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1. Introduction 

The description of fundamental particle interactions with the 

help of gauge fields introduces superfluous degrees of freedom into 

the theory. This manifests itself in the singular nature of the 

corresponding Lagrangians or in the presence of constraints in the 

equivalent hamiltonian formulation /t/. All constrained systems can 

be described. naturally in terms of symplectic geometry /
2
/. However, 

there are two symplectic manifolds associated with each constrained 

system: the extended and the reduced phase spaces respectively. 

Classically, there is no formal distinction between .working in the 

e,xtended phase space with allowance for the constraint,s and solving 

the constraints, reducing the system and working in the reduced phase 

space. But .these two approaches are not necessarily equivalent on the 

quantum level and may engender real and significant physical 

di,fferences in the quantum behaviour of the system. For example, the 

reduced phase space method / 3
'
4

/ fails to give the correct results in 

·the cases where the degree of freedom corresponding to the constraint 

in pri~ciple could be quantum mechanically excited /S/• However, this 

is not the case we meet in gauge theories. On the other hand, there 

are examples where Dirac method /2
'
6

/ leads to negative-energy states 

due to a quantum .tunnelling into a classically forbidden (by the 
• : . rT/ • t d t /B/ th. .. ' 

constra1nts) reg1on • As has been po1n e ou , 1s 1s an 

artifact of the canonical quantization which originates in ~he choice 

of polarization incompatible with.the constraints.*) 

*)From a geometric-quantization point of view /
9

/ canonical 
quantization is equivalent to a· geometric quantization 'in the 
'vertical' polarization, the leaves of the latter being the fibers of 
the cotangent bundle projection T•Q ~ Q, where Q is the 
configuration space of the system. 
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In the present ,paper, a new quantization procedure for 
linearized gravity is proposed without gauge fixing as an initial 

preposition. The results obtained point out the importance of 

physically motivated assumptions about the small metric-tensor 

components to be neglected. The main peculiarity of our approach is 

that after reduction of the configuration space the theory is 

formulated and quantized in the space of gauge orbits of the 
dynamical fields. 

,.J 

2. Vertical paths, metric and Gauss' law 

Due to the gauge invariance the basic objects of the theory -

the gauge potentials - form an overcomplete basis. Gauge f'ields which 

are connected by an infinitesimal gauge transformation actually 

describe the same physical state. Thus the vector potentials are 

divided into equivalence classes with respect to the gauge group G 

action. An equivalence class repr~sents an orbit in the gauge--field 

configuration space. It· is rather the space 'of orbits than· th'e 

function space' of the gauge fields that ha·s to be viewed as a 

physical space. Transitions along the orbits correspond to pure gauge 

transformations. These vertical paths are of no physical" importance .. 

Physically significant are only horizontal paths, i.e'.· paths which 

are perpendicular to the orbits / 10
/. These paths describe the time 

evolution of the physical system. Fixing the gauge, one tries to 

solve the problem of constructing such horizontai· paths. In fact, 

this means that the reduced phase space (on which an unconstrained 

Hamiltonian can be defined) is identified with the vector potentials 

and their conjugate momenta in this gauge. It was first Gribov who 

pointed out that the gauge, regarded as a map from the physical 
• • • \) • /11/ ' f~elds to the space of vector potent~als, ~s s~ngular • the 

result being later generalized by Singer / 10/. 

This problem has one more aspect. In the path-integral quantiza­

tion. of gauge fields one starts from an initial configuration at t =0 

and integrates over all histories, i.e. all paths in the gauge-field 

configuration space. In such a way the genuine dynamical time 

evolution is not distinguished from the time evolution generated by 

gauge transformations. "An attempt to circumvent this difficulty 

consists in imposing a gauge condition / 12/; globally, however, this 

approach fails because garden-variety gauges are only locally unique 
/

13
/ Th. . d . ' ' h h t . • us, one nee s a prescr~pt~on for choos~ng t e pat s so as o 

eliminate the' spurious time development due to gauge transformations. 

2 

Using time as a. param~ter of the paths- in. the. bu_!}dle of ·all 
spatial potentials, we define the tangent of the path A(t) 

d -? 
=t = - A(t) 

dt 
In particular, for-vertical paths 

-? -? -? 
A(t) = g(t)-1A(t)g(t) - ig(t)-1Vg(t) 

with g(t) an element of G; the tangent vector is 

=t = 1ct) := ;~, 
where c = { c a } are the parameters of the infinitesimal transfor­

mation corresponding to g(t). Thus, vertical paths (i.e. paths along 

the orbits) have tangent vectors of the form 

=t = ;rp, ( 1) 

with rp an arbitrary Lie-algebra valued function. To eliminate the 

time development due to gauge transformations, one _should restrict 

the paths in the path integral to those that are purely horizontal. 

We can define the horizontal vector (} /10
'
14

/ a~ a vector' orthogonal 

to all vertical vectors =t with respect to the scalar product_< , > 
in the orbit space, i.e. 

<"i1, =t>· o for all vertical.=t's. 

Using expression ( 1) , we find / 13
/ 

0 = Tr J~x U (X) ~ D !p(X) 
I I j j - Tr I d 3 

x { D I' 11 I 1 u 1 ( x)] rp ( x), 

which implies 

D., (i =0 
I "'I j j ' (2) 

(where 11IJ is the metric in the orbit space) because_ of the arbitra­

riness of rp(x). A path AI (t) is horizontal if its t?ngent is 

everywhere horizontal and condition (2) leads to the .following 

·definition of a horizontal path in a. space with metric 11
11 

DI 11 1 J aoAJ = o. (3) ' 

Thus, the correct definition of 'the metric in the orbit space 

comes out to be very important fo~ singling_out the-horizontal path~. 
·The,dynamical-field.gauge-~rbit space is equipped ~ith'anatrir~l 

projective metric, wh.lch provides introduction of a syinpl:ect::ic 

structure therein and construction of Poincare-group representation 

with a nonstandard -action on·· the gauge fields /l
6

/ •. The canonical 

energy-momentum tensor obtained is symmetric and gauge invariant but 
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differs f~om the Belinfante. one, being its reduction on the equations 

of motion and thus the minimal ·symmetric energy-momentum tensor for 

the theory under consideration. A transition to independent physical 

variables is then possible that allows further canonical quantization 

of the theory with commutation relations for the new fields, which 
coincide with their classical Poisson-bracket ones. 

From the explicit expression for this metric and condition (3) 

it follows that it is precisely Gauss' law which provides a natural 

definition of horizontal paths. Integration only over this class of 

paths means that each physical path (i.e. path in which all 

gauge-equivalent potentials are identified) gives rise to a unique, 

everywhere horizontal path in the orbit space. This is the best that 

can -be achieved in the absence of a global gauge. An analogous 

statement has been proved in ref ./13/ for the special case of the 

temporal gauge. We do not fix the gauge but instead solve explicitly 
' -

_the constraint equation for A
0 

and concentrate on the structure of 

the orbit space for· thus reduced configuration space and especially 
on its nonstandard metric. 

The explicit solution of the constraint equation together with 

.the importance of the Belinfante tensor have been postulated in the 

minimal quantization method / 16
-

21
/. ·As we have seen, these steps 

have not only physical but also deep geometrical motivations:. 

3. Gravitational vaves in the linearized gravity 

Quantization of the linearized gravity gives an evidence about 

the importance of physically motivated assumptions for the small 

metric-tensor components to be neglected, w~ich concerns the 

existence of gravitational waves in the conventional understanding of 
this problem. 

Gravitational waves in Einstein theory are considered as quantum 

excitations of weak classical fields. In this context, construction 

of a gravity quantization scheme which is adequate to the problem of 
elementary excitations is important. From such a 

minimal quantization method with an explicit 

constraint equations / 16
-

21
/ is distinguished among 

of gravitational field quantization approaches n 2/ 

Consider Einstein theory 

s = J R .;-::g d
4 x 

4 

point of view the 

solution of the 

the large variety 

( 4) 

~ 

.I 

in a week field approximation 

g~v ·= ~~v + h~v· h~v « 1. (5) 

The Lagrangian then takes the form .(up·to O(h3 )-terms). 

~r 21 = ! ( h o h - h o h ) + h a a h - h a a h 
2 ~~ vv ~v ~v . ~v v cr ~cr ~~ v cr vcr 

~(2}(hoo) h (a a h - a 2h ) 
oo k I kl k }} ( 6) 

~r 21 (h ) = -2 a h (a h -a h J- a h (a h -a h ) 
ol o oi k kl 1 jj k ol I ok k ol · 

This action contains constraints which introduce a transverse • structure ~ 

~ 0~( 2} 

0 q 

oh 
a AT 

k k 
0, A T 

k 
0 ihki - akhjj ( 7) 

00 

with the corresponding equation of motion 

0~( 2} 

oh 

T 
0 q aoAk = a~(aihok- akhoi)· 

ol 
( 8) 

On the solutions of constraints (7),(8) Lagrangian (6) reads 

·,,r21 1 a~h "'(lkjlm) a h , 
._ = 2 lk t' ~ lm 

(9) 

f)(lkjlm) = olkolm + ollokm 
alai a a 

k m 
0 km 011 

t:. t:. 

where the projection operator f)(lkjlm) can be considered as defining 

the distance in the space of dynamical field .h
1

k orbits with respect 

to infinitesimal gauge transformations 

h --th +ai\ +ai\ lk lk I k k I 

From Lagrangian (9) canonical momenta are obtained 

pr
5
(X) = f>(rs j1m) aohlm(X), 

which obey the following Poisson-bracket relations 

{ h 1m(x), Prs(y) } = p(1mjrs)(x)o(x-y). 

The energy-momentum tensor is obtained to be symmetric and gauge 
invariant 

T (cJ =a h f)(lkj1m) a h -! g acrh f>(1kj1m) a h 
~V IJ. I k V 1m 2 ~V I k CJ' 1m • 

It does not represent a full derivative and gives rise to a set 

of Poincare-group generators in which boost generators induce an 

additional gauge transformation of the dynamical fields 
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' 1 
i[H ,h (x)] = (x a - X a )j)(rs jim)h (x) + (a - p + a - p ) 

Jo rs o I. l o · lm r A Is s ll rl • 

This additional gauge transformation leads to a time-axis rotation 

that ensures the relativistic covariance of this manifestly non­
covariant quantization procedure. 

The basis in this space can be defined as 

j)(lk jim) = ga ga 
lk Im 

I ..J 
e;k j)(lkjim) gb = oab 

Im 

ga p = 0 
l k I k ' 

where P1 k is the three-dimensional projection operator 

a a 
I k 

( 10) 

• 
plk 0 

lk ' 11 
plk 

a a 
et ek , eaP ef3 

I lk k 
oaf3, a,{3=1,2. 

Thus, the relevant polarizations are found to be 

g1 = e 1 e 
lk I k 

2 2 - e e 
I k 

and 

and for the independent physical variables 

ha = e;k V(tk jim) him 

g2 
lk et ek2 

the free two-component scalar field Lagrangian is obtained 

~ = ~ a~ha a ha • 
2 ~ , 

(11) 

( 12) 

hence, plane waves are present in· the excitation spectrum of the 
linearized Einstein theory. 

Therefore, 

reproduces the 
minimal quantization 

radiational-gauge 
of weak gravitational fields 

results together with the 
corresponding additional conditions which are in fact generated by 

the equat~ons of motion for the nondynamical fields h
00 

and h
01

• 

For the original theory (4) without any additional assumptions 

about the fields minimal quantization consists in excluding 

nonphysical degre~s of freedom through the exact solutions of their 

equations of motion (constraints). However, the coincidence of the 

linearized expansion of the action obtained with the one considered 

above (in the naive linearization scheme) is by no means obvious, th~ 
reason being the distinguished role of the Newton component g

00

• 

.Thus, assuming that condition (5) concerns only dynamical.fields h
1
k, 

we ·are forced to consider also ·components h . as small variables 
. . I o 

because of the constraints, but no restrictions are·· imposed on the 

6 

J 
'~ 

'X 
it 

Newton component h 
00 

In the minimal quantization method this 
component is considered as a classical one and assumption h

00 

« 1 is 

by no means motiv"!ted because we don't know the strength of the 

Newton potential the gravitational wave is interacting with. 

To better realize the difference between these two cases, let us 

consider a simplified problem, namely constructing the effective 

Lagrangian ~err(h1 k) by explicitly solving the constraint equations 

for components h and h in Lagrangian ( 4) already expanded over 
ok '· lk 

these small fields but in an arbitrary Newton field g
00

· 

To this end, we shall make use of the following expansion of the 
metric tensor g~v / 23

/ 

g = exp(i/2) exp(h) exp(~/2), 
where 

,.. [ hoo 0 ] 
~ = •' 

0 0 [ :k 
,.. 
h 

71k 

hi) 
] . 

As a result, up to second order in 71k and h
11 

terms, the metric 
tensor components take the form 

goo 

got 

gl) 

eh., [ 1 

,h •• 

e2 71k 

1 2 ] - 71 + ... 
2 k 

0 tk ~ h )1. ... 
2 lk 

g =e"""1 00 -'- [ 

_h., 
got = e 2 71 

k 

-o + h 
I) I) 

1 

2 

2 . 1 
( h ) I) + Z 71 t 7l) + ... 

g11 = -o
11 hi) 

1 

2 
( h

2
) + .!. 71 71 + ... 
I) 2 I ) 

1 

2 

2 
71k ] ~ ... 

0 +.!. h ).f. ••• 
lk 2 lk 

With this metric taken into account the Dirac Lagrangian / 22/ 

~ = - ~ V-g (a g ) (a g ) {(~agiJ(3 - _jl1Jga(3) _p(j + 
4 p ~v u a(3 v g· 

+ 2 (~pgaf3 _ ~agPf3)g~uJ} 

can be presented in the following form 

-h ..... 2 . h.Y2 
~ = e A - e· (B + akck), 

where A, B and c are complicated expressions 

space derivatives of the dynamical fields 

generating constraint (7) (Ck). Therefore, 
simplified model'Lagrangian 

7 

depending on time and 

h
11 

(A and B) and 

consideration of the 



!f. H = e-hot'2 (a ha)2,_ eh./2 (a ha)2 
0 k 

(13) 

provides an idea about the spectrum of this theory: Lagrangian (13) 

coincides with Lagrangian (12) in the limit h~ .. « 1 but with an 

arbitrary h~,it leads to the equations 

(a hb / a .. 2ha + (a hb ) 2 a 2ha = 0 
k 0 0 k 

·with solutions p = 0 orE= O, whic~'is equivalent to rotation of the 

light cone by rr/4 and does n~t represent a _plane wave in the initial 

frame. 

4. Concluding remarks 

With the help of the genuine symple~tic structure of the 

physical (orbit) space the theory of li~~arized gravitational field 

is formulated in a manifestly relativis.tic-covariant form providing 

its straightforward qu~ntization with the same transfo~ation 
properties of the quantized fields with respect to the Lorentz-group 

action as in the classical theory. The Lagrangian obtained describes 

an unconstrained hamiltonian system. Thus, in the path-integral 

construction one should not encounter difficulties connected with the 

singular nature of the original gauge-field Lagrangian such as the 

necessity of additional conditions and, consequently, the problem of 

equivalence of different gauges, gauge ambiguities, ghosts and so on. 

The results obtained also point out the necessity of physically 

motivated assumptions about the small metric-tensor components to be 

_neglected. Thus, with an arbitrary value of the Newton component goo 

the existence of plane waves in the excitation spectrum becomes 

problematic. 
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