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1. INTRODUCTION 

A dynamic basis of the hadron model111 is a relativistic 
string with point masses at the ends/51 . Until now no general 
solutions have been derived to the equations describing the 
dynamics of a relativistic string with massive ends, there
fore it seems to be of interest to consider a new mathemati
cal formulation of that problem which would promote the in
vestigation of its dynamics and derivation of new exact solu
tions. 

The action functional for a relativistic string with point 
masses at the ends 111 results in equations of motion of the 
string and in boundary conditions that physically represent 
the equations of motion of two masses interacting through the 
string. An analogy arises between that system and classical 
elect,rodynamics with charges in which the field is described 
by the Maxwell equations with charges and the dynamics of 
charges. interacting with the field is given by the Lorentz 
equations. Wheelear and Feynman 121 , considering the action to 
propagate at a distance with a finite velocity, have elimina
ted the field variables from the equations of motion in elec

trodynamics, and have formulated the interaction between char
ges in terms of retarded and advanced propagation functions 
when there is no absorption and emission of. the ele~tromagne
tic field. 

For a system of a .relativistic striQg with 1Jlasse5; at, the 
ends we may also utilize the princiPle of action a:t a. distan
ce to enable us to. find equations of motion in terms of tra
jectories along w-hich the .masses are moving provided the 
string variables are eiiminated~ It is cle#r that owing to 
the problem being relativistic, it cannot be for~lated wi
thin the equal.::time formalism. In the simplest nonrelativis
tic limit we arrive at a system.of two masses coupled by a li
nearly growing potential13·4·111 

In this paper, we derive equations for the curvature ki 

and torsion K1(r) of world traject9ries of masses tied by the 
relativistic string., The curvatures turn out to be constants, 
connected with the masses and tension of the. string,and ·they: 
together with torsions ....:i (r) determine the curves191 along 
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which the masses are~oving in the Minkowski space E~(t,x,y) 
Once these characteristics are known, we can determine the 
string coordinates x~-'(r, a) as functions of parameters r' and 
a up to shifts and rotations in the space E~. 

The equations define Ki(r) up to an arbitrary functions gi
ven in the interval (0- ") which allow us to solve the Cau
chy problem for that system of equations 161 . For constant tor· 
sions Koi admissible by the equations we obtain well-known 
helices along which the masses are moving; in this case the 
world surface of the string is a helicoid 15•61 in the Minkow
ski ~pace E~. In addition a new solution is also found with 
periodic torsions K1 (r) = Ki (r+ 211) in II; it describes a mo
re intricate motion than rotation of a stretched string in 
the (x,n plane. The coordinates of the string are expressed 
through elliptic functions with a real-valued period.As shown 
in ref.171 , to find in classical dynamics corrections to a li
nearly growing potential between quarks connected via a rela
tivistic string, it is necessary to know the solution to the 
boundary conditions for that system wh~ch co~t~ins transverse 
vibrations of the string. The solution that will be obtained 
meets this requirement and may be used for determining cor
rections to a linearly growing potential at the classical 
levef. 

Sections 2 and 3 are devoted to the derivation of equati
ons for trajectories of the String massive ends in the spa
ce E~. 

2. EQUATIONS OF MOTION 
AND BOUNDARY CONDITIONS 

Consider the dynamics of a relativistic string with point 
masses m1 and m2 at the ends. The world surfaceM~ with coor
dinates xl<(r, u), It= 0, 1, .•• , d-1 swept out by the 
strings in the course of motion through the Minkowski space 
is an extremal of the functional of the action11 •61 : 

(2.1) 

where the first term is the action of a massless relativistic 
string; ·Y is the string tension, r = u0 and o = ul are para
meters on the surface M!, and_ the derivatives are as follows: 
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'It ax!'(r,a) 
X = --~-----

0 T 
0 

•It ax~'(r,a) 
X =-----

aa 

dx~-'(r,ai(r)) 'It • .It . 
---------=X ( r, a. ) +a. ( r) x' ( r, a. ) , 

d r 1 1 I 

The motion of the string ends in the plane of the parameters 

r and a is described by the functions u1 ( r) , i = 1, 2. As for 

massless string, the action (2.1) is invariant under nondege
nerate changes of variables, .,. = ;(r, u) and a= Ci(r, a) on the 

surface M~, which allow. us to eliminate two of the three in

dependent components of the metric induced on~~: 

. tJ. ' v 

g .. = ~ ax __ . ~- . i , i = o. 1. 
lj iJV a Ui aU j 

(2.2) 

It is convenient to introduce isothermal coordinates r and a 

in terms of which the metric (2.2) is diagonal and traceless 

g +g 0 g -g -0 
00 11 = • 01- 10- • 

(2.3) 

The flat metric ~~v of the enveloping d-dimensional space-
time is taken with the signature 71 = ( +, -, -, ... -). 

Variation of the action (2.1) with respect to x~-'(r, a) 

gives equations of motion linear in the gauge (2.3) 

.. It It 
x (r, a) -x" (r, a) =0 

and nonlinear boundary conditions at the string ends 

d 
m-

2 dr 
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Varying (2.1) with respect to ai(r) we arrive at the same 
equations (2.5), therefore the functions a (r) (i = 1, 2) are 
not dynamical variables18' 
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A general solution to the equations of motion (2.4) and 
gaige conditions (2.3) is of the form 

>.1'-(r,a) =-}rw:(u+) +1/J~(u-)), u+=r+a, u-=r-a, 

where <#/(u+) and 1/J'.f"(u.:.) are two isotopic vectors, 

.p;
2
(u+) =0, .p:._2(u-) =0 

(2.6) 

(2. 7) 

tangent to the string world surface Mi. The conditions (2.7) 
may be satisfied if we represent 1/J~~ through the following 
expansions 

[ e~ + ,f 
0 I 

1 d-1 2 + 
- k f (u ) 
2 a= 2 a 

d-! 
~ + 

+lef(u)l 
a= 2 a a 

(2.8) 

where the constant basis eb , ef, e~ is formed from two iso
tropic vectors eg, ei, e~ = 0, ei = 0, (e0 e1) = 1 and (d -1) 

space-like .vectors e~', (e . eb) = -8 , (e0e ) = (e e ) = 0 
(a = 2, 3, ... , d- t"). the represei'i~ations' (2.8) fuhy deter
mine the world surface of a relativistic string without boun
dary in a d-dimensional space-time and allow us to construct 
its basic quadratic forms. 

In the space E~ with d = 3 and with f 2(u +) = f(u +) 
g

2
(u-) = g(u-) in (2.8) we obtain for the only nonzero 

nent of the metric tensor g 00 (2. 3) 

g = it2 (u+, u-) =2.(.p' (u+) .P' (u-)) = 
00 2 + -

A (u+) A (u-) 2 
+ - [ f(u+)- g(u-)] • 

4f'(u+) g'(u-) 
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As is known 111 , in a three-dimensionai space E 1 the Gauss 
equation for the world surface M1

1 of a rela~ivfstic string 
reduces to the Liouville equation for g

00 
= x2(u +, u-) 

. 2 + -
2x (u , u ) 

and (2.9) is the general solution to this equation. 

(2.10) 

Computation of the coefficients of the second quadratic 
form 

i, j = 0, 1 : a = 2, 3, ... , d - 1 (2.11) 

requires a special choice of the orthonormalized system of 
unit normals n~(u+,u-) 

a 

( ax n . --) =0, a . . 
au 1 

(n . n ) = -8 
a b ab 

(2.12) 

to the surface M i, which together with tangent vectors X11 

and x'/1 constitute a moving frame of reference. This can most 
easily be done ford= 3 when the field of normals (2.12) con
tains only one vector nM(u+, u-) that m~y be constructed in 
terms of the vectors X.IJ. and x '/l as follows: 

~ +- [x-x'l 
n (u ,u) =---·-' (2.13) 

·x 2 (u+, u-) 

where [X ·X']= cp.vpx_vx' , and cf1vp is a totally antisynnnet,... 
ric unit tensor. Inser€ing the relations (2.8) with d = 3 
into (2.13) and considering that [eo ·•11 = "2• [e 1 .e2] = -e 1 , 
[eo ·e2J =eo we arrive at the expansion of the riormal nfl 
over the isotropic basis e ~, e ~ , e ~ : 

2e~ + f(u+) g(u-) ei + [ f(u+) + g(u-YJ e~ 
(2.14) 

f(u ~ - g(u-) 

Using the expansions (2.8) with d = 3 and (2.14) for coeffi
cients of the second quadratic form b 21 .. = b.. of the string 
world surface M1, according to (2.11) w~JobtaPn 

1 + -
A (u+) - A_(u}. A+(u ) + A_(u ) 

boo= bu = 
2 

---. bo1 = b10 = 
2 

(2.15) 
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,The first equality of (2.15) shows that the strin~ world sur
face is minimal, i.e., its mean curvature is zero 91 , 

1 .. bOO-b! 
H~-b .. g 1J~ 1 ~o; 

2 1J 2goo 
(2.16) 

it is assumed that for any ~oint of the surface Mi there 
holds the condition goo = i< > 0 or f'(u+) g'(u-) > 0 and 
f(u+) # g(u-) as follows from (2.9). 

For any arbitrary dimensionality d of the enveloping space 
the condition of minimality (2.16) in the coordinate system 
(2.3) should be replaced by the relations 

b I ~ b I , a ~ 2, 3, .... d - 1. 
a.OO all 

(2.17) 

For a re~ativistic string with massive ends the coordinates 
of the minimal surface M~ obey the nonlinear boundary. condi
tions (2.5). Substituting (2.6) into (2.5) for the isotropic 
vectors (2. 7) and functions u; ( T) we get 

I'+·+ ,P.- ·-
1+ 1 d iff (u . ) u . + .p (u . ) u. 

( _1) m. _ { + 1 1 - 1 1 1 ~ 
1 dT v'..!..P'(u~.p'(u-)u+u.:-

2 + - I 1 (2.18) 

For each of value i = 1, 2, only d - 1 of the d equations 
(2.18) are independent of each other since the projections 
of the system (2.18) onto the vectors tangent to the surface 
M1 

1 
P.+ 1'-

'yf + _ 1/J~(u) +.P'_ (u ) 
(u , u ) ~ -------

2 

coincide. Thus, 2(d- 1) equations (2.18) contain, as 2d un
known quantities, two functions u. ( T) and 2(d- 1) indepen
dent components of the isotropic ~ecto'rs ifJ;IL expressed, ac
cording to (2.8), through A±, fa, ga which-are, as we see 
from the boundary conditions (2.18), functionals of u. (T) • 

1 
The functions u.(T) may be fixed from the invariance of equa-
tions (2.7) and

1
(2.18) under conformal transformations of the 

parameters u± = u±(u±), where u± are two arbitrary functions 
of one variable. So, the definition of system (2.18) may be 
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supplemented by imposing two auxiliary conditions fixing the 

parameters u+, u- orr, a on the surface M~. Taking the equa

lities 

to be gauge conditions, we fix the functions ai(r) in eqs. 

(2.18). Indeed, consider projections (2.18) onto normals n~, 

(a= 2, 3, ... , d- 1) and taking account of (2.6) and (2.11) 

we obtain 2(d- 1) equalities 

[ l+ai
2
(r)] ba/00+2ai(r)baiO! ~o. (2.20) 

At d = 3 n~ = n~, b 2lij = bi. and from (2.15) it follows that 

gauge (2.1~) fixes the asympt~tic coordinates r and a on the 

world surface of a relativistic stFing 

b00~(nx) ~o, b 01 ~(nx") ~A. (2.21) 

From (2.20) and (2.21) it follows that 

(2.22) 

Consequently, ai are constants and we put a 1 = 0 and a
2 

= rr. 

For d = 4 from (2.20) we may also derive eqs. (2.22) using the 

arbitrariness in choice of the field of normals n~ correspond

ing to the group of transformations SO( d- 2). 

Indeed, utilizing the expansions (2.8) for the vectors in. 

the gauge (2.19) we get 

•• 2 • 2 2 •.• 
x +X" ~-A ; (xx') ~o. (2.23) 

Therefore, when d :2:. 4, we may, without loss of generality, 

direct the normals n~ and n~ along two mutually orthogonal 

spacelike vectors xfi01 and xfb0 , respectively: n,:.t3 
= x.~00 and 

n~ x~01 . As a reSult, the Coefficients of the secon'ct quad

ratic form (2.11) become equal: 

b 2/00~ 0 ; b 2/01~ -h ~0! 
b - g. 

a\ oo- - v-x ~oo • 

b 
1 
.. ~ 0; a ~ 4, 5, ... , d - 1 • 

at) 

Here 
tion 
With 

semicolon stands for the covariant 

with respect to the metric tensor 

the latter equalities, eqs. ~2.20) for a 

7 

(2.24) 

differentia
(2.2). 
=4,,5, ... ,d-1 



·are identically satisfied, and for a = 2,3 take the form 

Hence, owing to (23) we obtain eqs. (2.22) and, setting ai 
= (0, ") the conditions 

2 2 X (r,O) =X (r, ") =0. ;00 . ;00 (2.25) 

The 2(d-1) functions r.cu+) and ga(u-), a= 2,3, ... , d- 1 
rema1n1ng upon gauge (2.19) .will obey two conditions (2.25) 
and 2(d- 4) relations (2.24) when d;:: 4, and also two projec
tions of the boundary conditions (2.18) on the vectors x~ and 
x;~ tangent to the surface. For projecting it is conVenient 
to employ the conditions (2.5) that with the use of (2.22) may 
be written in the form 

··~ ex x) ·~ ·r -:jj" ~ x (r,O) ----x (r,O) =-vx x· (r,O),a=O ·2 m X 1 

(2.26) 
··fl cx·x). Y -:-;a ~ X (r, 1r) ---x~(r, tr) =--yX x' (r, "),a="· • 2 m X 2 

Taking advantage of the conformal gauge (2.23) and equati
ons of motion (2.4) it is easy to show that the projections 
(2.26) onto x~(r, ai)' i = 1,2 vanish,' and projections onto 
x;JL(r, a.) give the equations 

1 

a 1 
-(. -
oa yx2(r, a) 

i 
) =(-1) 
ia=a. 

1 

(2.27) 

Ford = 3, eqs.(2.27) results in two equations for the 
functions f(u+) and g(u-), i.e. we arrive at the boundary va
lue problem for the Liouville equation (2.10). 

For d = 4 eqs.(2.27) are to be supplemented with conditions 
(2.25) for four unknown functions r (u+) ' g (u-) (a = 2,3). a a 

3. EQUATIONS FOR TRAJECTORIES OF STRING MASSIVE ENDS 
IN A THREE-DIMENSIONAL SPACE-TIME 

As has .been shown above, in a ]-dimensional space coordina
tes (2.6) of the minimal surface of a relativistic string with 
massive ends in the representation (2.8) and gauge (2.19) are 
defined by two functions f(u+) and g(u-) that obey the boun-
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dary conditions (2.27). Inserting the general solution (2.9) 
of the Liouville equation (2.10) into (2.27) we obtain the 
system of two ordinary differential equations with deviating 
arguments for the functions f(r) and g(r): 

In .£~:.2. 2 f' (r) + g' ( r) 
dr f'( r) + f(r) - g(r) 

d 

..i.1n.£i:L2 f'(+) +g'(-) 
dr f'(+) · f(+) -g(-) 

2.. lf(r) -g(r) I 

ml y'f'(r)g'(r) 
IAI 

- ..:L If(+) -g(-)IIAI, 

m2 y'f'(+)g'(-) 

(3.1) 

(3.2) 

where g(-) = g(r- rr) , f(+) 
t·o r - rr we get 

f(r + rr) • Shifting in (3.2) r 

f'(r) +g'(r-217) 

f(r)- g(r- 217) 

_ ..:r_ I f(r) - g(r- 217) I 
-.;:~;==-1 A 1. m2 .,.., 

y'f'(r) g' (~<- 2rr) 

Here will be used the notation g(r-2~r) =g(·). 
For m1 = m 2 = 0 the system (3.1), (3.2) has periodic solu

tions g(r) = f(r), f(r) = f(r+2~r) that according to (2.9) 
violate the minimality condition (2.16) at the points a = a; 
( i = 1, Z), and conversely, if one of the functiOn's, either 
f(r) 6r g(r), is periodic, the other is also periodic and m1= 
= m2 = 0. Therefore, periodic solutions to eqs.(3.1) and (3.2) 
can exist only for a massless string 181 . 

Further we may prove that the system (3.1),. (3.2 ')does 
not change under the ~i.Jebius transformation1121 of the func
tions f(r) and g(r): 

+ 
+ af(u ) + b - ag(u-)+b f(u )=>-----, g(u )=>----, ad-bc=l, 

cf(u+) +d cg(U-)+d 
(3.3) 

which is a consequence of the relativistic invariance of the 
theory since under the Lorentz transformations of vectors 
.p~M and also, according to (2.8), the vectors of the isotro
pic' basis e~ , ef, e~, the functions f(u+) and g(u) undergo 
the transformations (3.3). Therefore relativistically inva
riant ex.pressions, for instance (2. 9), in terms of the func
tions• f(r) and g(r) should be invariants with respect to (3.3). 

Now let us demonstrate that the minimal surface M~· is 
fully determined by the world trajectories x~(r,a.) of the 

1 massive erlds. To· ·this end, for d = 3 we··~ snall des-
cribe the trajectories' in terms of geometric invariants, cur-
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vatures k. and torsions K· .As is well-known 191 , these invari-
~ 1 1 

ants define a curve in a three-dimensional space up to its po-
sition. In general, the curvature of a space-like curve x~(r) 
is given by the following expression 191 

1 ( xii)2 
2 

k(r) ~--v --- ·,; . 
. 2( ) • 2 
X r X 

Substituting the l.h.s. of eqs.(2.26) for x~(r,a1 ) i = 
= 1, 2, into this formula and using the conditions (2.3) we 
obtain 

'Y (3.4) 

Torsion of an arbitrary space-like curve x~(r) is defined 
by the formula191 

Differentiating eqs.(2.26) with respect to 
the expressions for 'X~(r, a.) and 'X~(r, a.) 
arrive at the torsions of the trajectori~s 

. 2 2 
(x (r, a.)) 

1 

r and inserting 
( i = 1, 2), we 

which, owing to the definitions (2.11), (2.13) and condition 
(2.21), are reduced to the form 

A 
K ( r) ~ 

i . 2 
i=1,2. (3.5) 

x ( r, a.) 
1 

Substituting 
expressions for 

• 2 
X (r.' a 1 ) from (2.9) into (3.5) we obtin the 
tors1ons 

4f' (r) g'(r) 
K I ( r) ~ ------,

A[ f(r)- g(r)] 2 

4f'(+) g'(-) 

A[ f(+)- g(-)] 2 
or K (r-1r) ~ 4 f'(r) g(·) 

2 A[f(r)-g(·)] 2 

invariant under the transformations (3.3). 
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Formulae (3.6), (3.7) together with eqs.(3.1), (3.2) allow 

us to express the functions f( r) and g( r) in terms of the 

torsions <i(r) as follows. Calculating from (3.6), (3.7) the 

differences of the functions 

I f(r)- g(r) I 
1 (3.8) 1 

lf(r)-g(·)l 
2v' f'(r) g'(r) 2v' f'(r) g'(.) 

and then inserting them into the boundary conditions (3.1), 

(3.2) with allowance made for (3.4), we get 

d g'(r) 
-.-In--+< y'AK (r) 
dr f'(r) 1 1 

()f'(r) +v' g'(r)) = 2k j A ' 

g'(r) · f'(r) 1 K (r) 
- 1 (3.9) 

d g''·' J lf'(r) fg'(·) r-p;-
-ln-"---"'L-+<A< <-l <v'--+v--l =-2k J--. 
dr f'(r.) 2 2 g'(·) f'(r) 2 K (-) 

2 

where 'i i = 1,2 are the signs of the products f'(r)[ f(r)- -

- g(r)] and f'(r)[f(r) -g(.)], respectively. Tal<ing the lo

garithm and differentiating with respect tor, formulas (3.6), 

(3.7) with the use of (3.8) are transformed to 

_!_ln[f'(r)g'(r)]-< v'A< (r) 
dr 1 1 

(y' f' ( T) 

g'(r) 
_ v' g'(r) ) = K1 (r) 

!'(r) <
1
(r) 

(3.10) 

The sum and difference of (3.9) and (3.10) give the following 

system of equations for the first boundary 

2 _!_ ( 1 ) = [ j,;W _!_ ( 1 ) +K j A ] 1 --< JA<{.r) 

dr v'f'(r) 1 dr VK (r) . 1 K 1(r) v'f'(r) 1 g'(r) 
1 (3.11) 

d 1 .-- d 1 r;:- 1 JIA;(;) 
2---,-(--=--)=(VK(r)-( )-Kv'--1--+< 1 -

dr y'g'(r) 1 dr ~( ) 1 K (r) v'- I f' (r) 
VK

1
(r. 1 g'(r) 
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and for the second boundary: 
2...L ( 1 

dr 
)~(,jK (-)___c!_( 1 )-ky~]-1--<yAK(-) 

2 d 2 ( ) -- 2 v f' ( r) r VK (-) K - vf'(r) g'(·) 
2 (3.12) 

2...!.c 1 > ~[vd->___c!_< 1 l+k v-A-l 1 +< ,;~0. 
dr yg'(.) 2 dr VK (-) 2 K

2
(-) yg'(·) 2 f'(r) 

2 

And finally, eliminating 11 vf'(r) and then llv g'C•) from 
(3.11) we arrive at the equations which connect f(r) and g(r) 
with the torsion K 

1
( r) : 

( k 2 --r --- K r) 1 d A D(f(r)) ~D(fyAK (~) d~) +.:.:.L..:..(1---) -2k -v--
I 2 K2(r) 1dr K (r) 

I I 
(3.13) 

r ---- K (r) k2 d -A 
D(g(r)) ~D(fyAK (~)d~) +_L.:..-(1--L-) +2k -v--

1 2 2 I d 
K ( T) T K ( r) 

I I 

The same procedure applied to eqs.(3.12) allows us to express 
f(r) and g(f-2") = g(·) in terms of K

2
('r-") = K

2
(-) 

T 2 
D(f(r))~ D(J yAK ( -) d ~) + _K2_(-:2_(1- -k-2-) + 2k _d_V _A_ 

2 2 K2(-) 2 dr K2(-) 
2 

. (3.14) . 2 
T --- K2(-) k2 d A 

D(g(r- 217)) = D(fV AKi-) d~) + -- (1- ---) -2k -v -- . 
2 2() 2 drK(-) 

K
2 

·- 2 , 

In formulae (3.13) and (3.14) we made use of the Schwarz de
rivative invariant with respect to the transformations (3.3) 

f'" ( r) 3 f" ( r) 2 c.- d
2 

1 D(f(r)) ~---- ---( ) ~-2yf'(r) -(----), 
f'(r) 2 f'(r) dr 2 vf"W 

(3.15) 

Thus, the functions f( r) , g(r) and therefore according to 
(2.6) and (2.8) coordinates of the minimal surface xM(r,a) 
are defined by the torsions K.(r) of the world trajectories 

1 of a string with massive ends. 
Eliminating D(f) and D(g) from the four eqs.(3.13), (3.15) 

we obtain for the torsions K.(r) (i = 1, 2) the following 
1 
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two differential equations of second ~rder with shifted argu
ments: 

2 
T --- K (r) k 

D(f(r)) =D([y'AK (q)dq) +-1 -(1-~_2-) -2k -~y'~ 
I 2 K2(r) 1dr K (r) 

1 1 

T --- ( ) k2 . K - . 2 d . A 
=D((y'AK

2
(-)dq) +----L-(1---) +2k -y'-·--. 

2 K:(-) 2 dr K 2(-) 

(3.16) 

2 
T ---- K (r) k d A 

D(g(r)) =D((y'AK (q)dq) +-1 --(1--1--) +2k -v'--
1 2 K2(r) 1 dr K

1
(r) 

I 

2 
T --- K2(+) k2 d A 

= D(fy' AK (+) dq) + ---(1- ---)- 2k --y' ---. 
2 2 2( ) 2 d r K ( +) 

K
2 

+ 2 

(3.17) 

The system (3.16)-(3.17) is of fundamental importance in 
studying the world surfaces of a relativistic string with 
massive ends in the space E! . Fro~ this system it follows, 
for instance, that in the range 0 < r < " the torsions Ki (r~) 

are arbitrary functions and are defined only by initial con
ditions/G/ (by the initial position x~(O,~) and initial ve
locity x~(O, ~) of the string 0 .< u .< "). Continuation of the
se functions beyond the interval 0 < r .< " is made by the in
tegrals of eqs. (3.16) and (3.17), ·and two conditions of 
sm9othness at the ends ai = 0, rr for the continued .functions 
Ki(r) may always be fulfilled.with the four arbitrary con
stants. 

The simplest solution to eqs.(3.16)-(3.17).are ~onstant 
torsions Ki(r) = Kio when the ends of the string are moving 
along helices obeying the following conditi~ns1 1 

: .. 

k 2 k2 

K (1--
1

)=K (1--2-). 
10 2 20 2 

K 10 K20 

(3.18) 

In this case we obtain from eqs.(3.13) and (3.14) th~ equali
ties 

D(g( r) =D(f(r)) =D(g(r-2")), (3.19) 

which, in accordance with the property of the Sc~warz deriva-
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. tive1101 , imply that the functions f(r), g(r) and g(r- 2rr) 
are related by the Moebius transformation: 

g( r) 
a

1
f(r)+l\ 

y
1
f(r) + •\ 

(3.20) 

The constant coefficients in (3.20) ai ,fJi, ·Y;, o. obey the 
normalization condition a_i 0 i - {3i ·y i = 1 and two re\at~ons 
following from the boundary conditions (3.1) and (3.2 ). The 
world surfaceMi of~ relativistic string with massive ends 
turns out to be a helicoid in the space E~ 161 

4. CONCLUSION 

It has been shown that the world surface of a relativis
tic string with massive ends is completely defined by trajec
tories of the ends.In a three-dimensional Minkowski space E 1 

these trajectories are characterized by two geometric inva-
2 

riants, a constant geo~esic curvature and torsion that is ge
nerally a function of the evolution parameter T on the string 
surface. When the torsions are constant, our approach allows 
us to obtain a well-known particular solution describing the 
rotation of straight string with massive ends in a given pla
ne 15•61 • In this case the trajectories of motion of the mas
ses are helices in E~ and the surface is a helicoid. The mi
nimal surface is just the helicoid that represents a ruled 
surface generated by the motion of a straight line, therefore 
there are no transverse excitations of the string and this 
solution cannot be used for determining corrections to a li
nearly growing potential1111 • 

The authors are grateful to V.V.Nesterenko and L.H.Ryder 
for stimulating discussions of this paper. 
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