields.

[
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2. Vertical paths, metric and Gauss’ law

Due to the gauge invariance the basic objects of the theory -
the gauge potentlals - form an overcomplete basis. Gauge fields which
"are connected by an’ infinitesimal gauge transformatlon actually
describe the same phy51cal state.’ Thus the vector potent1als are
divided into equivalence classes with respect to the gauge group G
action. An equivalence class represents an orbit 1n the gauge f1eld
configuration space. It is rather the space ‘of orbits’ than the
function space’ of the gauge flelds that has to be viewed as a
phy51cal space. Transitions along the orbits correspond to pure gauge
transformations. These’ vertlcal paths are of no phy51cal 1mportance.
Phy51cally significant are only horlzontal paths, i.e. paths ‘which
are perpendlcular to the orbits ”'%; These paths 'describe ‘the time
evolution of the physical system. Fixing the gauge, one tries to
solve the problem- of constructing such horizontal paths. In fact,
this means that the reduced phase space (on which an unconstrained
Hamiltonian can be defined) is identified with ‘thé vector potentials
and their conjugate momenta in th1s gauge. It was first Gribov who
"pointed out that the gauge, regarded as a map from the physical
fields to the space of vector potentials, is singular’ /"/, the

result be1ng later generalized by Slnger 7o .
k This problem has one more aspect. In the path~integral quantlza—
'tlon of gauge fields one starts from an initial conflguratlon at t =0
and’ integrates over all histories, i.e. all paths in the gauge-field
conflguratlon Space. In such a way  the genuine dynamical time
evolutlon is not distinguished from the time evolution generated by
gauge transformatlons. ‘An  attempt to circumvent this difficulty
conslsts in 1mposlng a gauge condition 7'¥; globally, however, this
: approach fails because garden—varlety gauges are only locally unique
. Thus, one needs a prescription for choosing the paths so as to
ellmlnate the’ spurious t1me development due to gauge transformations.
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Using time as a parameter of the paths- in the bundle of "all
spatial potentials, we define the tangent of the path A(t)

d -
= — A(t)
dt

In part1cular, for: vertical paths-

al

S . ) o
A(t) = gty R(eyace) - ig(t)'vg(t)
with g(t) an element of G, the tangent vector is

2> 3.
Z = A(t) = De, ‘
where € = { ¢ } are the parameters of the infinitesimal transfor-
mation corresponding to g(t). Thus, vertical’paths (i.e. paths along
the orbits) have tangent vectors of the form
Z = Dy, _ (1)

w1th w an arbitrary Lie-algebra valued functlon. To eliminate the
t1me development due to gauge transformatlons, ohe should restrlct
the paths in the path integral to those that are purely horlzontal.
We can define the horizontal vector @ 710,147 as a vector orthogonal

to all vertical vectors T with respect to the scalar product\<‘, >
in the orbit space, i.e. )
‘<3,?>’= 0 . for-all Vertical.%’s.

. . 713/
Using expression (1), we find )

0 =Tr Jd‘"x o (x)m,

3 . ) .
;3 D, 00 = - Tr Jd x [D, n,, UJ(X)] o(x),

D, m ¢ =0, "'_“-'(2)
‘1s the metric in the orbit space) because of the arbltra-

A path 4 (t) is horizontal if its tangent ls
1

which implies

(where nl
riness of ¢(x). .
everywhere horizontal —and condition (2) leads to the .following
-definition of a horizontal path in a.space with metr{ic”fnU
D, m, ’aA =0. ' : : o(3)
Thus,'the correct deflnltlon of the metrlc in the orbit space
comes out to be very 1mportant for 51ng11ng out the horlzontal paths.
" The dynamlcal f1eld gauge-orb1t space 1s egulpped wlth a natural
pro]ectlve metric, wh1ch provides 1ntroductlon of -a symplectlc
'structure therein and construction of Polnﬂare—group representatlon
with a nonstandard -action- on - the” gauge fields 718/, . The canonlcal
energy-momentum'tensor‘obtained is symmetric and. gauge invariant but
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differs from the Belinfante one, being its reduction on the equations
of motion and thus the minimal symmetric energy-momentum tensor for
the theory under consideration. A transition to independent physical
variables is then possible that allows further canonical quantization
" of the theory with commut;tion relations for the new fields, which
coincide with their classical Poisson-bracket ones.

~ From the explicit expression for this metric and condition (3)
it follows that it is pPrecisely Gauss’ law which provides a natural
definition of horizontal paths. Inteyration only over this class of
paths means that each physical path (i.e. path in which all
gauge-equivalent potentials are identified) gives rise to a unique,
everywhere horizontal path in the orbit space. This is the best that
can -be achieved in the absence of a global gauge. An analogous
_statement has been proved in ref./13/ for the special case of the

temporal gauge. We do not fix the gauge but instead solve explicitly

.the constraint equation for Ao and concentrate‘on the structure of
the orbit space for thus reduced configuration space and especially
on its nonstandard metric.

The explicit solution of the éonstraint equation together with
the importance of the Belinfante tensor have been postulated in the
minimal quantization method A2 as we have seen, these steps
have not only physical but also deep geometrical motivations.

. 3. Gravitational wvaves in the linearized gravity

Quantization of the linearized gravity gives an evidence‘about
the ' importance of physically motivated assumptions fbr the small
metric-tensor components to be neglected, which concerns the
existence of gravitational waves in the conventional understanaing of
this problem.

Gravitational waves in Einstein theory are considered as quantum
excitations of weak classical fields. In this context,  construction
of a gravity quantization scheme which is adequate to the problem of
elementary excitations is important. From such a point of view the

minimal - quantization method with an explicit solution of the .

int s 718-21/ . s .
constraint equations 7 is distinguished among the large variety

of gravitétional field quantization approaches “2%. i

-Consider Einstein theory

s=JR\/?d“x v (4)
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in a week field approximation

guV'= "uv + h#v, h « 1. (5)

The Lagfangian then takes the form (up to O(h3)—terms)

€# =L (n, on -h_oh_)+h 83h -h 88nh

Sup vy uv uv ‘wvvle o uu” v o ve
(2) _ 2 -
£%(h, ) =h (82h -8 h,) - (6)
(2) _ 4 B _ .
£ (hox) = -2 aohol(akhkl alhjj) akhol(alhok akhol)'
This action contains constra%pts which introduce a transverse
structure . -
,52‘2’_0 ‘.aaar“—o 4T - 8.h . - 8,h (7
. 0 7 A =0 A =0y, - gy, )

oo

with the correspondiné equation of motion

sg(2 .
). (8)

—_ T — —_
an 0 7 % =848l - dyhy;

ol
On the solutions of constraints (7),(8) Lagrangian (6) reads

w(2) _ 1 U
K4 —zah‘k Plix|inm) auhlm ,

(3)
C alal : ‘ akam
Plik|in) = 8lim T %% T _A— Sm ~ A 8,1 ¢

where the projection operator P(i1x|1n) can be considered as defining
the distance in the space of dynamical field h orbits with respect
to infinitesimal gauge transformations
) hlk hlk * alkk * akkl )
From Lagrangian (9) canonical momenta are obtained
prs(x) = p(rsllm) aohlm(x)v,
whiéh‘obey the following Poisson-bracket relations
] { hlm(x),lPrS(Y) } = P(lﬂlrs)(X)B(X-Y); ‘

The energy-momentum tensor is‘obtained to be symmetric and gauge
o
3 h,k»p(ikllm) aGhlm‘

(c) : -1
Tuv = auhlk p(:kllm) avh,m 3 gﬁv

‘ It does not represent a full derivative and gives rise to a set
of Poincare-group generators in which. boost generators induce. an
additional gauge transformation of the dynamical fields
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. 4 .
j[ylo,hrs(x)] = (xoal - x'ao)p(rsllm)h‘m(x) + (a; X P, + 8, Z P,
This additional gauge transformation leads to a time-axis rotation
that ensures the relativistic covariance of this manifestly non-
covariant guantization procedure.
The basis in this space can be defined as

Plik|im) = ejk g (10)

&? Plikf1m) EL = 52
1k Im

g p =,
. ik ik .

where Plk

is the three-dimensional projection operator °
3 3 .
_ _ i % - o B _ soB =
P, =38, 'jf_' P e e, e, ﬁkeh =87, a,p =1,2
Thus, the relevant polarizations are found to be
1 _ 11 2 2 2 1,2
81k =e, e e e, and 81k = e e,
.and for the independent physical variables
a a
' h™ = Slk Plik|im) h, - (11)
the free two-component scalar field Lagrangian is obtained
’ - -1 U, a a
£ = Z 3" h auh H (12)

hence, plane waves are present in' the excitation spectrum of the
linearized Einstein theory.

. Therefore, minimal quantization of weak gravitational fields

reproduces the together with the

corresponding add1t10na1 conditions which are in fact generated by

and h .

radiational—gauge results

the equations of motion for the nondynamical fields h

For the or1g1na1 theory (4) without any add1t10na1 assumptlons'

ehout the fields
. honphysical degrees of freedom through the exact solutions of their

minimal - quantization consists in excludlng

equations of motion (constraints).
linearized expansion of the action obtained with the one considered

However, the coincidence of the

above (in the naive linearization scheme) is by no means obv1ous, the
 reason being the d1st1ngulshed role of the. Newton component g,

AThus, assumlng that condltlon (5) concerns only dynamlcal fields h X!
we -are -forced to consider also components h as small var1ab1es

because of the constralnts, but no restrlctlons are 1mposed on the

R e

minimal quantization method this
component is con51dered as a classical one and assumptlon h « 1 is
by no means motivated because we don’t know the strength of the
Newton potent1a1 the grav1tatlona1 wave is interacting with.

To better realize the difference between these two-cases, let us
consider ‘a simplified problem,
Lagranglan Z

Newton component h -« In the

hamely constructing the  effective
(h ) by expllcltly solving the constraint equations
for components h and h,k in Lagrangian (4) already expanded over
these small f1e1ds but in an arbitrary Newton field 9.,

To this end, we shall make use of the following expan51on of the

7237
metric tensor gu 2

g = exp(¢/2) exp(h) exp(p/2),

;6 _ hoo .. 0 . g _ o] le |
0 0 U] h .

k 1y

where

As a result, up to second order in n, and h

tensor components take the form

terms, the metric

_ hae 1 2 oo —ho. 1 2
goo—e [1--2-'nk ]+ ) g :[I—Enk ]1—
bco __huo
2 1 oi 2 1
9,y =€ M ( élk Sz b0 , 9 =e m, L8+ z 0,04
= - - L (n 1
9,y = 611 * hl] z (B )IJ fzmm,t
R - - L (n 1
g- = 5,] hlj 2 (h )Ij tz nlnj +

With this metric taken into account the Dirac Lagrangian 7%%
guugaB)gpa +

+ 2(gMPgeB - gHogPB)gpT)

= - Lo a VB
£=- 1Y (9,9, (5,9,9) ((g"%

can be presented in the following form

~hwz o e’_lv}’ 2

¥ = e A (B + akck),

where A, B and C are complicated expressions depending on time and

space derivatives of the dynamical fields h:; (A and B) and
generating constraint (7) (Ck). - Therefore, consideration .of the
simplified model 'Lagrangian

Ej



’zv?.=.é;b*’ (aoh’)g;— &2 (a,n" ) - N'(13) |
. ) nh idea about the spectrum of this theory:‘;ag;angia?r(IB)
prc'Wl(iiZZsawith Lagrangian’ (i2) in the 1limit h,", « 1 but futh an
:z:zzrary h;it leads to the equat%oﬁs ‘ o ;
S o . éakhp)z a;zha . (aohb)z akzha -0 | - |
Oor E =tO, which'is equivélgnt to rotation of the

' ifh éolutions p = : v ‘ of tne
1 iht ne by m/4 and does not represent a.plang_wave in .the in
light con ot | ;

frame.

. 4. Cconcluding remarks

‘ ine cti f the
With the help of the genuine sympleqtlc_ structure o s
hysical (orbit) space the theory of linéarized gravitational fl?
to for ivisti riant form providing
is’ i ifestly relativistic-cova ; :
is formulated in a mani es ) istic-c ERA
ité‘ étfaightforward quantization with the same vtransf rmat
ith -grou
roperties of the quantized fields with respect to thg Lorgntz g.b p
i i ribes
iction as in the classical theory. The Lagrangian obtalned desc

i ~integral
an unconstrained hamiltonian system. Thus, in the path g

construction one should not encountgr diffiﬁ:liiesa2322:c:iiﬂri:: :zz
i e of the original gauge-fie agran S !
::22:::z§n::u;dditional conditions and,~censgqgent1y, tzf izzbizmo:f
. equivalence of different gauges, gauge‘amblgultles, ?hos E e eanay
‘The results obtained also point out the necessity of phy oy
motivated assumptions about the small metricfgensor componeniln;)g
neglected. Thus, with an arbitrary value of the Newton compo o

i i i becomes .
the existence of plane waves in -the excitation spectrum

problematic.

ould ike to "_ha‘n rofs. . .Kostant . Bennequil . 1

‘We w 1i k P f B.K ’ D.B n, C Duva

M GO’ t ay onv tions and
ot = and Ya.A.Smorodlnsky for fruitful conversatl

imulatin
C.Destri, A.V.Efremov, E.Onofri and A.B.Pestov for s?lmu g

discussions.
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