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1. Introduction 
An important problem in supersymmetric field theories is to explore under which condi
tions supersymmetry can be spontaneously broken. In theories with extended supersym-
metry (supergravities, superstrings, supermembranes, . . . ) it is often desirable to have a 
partial supersymmetry breaking, when some of the initial supersymmetries remain exact 
[1]. For a better understanding of this phenomenon, it is instructive to study it in simple 
models. 

Many characteristic features of the spontaneous supersymmetry breaking are revealed 
already in the simplest of supeisymmetric theories, supersymmetric quantum mechan
ics (SQM) [2]. In the present paper we describe a SQM model where a partial supersym
metry breaking is realized. 

A common starting point of all the studies in SQM is the ID Poincare supertranslation 
algebra which includes the supercharges Q'(i = I , . . . , JV) and the Hamiltonian H ' 

{<?',<?'} = 26» H (1.1) 

[Q\H] = o. 
Interesting examples of the SQM models with d bosonic and г fermionic degrees of freedom 
were considered in the component approach in [3], under the restrictive assumption that 
supercharges Q' are linear in the fermionic operators (correspondingly, the Hamiltonian is 
at most quadratic in these operators). In [4j the d = 1 models with no such a restriction 
were formulated in the framework of N - 1 superfield formalism. Recently, a general 
N = 4 superfield action of the A' = 4 , < / = 1 S Q M model based on superalgebra (1.1) was 
proposed [5]. 

In all these models, only full supersymmetry breaking is possible, not the partial one. 
The reason is that the relevant supercharges satisfy, both on classical and quantum levels, 
the standard Poincare superalgebra (1.1). The partial supersymmetry breaking in the 
SQM models of that kind is forbidden by the famous no-go theorem due to Witten [2]. If 
some supercharge, say Q , is nonzero on the vacuum state 

< Л 0 > * 0 , (1.2) 

which means that the corresponding supersymmetry is spontaneously broken, then 

< 0|Я|0 >ф О 

and , as a consequence of the relations (1.1), the property (1.2) should be valid as well 
for the rest of supercharges. So. either all the supersymmetries are unbroken or all they 
are broken. 

^Hereafter N muns the number of real snpcrrhartjes. Normally, one considers the SQM models with 
trta Л', wnere the supercharges ran be dirided into complex pairs [Q,Q)-

1 



On the other hand, in the N = 4 case, the simplest case where it makes sense to 
talk about a partial breaking, there exists a chance to circumvent the arguments of Wit-
ten's theorem. Namely, there appears a potential possibility to partially break N = 4 
supersymmetry provided its algebra is modified by a central charge Z. This new N = 4 
superalgebra can be written as 

{<?,<?} = я + г (i.3) 
{s,s\ = H-Z, 

all the remaining commutators and anticommutators being zero. Now, the condition 

does not necessarily entail a similar one for the second supercharge 5 3 . As a matter of 
fact, (1.3) means that the genuine N = 4 superalgebra is replaced by a direct sum of two 
N = 2 ones. 

The main purpose of the present paper is to demonstrate that this phenomer.oi >ccurs 
already in the simplest N - Л SQM model with one physical bosonic and four fermionic 
degrees of freedom (d = 1, r = 4). For this model we construct the most general N = 4 
superfield action which incorporates explicit breaking of symmetry with respect to both 
Sl'(2) groups constituting the full SO(4) automorphism group of N = 4 superalgebra 
(1.1). In earlier consideration [4], the breaking of only one of these SU(2)'s has been taken 
into account. It turns out that in the general case the algebra of N = 4 supercharges still 
coincides with the standard one (1.1) while applied to field operators, however, becomes 
precisely of the form (1.3) on the states: it involves a constant central charge proportional 
to the product of two SU(2) breaking parameters (both on the classical and quantum 
mechanical levels). Thus, in this SQM model there arises an opportunity to realize a 
partial supersymmetry breaking Л' = 4 —» N = 2 and we show that this is indeed the 
case for a certain class of potentials of the scalar field. For the existence of the phase with 
a partial breaking it is also crucial that the general Hamiltonian we deal with involves the 
terms quartic in fermionic operators (thus giving rise to the terms trilinear in fermions in 
the supercharges). 

The paper is organized as follows. In Sec.2 we present the general superfield action of 
Л' = 4 SQM. Its interesting peculiarity is that it admits two equivalent forms related by 
a duality transformation. The kinematic off-shell constraint on the basic superfield and 
the equation of motion of the latter turn out to be dual to each other. In Sec.3 we go to 
components and give the explicit expressions for the supercharges and Hamiltonian via the 
physical fields. We start with the classical description and then carry out quantization. 
Sec.4 is devoted to a general characterization of the phases with broken and unbroken 
supersymmetry which are present in our model. We deduce the general conditions on 
the potential of the scalar field under which total or partial breakings of supersymmetry 

JAnalogous reasonings were given in [6]. 
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occur. The cases with the partial breaking {N = 4 -» N = 2) are treated in Sec.5. 
An example of the potential giving rise to such a breaking is worked out in some detail. 
In Sec.6 we perform a duality transformation to a complex chiral N = 4 superfield and 
demonstrate that our d = 1 model can be embedded into the arising N = 4, d = 2 SQM 
model as a closed sector corresponding to a fixed value of certain extra U{\) charge which 
in the dual formulation becomee the central charge of N = 4 ID superalgebra. In turn, 
this d = 2 model proves to follow, by the Scherk-Schwarz type dimensional reduction, 
from some N = 2 2D К abler sigma model. 

2. Superfleld action of N = 4, d = 1 SQM 
In this Section we deduce the most general superfield action of JV = 4, d = 1 SQM at the 
classical level. 

Our starting point is the structure relations of JV = 4 ID Poincare supersymmetry in 
the isospinor notation 

{<?».,<Ы = 2(„,e.tH (2.1) 
[H,Qaa} = 0 

where a = 1,2; a = 1,2 are the doublet indices of two SU{2) groups which form the 
SO(4) ~ SUi(2}x SU11{2) automorphism group of N — 4 superalgebra. The supercharges 
Qaa can be realized as differential operators in N - 4 ID superspace Д1''1 = {г} = {t,8"'} 

г = ( r . O 
it = -ipt"e„ = i{p"Q„)t (2.2) 

Г = iia' = i (/'<?,») в°° 

Q- = " ' ( e f c - ' * • • £ ) . ( 2 3 ) 

Let us now consider a real scalar superfield <j>{z) in this superspace. It transforms 
under N - 4 supersymmetry as 

{*(;) = ф\г) - ф(г) = -i(n"Q„)<l> = -»"Da.4> + 2,„а'8аа^ф , (2.4) 

where я я я 
D™ = 0$o7 + ''"Э? ' P « - <°м} = 2 l ( « » f « » ^ 

are covariant spinor derivatives. The detailed analysis of the component structure of 
ф(г) shows that this superfield is reducible. An irreducible representation of .V = 4 ID 
supersymmetry involving the scalar field 0(f) = ф(г}\>-а may be singled out from ф(;) 
either by the constraint 

D(<..D?)* = «nod (2.5a) 
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or by 
D^.Dty = A.4, (2.5b) 

where maf and A.i are some arbitrary constant vectors in the group spaces of SUi(2) and 
SUn{2), respectively. Note that the constraints (2.5a) and (2.5b) actually lead to the 
supermultiplets equivalent on shell. As we shall see later, these are related to each other 
by a duality transformation. So, we may restrict ourselves to considering the constraint 
(2.5a). When maf ф 0, it breaks 5(7/(2) subgroup of the SO(i) automorphism group 
down to У;(1) С SC/j(2) and leaves in the superfteld ф(г) 4+4 independent components: 

*l.=o. * . i s *WiVL e > iV« = DaMe=a . (2.6) 
Let us turn to constructing the most general action of N = 4, d = 1 SQM. We will 

deal with only one superfield ф(г), because the adding of more supernelds would increase 
the dimensionality A of the manifold of scalar fields. Thus, the most general d = 1 action 
can be written as 

s = i j dttfe {AM + ва'«^М) + в"^ва>(ф) + в"в(в$св:с(ф)}, (2.7) 

where А(ф), \,^ф),Ва/1{ф) and С(ф) are some functions of the above superfield ф, arbi
trary for the moment'. Requiring the action (2.7) to be invariant under N = 4 supersym-
metry transformation (2.4) puts severe restrictions on the functions X„iM<B<,gM and 
С(ф): 

KM = В'^ф) = CM = 0 =* (2.8) 

ЫФ) = *.» • Ф, BotM = Ba, • 0, CM = С (2.9) 
with A.t,£„0,C being constants. We can omit in (2.7) the constant term 6* • С and the 
terra в°"в^Ва) • ф, which, after integration over d49 and making use of the constraint 
(2.5a), is reduced to the shift of the. component Lagrangian by a constant Ва$та*. So, 
the action (2.7) takes the following most general form 

s = lj dtd<e {AM - V * X » • ф] , (2.Ю) 

where A(.i] is a constant vector in the group space of SUn№) С 50(4). 
The action (2.10) supplemented with the constraint (2.5a) reveals interesting pecu

liarities. First, it includes the term which contains explicit $'s. This term actually does 
not break N - 4 supersymmetry as it could seem. After passing to the prepotential K*° 
which solves the constraint (2.5a) 

ф = D^D^V*' + | в ' ' » > . . (2.11) 

3The terms containing odd degrees of Grassmann variables f)nt necessarily include the spinor deriva
tives Da,4> and ao can be reduced to the form (2.7) after integration by part. 
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it can be written as a kind of the Fayet-Iliopoulos term 

S = ljdtdte{AM-1-\.iVi} (2.12) 

Now prepotential V°b is unconstrained in the action (2.12), so one may vary it to get the 
equation of motion for ЛГ = 4, d = 1 SQM: 

D . j . i ^ A ' M = A.,. (2.13) 

One more peculiarity of the action (2.10) and the constraint (2.5a) is the presence of two 
constant sets of parameters (m„^,A.»), which in general (when maf ф О, А.» ф 0) break 
both SU[,n(2) subgroups of the SO(4) automorphism group 

SO(4) ~ SV,(2) x SU„{2) -> V,(l) x U„(l) . 

Note that in our approach, when we start with constraint (2.5a), the meaning of these 
two constant vectors is essentially different. The first constants (m ap) are purely kine
matic (as it may be easily seen from (2.5a), {ma/) enters into ф{г) as a dimension 1 
constant compon'it contracted with the #-monominaI в°'в*), but the second ones (A„t) 
are dynamical, because they appear in the action (2.10). 

The roles of parameters map and A„j are reversed after passing to the dual form of the 
action (2.10). To perform the duality transformation, let us insert the constraint (2.5a) 
into the action with the help of a Lagrange multiplier superfield paf(z): 

S = IJdtd^^AM - ie-eiA.t* + p" (Dla.D;^ - m„,)} (2.14) 

Varying pa>, we come back to (2.5a) and (2.10). On the other hand, ф is unconstrained 
in the action (2.14) and so one may vary it before varying paK As a result, one gets the 
following equation 

л'М - \»°°е^ - a f „ J W = о. (2.15) 
Denning the new ЛГ = 4 superfield 

u(z) = A'(4(z)) (2.16) 

it is easy to check that u(z) denned by (2.15),(2.16) satisfies the following constraint 

D^.Df)U{z) = A., . (2.17) 

After expressing ф through u from eq.(2.16) and substituting (2.15) back into (2.14), we 
arrive at the dual form of the N - 4, d = 1 SQM action 

S*. i= £ / л * в { А ( « ) - J v - e f m . , . ^ (2.18) 
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where 
i (u ) = А(ф(и)) - ti*(u) (2.19) 

and и(г) is constrained by eq.(2.17). Evidently, Aaj acquire now a status of kmematical 
constants, while map become dynamical. In the next Sect, we shall see that map and A0j 
enter into the physical component action on equal footing as the coupling constants. 

We close this Section with several comments. 
First, the basic peculiarity of our N = 4, d = 1 SQM action is the explicit breaking of 

symmetries with respect to both SUiji{2) subgroups of the 50(4) automorphism group. 
This opens up a way to realize a partial (N — 4 -> N = 2) supersymmetry breaking, 
which is forbidden in ordinary scheme, owing to the possibility of central extension of 
the N = 4 ID Poincare superalgebra in the present SQM model. We closely inspect this 
situation in Sec.3 and 4. 

Second, our action and constraints are very simple when written in terms of N = 4 
superfields; on the contrary, finding and checking the invariances of the component action 
or the action written in terms of N — 2 superfields represent a more difficult task. The 
N = 2 superneld action of N = 4, d = 1 SQM was constructed in [4], but the po libility 
to simultaneously break two SU{2) automorphism symmetries was not noticed there. The 
N — 4 superneld и(г) in explicitly в expanded form subjected to the A„i = 0 version of 
the constraint (1.1) was used in [5] for setting up an action of N = 4 SQM. However, no 
manifestly supersymmetric superfield form of the Fayet-Diopoulos term was given. 

Finally, as a simple example, we recall the case of JV = 4, d = 1 superconfbrmal 
quantum mechanics [7]. This system corresponds to the specific choice А„ь = 0 and 
А(ф) - 0log0 in (2.12),(2.5a) 

SSCQM = lf dtd'e tfiogtf 

D<aaD'e)6 = maf . (2.20) 

In this case, the equation for the dual-transformed superfield и(г) (2.16) can be expUcitly 
solved 

u(i) = А'(ф) = log?* + 1 =* ф - exp(u - 1) (2.21) 

Thus, the dual form of the action for N - 4 superconformal quantum mechanics is as 
follows 

SiSqu = £ / dtd'<> {е*Р<й> - \»'«Ь.™а/1й} (2 22) 

where 
u = u — 1 -

By this we finish the superfield description of N = 4, d = 1 SQM and turn to the 
component consideration. 
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3. Component action, Hamiltonian and SUSY alge
bra of N = 4 SQM 

The action for N = 4, d = 1 SQM in terms of the physical component fields Ф and фа„ 
(2.6) can be easily obtained from the superfield action (2.12), exploiting constraint (2.5a) 
and eliminating the auxiliary field А^ц by its equation of motion 

5 = Tfdt{A"£+'-A»4aJ"+\[j; + m'A""j+A'"marf°'4,>+ (3.1) 

For bringing the kinetic terras of the fields ф,фа, into the standard form we pass to the 
new field variables x,\a<, and new potential W(x): 

X«. = ^А>-(ф)фаа 

T- = / (3.2) 

<** Лад W(x) = ф(х) 

after that (3.1) is rewritten as 

ИГII 1 / W " \ ' 
Г"Х Xô a* - ^rl Ty7 I Xa«Xt X X) 

The physical component action (3.3) is invariant under the following N = 4 supersym-
metry transformations 

W" i 
«X«. = 'jy7/i'"xl.«X/>. + »>e»^JHr4 jjj77W.m|[ - ip„. , (3.4) 

«i = - i>°*x a . 

which directly stem from the superfield transformation law (2.4). 
From now on, to make further formulas more readable, we set the coupling constant 

7 equal to 1, keeping in mind that the dependence on 7 can be restored at any step by 
dimensionality arguments. 

Being aware of the transformation law (3.4) of the component fields jr, *„„, one may 
compute, by the standard Noether procedure, the classical supercharges <?£', which gen
erate N = 4 SUSY: 

1 W" 
Qi. = ipX« ~ W'X\X.t - n»Jx».̂ F7 + 3Jy7xlx7iXl . (3.5) 
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With respect to the Poisson brackets the supercharges (3.5) form the following N — 4 
superalgebra 

{Qt,Q%} = 2tafe«Hd + 2mafX* (3.6) 

[B",Qil\ = С 
where the classical Hamiltonian H'1 is given by 

Я- = d-l^WV+^-^^-xl (3.7) 

i ^ l a» 4 • 1 I ^ " 1 о 01 a 
т 2 •** *" + jo \ №" I *aoXiX Xj . 

The most exciting feature of the superalgebra (3.6) is the presence of the central charge 
~ mX. This central charge appears already at the classical level and is proportional to 
the product of two SU(2) breaking parameters u i e j , A„t. So, it is not zero only provided 
both SUIJI(2) subgroups of the SUSY automorphism group 50(4) are simultaneously 
broken. 

Let us proceed to quantization. We follow the standard routine and replace the Poisson 
brackets by the Dirac ones 

[p.*] = ' (3.8) 
{XomXes} = fo^e.i . 

The further steps are to put the products of spinors in supercharges QQa (3.5) and Hamilto
nian Я (3.7) into the normally ordered form, so that the original N = i SQM superalgebra 
(3.6) is reproduced. It is straightforward to find that appropriate quantum supercharges 
and Hamiltonian are given by the following expressions 

1 IV" SW" 
0'« = ' P W " rV'Aix- - W,n*ixt. + 3 ^ 7 x i x , « : - J^JX» (3.9) 

+ i l ( ^ ) [x«xixnx}-s]. (зло) 
It should be stressed that the central charges in (3.6) are not renormalized upon quantiza
tion. Actually, all the freedom in Qaa and И associated with passing to normal ordering 
is completely fixed by requiring the second of eqs.(3.6) to hold in the quantum case. 

Before closing this Section we briefly discuss the main peculiarities of the model 
(3.9),(3.10). 

First, as was already mentioned, the presence of a non-zero central charge in super
algebra (3.6) opens up a possibility to realize a partial spontaneous breaking of N = 4 
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SUSY. Indeed, the structure of (3.6) implies that the basic condition for the existence of 
ЛГ = 4 supersymmetric ground state 

0o.|O > = 0 (3.11) 

can never be satisfied if пцар) / 0 and A(«j) / 0 simultaneously. So, in this case N = 4 
supersymmetry is necessarily broken and, as will be shown in Sec.4 , one can find the 
potentials W(x) for which N = 2 supersymmetry is still exact. The reason why no 
contradiction arises with Witten's no-go theorem mentioned in Introduction is just the 
non-zero central charges in superalgebra (3.6) (see discussion of this point in another 
context in [6]). 

Second, it is amusing that at the classical level the bosonic self-interaction ~ \1(W)' + 
т$ш is possible only if Л ф 0 and/or m / 0, i.e. when at least one of two SU(2)'s is 
explicitly broken. This is not so for the quantum Hamiltonian (3.10) which contains an 
effective bosonic self-interaction ( | £ T I • Note that the expressions (3.9),(3.10) are form-
invariant under the change W —» ^т, А «-» m and the simultaneous permutation of SU(2) 
indices a «-» a, thus indicating that the two SU(2)'s actually enter into the game on equal 
footing. 

finally, it turns out very essential that our general supercharges Qaa (3.5),(3.9) are 
nonlinear in fermions \ o a , containing the terms trilinear in the latter. Correspondingly, 
the Hamiltonian involves a term quartic in fermionic operators. In previous considerations^], 
the supercharges were as a rule assumed to be linear in fermions that corresponds to lim
iting to the Hamiltonians quadratic in fermions. For the case IV = 4 this limitation places 
very strong restrictions on the possible potentials W : ^7 = consf (W = cje"* + Cj). 
No such restrictions emerge in the general situation we deal with: the potential W can 
be an arbitrary function of x. Just due to this freedom we may choose W so as to ensure 
partial supprsymmetry breaking (see next Section). 

4. Phases with exact and spontaneously broken su
persymmetry 

In this Section we study which phases exist in our model and formulate the conditions 
under which one or another phase comes out. As usual, these phases are characterized by 
different symmetry of the ground st&te. We are not going to analyze in full the spectrum 
of states in each case; our consideration will be limited to the classification of the ground 
states. 

To simplify the analysis, it will be convenient to pass from the manifestly SO(4) 
covariant notation to the notation with only one of two S f (2 ) ' s being manifest, e.g. 
SC/;i(2). Correspondingly, we represent the SO(4) vector Vo« as a pair consisting of the 
SUn(2) spinor Xo and its conjugate \~„ 

X*a = (Л..Х.) - (4.1) 
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Also, without loss of generality, we choose the basis in the group spaces of SUj и(2) in 
such a way that т ( а ^ ) , А(ац are diagonal 

П° = ™ ( 0 - 1 ) = mM< A - = A ( ' 3 ) ' • (4.2) 

In this basis, the supercharges (3.9), Hamiltonian (3.10) and the (anti)commutation rela
tions (3.6) are as follows 4 

, , , „ „ m W" ,_ W» 
Q, = ipx. ~ 4°')ix№ - p ^ x . - wf.x'x* - 2Й77Х» (4.3) 

m W" WM 

Q° = -ipf-tfiW-wX'+wX'i'-^f 

в = ^ + p X'(W')' 
2 2(№")s 

+ К й , " ^ ( х х " " 1 ) + и " д ( ^ , _ 

-\(Щ'[^-2хх + 1] (4.4) 

{ « . , « ' } = 2«.Я + 2тА|>»)1 (4.5) 

{«.,«»} = {<?*,<?'} = [#,<?„] = [Я, <?"] = 0 . 

Note that (4.5) coincides with (1.3) upon identification Qj = Q,Q? 5 5. 
For the SQM model (4.3)-(4.5), in accord with the general consideration (see, e.g. [3]), 

exact N = 4 supersymmetry implies the existence of a square integrable wave function of 
the ground state |0 >, subjected to the condition 

< 3 . | 0 > = C | 0 > = 0 . (4.6) 

By inspection of the relations (4.5), one immediately concludes that in the case m.\ ф 0 
it is impossible to obey (4.6) simultaneously for Q, and Q 2 . As was already mentioned, 
the reason is the appearance of a non-zero constant central charge in (4.5). Thus, in the 
present model we have two radically different situations depending on whether m\ equals 
zero or does not. Further, we will characterize both these cases. 

I. mk ф 0 
In this case N = 4 supersymmetry is spontaneously broken. There are two 

different patterns of such a breaking 
1л. Partial brtakina N = 4 -» N - 1. It occurs provided either the 

equation 
Q^O >= <?'|0 >= 0 (mA < 0) (4.7a) 

*The natural position of indices is as follows: \ . , %* = ( j r a ) f . Indices are raised and lowered with the 
help of antisymmetric tensor < e *(t l a = —Сц = 1); ixi ihe bilinear forms of spinors the first index is always 
assumed to be in the natural position, e.g. i 3 = x*X**i2 - XeX*> e t c -
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Qj|0 > = Q'\0>= 0 (mA > 0) (4.7b) 

have at least one solution' (different signs of mX in (4.7a) and (4.7b) are 
selected by the standard positiveness arguments). In this case one of two 
N = 2 supersymmetries (Qi,Q' for (4.7a) and Qi,Q7 for (4.7b)) is still exact, 
while the remaining one is spontaneously broken. 

lb. Total inpersgmmetry breaking It comes out if no solutions of eqs. 
(4.7a),(4.7b) exist. 

II. mA = 0 
No central charges are present in (4.5) in this case. So, in accordance with 

Witten's theorem [2], supersymmetry is exact if the equations 

Q . | 0 > = Q°\0 > = 0 (4.8) 

are solvable, otherwise it is totally broken. 

In the next Section, using the explicit expressions (4.3) for the supercharges Q,,Q°, 
we deduce the conditions on the SQM scalar potential W under which eqs. (4.7),(4.8) 
can be solved. 

In the rest of this Section we dwell in brief on the peculiarities of realization of the 
SUSY automorphism group SO(4) ~ SC/j(2) x SUn(2) in the present model. 

The groups SUiji{2] are realized only on spinors \a, x°- Assuming the standard Dirac 
brackets for \ a 

{x.,x'} = *J 
the generators of these SU(2) groups are 

(4.9) 

FVom the expression for the quantum Hamiltonian (4.4) it follows that В and Bz always 
commute with Я (irrespective of values of the breaking parameters A and mj.Thus, these 
three operators В,Вг and Я can be simultaneously diagonalized. Correspondingly, the 

SV,{2) SU„(2) 

•в=Ях.,г] 
в+ = kx* 
B- = W 

в. = \х.('№ 

! [В,ВЛ] = ±2В± 

\ [B+,B.] = B [Bi,3j] = tiil,Bl 

5 He nee forth, under the "solution" we always assume a square integrable one. 
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eigenfunctions of Я have definite U(l) charges Ь and b». However, it is easy to find from 
the explicit expressions (4.9) 

(В) 5-В = 0, Bfr = J [l - (B)'\ _ (4.10) 

The first of these equations implies that В has as the eigenvalues only the numbers 0, ±1 . 
The Casimir operator C, = \(B2 + B+B. - 2B) for В,В+,В_ given by (4.9) is reduced 
to Сj = | B 3 , so it takes only the values 0,3/4 that correspond to the singlet and doublet 
representations of 5(7/(2). On the other hand, on the same states the Casimir operator 
Cjl = fl,fl, of SUu[2), in virtue of (4.10), takes the following values 

B\ > = 0 =* (B.B,)| > = f | > 
SU,{2) singlet SU„(2) doublet 

(4.11) 
B\ > = ± | > => (B,B,)| > = 0 

SUj{2) doublet SUn(2) singlet . 

Thus, in our N = 4 SQM any state with a definite energy (including the ground state) 
transforms as a do.ibl»t with respect to one of two SU(2) automorphism groups and as 
a singlet with respect to another SU{2) group. In other words, one of these SU(2)'a is 
always broken (if m = A = 0, this breakdown is purely spontaneous, because in this case 
Я commutes with all the SU{2) generators). 

5. Partial supersymmetry breaking 
In this Section we inquire under which choice of the SQM potential W (x) our model 
exhibits a partial supersymmetry breaking. 

As we know, this phenomenon occurs only if mX ф 0 in (4.5). Then, from the N - 4 
superalgebra (4.5) 

{<?,,<?'} = 2 Я + 2 т А (5.1) 

{Qi,Q} = 2H-2m\ 

it follows that one may keep exact only one of two N = 2 supersymmetries, by requiring 
either 

<?i|0, >= QMOJ >= 0 (mX < 0) (5.2) 

or 
Qj|02 > = Q 2 | 0 , > = 0 ( m A > 0 ) . (5.3) 

Without loss of generality, we shall deal with the conditions (5.2) because the solutions 
of eq.(5.3) are obtained from those of eq.(5.2) (if exist) by changing A —» — A. Representing 
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the supercharges (4.3) as 

m W" W" 
<?„ = i P X . - A(<r s ) ixiW - — x. + ^ X . + w x . B (5.4) 

m W" W" 

we get the following convenient expressions for Qi and Ql 

<?• = Ц . Р - А 1 Г - - + — + W 7 B ) (5.5) 

<?• = х - . ( _ , р _ д и г - - _ - _ + _ в ) -

Further, looking at (5.1), we conclude that |0[ > is the eigenstate of Я with the eigenvalue 
- m - \ 

Я | 0 , > = -m\\0i > or ff|0i > = 0, Я = Я + mA . (5.6) 

It appeared convenient to change the scale of energy in (5.1) by defining the new Hamil-
tonian H = H + m\. Then |0j > subjected to (5.2) has a zero energy with respect to 
H. The generators В and B3 commute with the newly defined Я as well as with Я , so 
H , B , B j still form a complete set of mutually commuting operators and \0t > should be 
simultaneously an eigenstate of В and B j . 

Now we shall closely follow Affleck [8]. Let us introduce two types of the states: ]£] > 
which are totally empty with respect to the fermions x i , i.e. 

X, |B, > = 0 (5.7) 

and the totally filled ones \F\ > 
X ' | f i > = 0 - (5-8) 

In the end of previous Section we have shown that any state which is an eigenfunction of 
the 17(1) charges В and B j has the structure 0 ® j or j ® 0 with respect to the group 
SE/j(2) x SUn(2). Let us list, in accord with this property, all the possible states \Ei > 
and \Ft > , denoting by the subscripts / and II the singlets of SUi(2) and 5 £ 7 J J ( 2 ) , 
respectively. 

| £ | > i : 
\ ?x№ > I = | B I > I 

=> fl|E, >/= 0 
B,|E, >,= - £ !£ ,> , 

(5.9) 

|F, >/: \ XiX2\F, >/= |Fi >i 
=>• 

B|F, >,= 0 
B,|F, >,= i |F, >, (5.10) 

\E, >„: 
1 Xi\E, >,,= 0 = * • 

B\Et >u= |E, >;< 
Bj|E, >;; = 0 

(5.11) 

\F, >„: I x'|fi >n=0 
1 *' |Л >u=0 =* B|F, > „ = -\F, >,, 

B,|F, > „ = 0 (5.12) 
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What remains to do is to specify the ^-dependence of the states |E, > / I I , |F, >t,n under 
which the equations 

Qi\Ei,Fi >i,i/= О, <?'|£i,F, >,,,,= 0 

are satisfied. Using the expressions (S.S) for the supercharges Qi,Ql and the definitions 
(5.9)-(5.12) it is easy to establish the relevant differential equations and to indicate their 
solutions 

|£i >i 

<?,|F, >/ s 0 

|B, >, = • / iV 7 e A " , + - v |B, >, (5.13) 

|Fi >i: 

04F, >/ = 0 
Qi\Fx>, = ° = ^ ( - ^ - A H " - ^ + 5 r ) l F ' > ' = ( ' 

\Fj >, = -JW'e-^-'v \F, >, (5.14) 

l-Ei >n-

0i|Bi >J; s 0 

( J №11 \ 

S - > W " - i v 7 + 2 i v 7 j l £ ' > " ^ 
|£,>„ = -±=е™+-*\Е\>„ (5.15) 

IF, >„: 

« l |F, >„ s 0 

( J _ TAT* \ 

14 



|Fi>„ = jfp-*W-V\Fi>„. (5 16) 

Here 

УМ-ЩЦ < 5 Л 7 > 
and the states with tilde do not depend on x (these are the corresponding integration 
constants). 

Note that we have defined an auxiliary potential V(x) in (5.17) by reasons of conve
nience, in order to obtain the solutions of the above equations in a generic form. In each 
specific case, for getting the explicit form of the solution one needs to solve (5.17) for 
K(«). 

So, the formal solutions of eqs.(5.13)-(5.16) exist for any potential №'(x). However, 
the important requirement to be satisfied by the ground state is its square integrabilit; 

f°° dx < A\A >Ф oo , (5.18) 
/ - 0 0 

where \A > stands for any of the states (5.13)-(5.16). This condition places the following 
restrictions on the admissible potentials W(x) 

Г dx\e±nw"mVW'\ ф ос (5.19) 

and/or 
Г dx\e±,xv*'nVV'\фoo • (5.20) 

J-OO 

rs from (5.2) by the simple change A —* -A in the latter, 
; eventually written as 

Г dx\e2™+'mVW'\ ф oo (5.21) 
/-oo 

Since the solutions (5.3) follows from (5.2) by the simple change A —> -A in the latter, 
the conditions on W[x) can be eventually written as 

and/or 
r , A r | e " ' , , + , - v V ' | * o o . (5.22) 

/-oo 
For the potentials satisfying (5.21 )-(5.22) (with m ф 0 and А ф 0) there is a partial 
supersymmetry breaking phase in the ЛГ = 4 SQM model we consider. 

An analogous study of the restrictions on W[x) which allow N = 4 supersymmetry to 
be exact (with mX - 0) leads to the following constraints 

m = 0, A = 0 : 

or (5.23) 

IS 



C^F't»)!*» 

т = 0,А ф 0 : 

r o c d x | H " ( I ) e " W N o o 

/ - ш ^ 1 » » " ( * ) е - , 4 , , , | т < о о 

(5.24) 

m # 0, А = 0 : 

r „ d x | n x ) e - ; " " v | ^ o o , 
(5.25) 

where V(i) is as before defined by eq.(5.17). Otherwise, .V = 4 supersymmetry is fully 
broken. 

By this we end the analysis of different patterns of Л' = 4 supersymmetry breaking in 
the mode] under consideration. 

To close this Section, we present an example of the potential W{i) for which, de
pending on the values of the parameters m and A. all the possible phases described above 
exist 

J 4 x2 IOEJ- 1 

W(x) = — + — + -^L 
v ' 8 2 4 

(5.26) 

Without entering into details, we depict the "phase diagram" for W{i) (5.26) in the range 
mX < 0 (ra > 0,A < 0) 

П v-m N = 4 exact 

N = 4-> N = 0 

At A = 0 one has the phase with exact .V = 4 SL'SY; on the axe m = 0, A < 0 and 
v. ithin the strip A < - 1 the total supersymmetry breaking Л' = 4 —t .V = 0 is realized; 
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within the strip - 1 < Л < О N = 4 SUSY is partially broken down to N = 2 SUSY. 
Note that the potential (5.26) was chosen mainly in order to have the auxiliary potential 
V(i) (5.17) as simple as possible. Of course, one may also find other potentials W{z) 
giving rise to the partial supersymmetry breaking. 

6. Duality transformation to N = 4, d = 2 SQM 
The central charge in superalgebra (3.6) is constant and therefore it does not manifest 
itself as far as the transformation properties of the involved fields ( 6[t) and Xa.(O) a r e 

concerned: supersymmetry transformations of the latter constitute the standard N = 4 
ID Poineare superalgebra. So the difference between (3.6) and (2.1) is actually observable 
only when studying how the supercharges act on the states. In this Section we show that 
the central charge in (3.6) can be made active (i.e., giving rise to nontrivial transformations 
uf the fields) after passing to one more description of our model, that time in terms of a 
choral N - 4 ID superfield. Like in going from (2.10), (2.5a) to (2.18), (2.17) we exploit 
the duality transformation similar, e.g., to the one relating tensor and chiral N = 1 
4D multiplets [9]. The chiral field representation will allow us to reveal an interesting 
correspondence between the Л; = 4, A = 1 SQM and some class of N = 2 2D К abler 
sigma models. 

To begin with, it will be convenient for us to pass to the complex notation 

в~ =(«• , -»«) . D». = ( Я . . - 0 . ) 

and to choose at once тад = m(c') o lj, A.j = A(<rs),». We will restrict our discussion here 
entirely to the superfield level, without presenting the component results. Doing this way 
will be sufficient for learning most characteristic features of the dual description. 

With the above notation the SQM action (2.10) and constraint (2.5a) are rewritten as 

5 = ^ / Л Л { ' * № + ^ ' > ^ } (61) 

(D)2d(2) = О (0 ) '«Ы = 0 (6.2o) 

[D ,O]0( 2 )= -2m, (6.26) 

where 

(D)1 = A.D*, (DY = D'D^ [D,D] = [Dt,Dm]. 

It is a simple exercise [7] to check that (6.2a) already imply 

-\О.О\ф{:) = 0 => [D,D]*(:) = const, (6.3) 

so the role of (6.2b) is reduced to fixing a constant appearing in (6.3). 
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In Sec.2 we solved constraints (6.2) via an unconstrained prepotential. Now we change 
the strategy and insert the basic constraints (6.2a) into the action with the help of super-
field Lagrange multiplier 

(6.i)=>s= ^1^а'вЫф) + ^[0<г'9)ф + в{о),ф+В{О7)ф\ (6.4) 

Varying (6.4) with respect to 8 , В one recovers the original theory. On the other hand, 
varying ф(г) (which is unconstrained in (6.4)) yields the algebraic equation for ф(г) 

А'(Ф) + \{»"Ч) + [0(0 + fl(fll = 0. (6.5) 

where ft and ft are mutually conjugated chiral N = 4 ID superfields 

fl(C) = (DfB => DaU = 0 (6.6) 
fi(C) = {D)'B =* S„ft = 0 

С = {f„ = «-.#M"}, 
f = {t^t+iBi.e'} . 

Solving eq.(6.5) for ф{г) 

ф = ф |Я + ft + ^(ftr'tf) (6.7) 

and substituting (6.7) into (6.4) we arrive at the dual-transformed action of N = 4 SQM 
in the form 

Si,., = ^ | d f d , « | i ( n + ft) + /:,(n + ft)^(«ff,«)-

- A'[4 + 0) j j ( » ) W } (6.8) 

i(ft + ft) = А [ф{П + ft)] + (П + П)̂ (П + ft). (6.9) 

We observe three basic peculiarities of the action (6.8). 
First, it involves two physical bosonic degrees of freedom fl(f) = fl(C)l#=o "bile in the 

initial superfield o(z) only one such a degree is present. So, the above duality transforma
tion introduces a new physical bosonic field /mi)ft) = w(t) and essentially differs in that 
aspect from the previously utilised transformation (Sec.2) which preserved the on-shell 
content of the supermultiplet. We shall explain below in which precise sense the model 
with the action (6.8) is equivalent to the one we 9tarted with. 

The second peculiarity is that (6.8) exhibits a new t/(l) symmetry realized аз a shift 
of the additional ft>M ur(() 

«'«;) = П(С) + 1а, ft'(<) = ft(C)-'c,- (6.10) 
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In Sec.2 we solved constraints (6.2) via an unconstrained prepotential. Now we change 
the strategy and insert the basic constraints (6.2a) into the action with the help of super-

field Lagrange multiplier 

(6.1) => S = ljdtd49{A(,P) + ~(9o- 1 B),P + B(D)2,P + B(D
2
),P} (6.4) u 4 . 

Varying (6.4) with respect to B, B one recovers the original theory. On the other hand, 
varying ,P(z) (which is unconstrained in (6.4)) yields the algebraic equation for ,P(z) 

A'(,P) + ~(9o- 3B) + [O(C) + 0(()] = 0 I 

where 0 and(! are mutually conjugated chiral N = 4 1D superfields 

.j 

Solving eq.(6.5) for ,P(z) 

0(0 = (D)2B => D.,O = 0 

0(() = (D)'S => Dan = o 
( = {tR=t-i9B,B"'}, 

( = { t£ = t + i99, 9"'} 

q, = q, [o + n +~(eo-'s)} 

(6.5) 

(6.6) 

(6.7) 

and substituting (6.7) into (6.4) we arrive at the dual-transformed action of N = 4 SQM 

in the form 

s ... , 

A(O+i1) 

= J_ I dtd49 {A(O + rl) + A'(O + rl)~(9o-19)-
16 4 

- A"(O + rl) .\' (9)2(8)2} 
64 

:: A (4>(0 + rl)] + (0 + O),P(O + 0). 

(6.8) 

(6.9) 

We observe three basic peculiarities of the action (6.8). 
First, it involves two physical bosonic degrees of freedom O(t) = 0(()19,.0 while in the 

initial superfield ,P(z) only one such a degree is present. So, the above duality transforma
tion introduces a new physical bosonic field Im O(t) := w(t) and essentially differs in that 
aspect from the previously utilised transformation (Sec.2) which preserved the on~shell 
co~tent of the supermultiplet. We shall explain below in which precise sense the model 
with the action (6.8) is equivalent to the one we started with. 

The second peculiarity is that (6.8) exhibits a new U(l) symmetry realized as a shift 

of the additional field w(t) 

O'(C) = O(C) + ia, rl'(() = rl(()- ia. (6.10) 
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The appearance of such isometries is a generic feature of the dual transformations of that 

sort [9]. 
Third, because of the explicit presence of 8's in (6.8), this action is by no means 

invariant under the standard N = 4 lD supertranslations acting on 0, 11 as 

50(0 = O'(C')- 0(0, 5rl(() = !1'((')- fi(() 
5tR = - 2i1J4 B0 , 58" = fl 0 

1 

5t£ = (5tR), 58° = 1J 0
• 

(6.11) 

It is easy to find modified N = 4 transformations which leave (6.8) invariant. In 
achieving this, the crucial role belongs to U(1) symmetry (6.10). 

Let us denote the generator of this U(1) as J 

50= iaJO, 50= iaJO 

JO = 1, Jrl = -1. 

and define new supersymmetry transformations by 

• ,\ s- ,\ r 
60 = 60 - 4(1JO' 9)10 = 60 - 4(/JO' 8) 

·- - ,\ a - fi ,\ a 60 = 60 + 
4

(8u ;:;)JO = 6 - 4(8u ;:;), 

(6.12} 

(6.13) 

where 50,6fi are the conventional variations given by (6.11). It is straightforward to 
check in variance of (6.8) under (6.13). 

The supercharges corresponding to (6.13) are 

ii () . .\,6-
"f'• = 'f'o + 14(0' la86J 

ii _ - .A a 6 
"eo - Q.+14(u ).861. 

They satisfy the following (anti)commutation relations 

{Q.,Q6} 
(H,Q.] 

= 26!H- ~(u')!J. 
= [J,Q.] = 0. 

(6.14) 

(6.15) 

The superalgebra Q, Q, H, J is recognized as a direct sum of two N = 2 lD super al
gebras with the "Hamiltonians" H - tJ and H + tJ. It coincides with the previously 
considered superalgebra (4.5) on the subspace {I>,.} of the whole space of states, such 

that 
Jl >,.= -4ml >,. . (6.16) 

We conclude that the initial N = 4, d = 1 SQM model is embedded into the model 
with the action (6.8) as a closed sector corresponding to the fixed value (6.16) of the U(l) 
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central charge operator J. The whole phase space of the above N = 4, d = 2 SQM model 
can be viewed as a collection of the JV = 4, d — 1 SQM spaces labelled by the eigenvalue 
of 7 as a parameter. For each fixed m. eq. (6.16) can be regarded as a constraint which 
reduces, in a manifestly supersymmetric way, the number of independent on-shell bosonic 
degrees of freedom from 2 to 1, ensuring the agreement with the on-shell field content of 
ЛГ = 4, </= 1 SQM. 

This phenomenon can be well understood already at the classical level. The conserved 
Noether current generating U(l) symmetry (6.10) 

• / ( ' ) = ^ 7 7 7 . S^sfdtUt) 16.17) 

coincides, up to a numerical factor, with the lowest component of the superfield \D. D\ Ф 
where ф is assumed to be expressed through ft + f) according to (6.7) 

J(t) = 2 (£>, f ) ]« | = 4f4<*'(flefl)w + <*"(r?cft)£>„ft5°ftl| (6 18) 
I J 10—0 I i 10=0 

In the dual formulation, constraints (6.2a) become the equations of motion, so eq. (6.3) 
is now fulfilled dynamically, as a consequence of these equations, and it is simply the 
conservation law for the t ' ( l ) current (6.18)) 

j{t) = 0 on »hrll. (6.19) 

Then the condition 
7(f) = - 4 m on shell . (6.211) 

can be regarded as selecting a particular constant in the variety of solutions of (6.19). 
Eq.(6.20) ran be explicitly solved for »(f) . after that the remaining equations "f motion 
for Re(l[t) and four physical fermions D o 0 ( ( ) _ . Д°П((|) coincide, up to a field 
redefinition, with those following from the .V = 4, d - 1 SQM action (2 10). Thus, the 
d = 1 and d = 2 models in question are equivalent classically and quantum-mechanically 
provided the constraint (6.20) or its quantum version (6.16) are imposed. 

The form of the action (6.8) suggests that it could be obtained via the Scherk-Schwarz 
type dimensional reduction [10) from a t ' ( l ) invariant action of some .V = 2 supersym
metric К abler 2D sigma model 

5,o = / dtdxd4$A (ft, + f) 2 ) , (6.21) 

where ft3 is a 2D chiral superfield, fl2 ~ fl2 ия,^1,,в) ,xK = x - iffir'S. 
This is indeed so. Factoring out the $ dependence associated with the shift of . 

a,(tK,x„J) = e x p | - i « i r 3 e ^ j n ( f „ , . r . 9 ) (622) 

H,(tL,xLJ) = c x p j i & T ' S ^ l n f / i . x . » ) 
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and neglecting the x dependence by identifying 

(i.e. x is assumed to be compactified on a circle of the r&dius ~ A~')> w e 8 e t 

flj + Й 3 => ПК) + Й(С) + yftr*». (6.24) 
4 

Substituting (6.24) into (6.20) and setting J dx ~ 7, [7] = c m 1 , we arrive at the action 
(6.8). 

It seems surprising that, starting from the most general JV = 4, d - 1 action in one 
dimension, we have eventually found (hat it can be equally obtained via a dimensional 
reduction from the action of a supersymmetric 2D К abler sigma model. The parameters m 
and A introduced originally as the parameters of explicit breaking of two automorphism 
SU(2) symmetries acquire an interesting interpretation as the inverse compdctification 
radius and momentum associated with the compactified extra coordinate. 

In the above discussion we have started with the action (2.10) and constraint (2.5a). 
However, we could equally choose to start with the equivalent description of our d = 1 
SQM model given by eqs.(2.18), (2.17). Rearranging D „ . as [Da,-Da) and performing 
the duality transformation in this second superfield formulation, we would arrive at the 
action of the type (6.7) with the К abler potential 

А (fi + fi) = A [u (fi + ft)] + (fl + fi) u (fl + fi) , (6.25) 

e„,9t replacing 0,.#i and m and A interchanged. In this alternative dual description the 
meaning of parameters m and A is reversed: A becomes an eigenvalue of the corresponding 
extra momentum generator while m is recognized as the inverse compactification radius. 
Since both m and A can be interpreted as eigenvalues of some compact t*(l) generators, 
quantum self-consistency of the theory seems to require them to be quantised. Hence, the 
central charge in the Л' = 4 superalgebra (4.5) should also be quantised in proper mass 
units 

7(mA) = t ^ 0 , It integer . (6.26) 

We end with several comments. 
The central charge modified superalgebra (6.15) is reminiscent of the one found by 

Olive and Witten [11] in some 2D models possessing topologically nontrivial soliton so
lutions. There, the central charge is proportional to the topological charge and it is 
quantised on the topological grounds. It would be of interest to inquire whether the 
centr. 1 charges in the models presented here admit a topological re-interpretation. 

Let us also mention that an analogous effect of the dynamical creation of an oper
ator central charge by the duality transformation in У = 4 ID superconformal algebra 
<u(l.l)2) has been revealed when studying an interplay between real and complex super-
field formulations nf .V = 4. d - 1 superconformal mechanics [7]. As distinct from the 
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case considered here, in [7] the central charge emerged in the anticommutator of super-
translations and superconformal boosts while the Poincare superalgebra itself remained 
intact (as is seen from eqs.(2.20) and (2.22), only one of two automorphism SU{2)'s is 
broken in the superconfnrmal саяе). 

Finally, we briefly discuss the relation to tensor Лг = 1 4D supermultiplet [9]. Con
straints (6.2a) are precisely the ID reduction of those defining the above multiple! in 
.V = 1 4D superspare, eq.(6.3j being a ID analog of the notoph field strength constraint 
d* A,, = 0. So the off-shell field content of our d = 1 superfield ф{г) (or и(г)) could be 
directly obtained from N = 1 4D tensor multiplet via the reduction 4D -• ID. Three com
ponents of the notoph field strength Л,, i = 1,2,3 become unconstrained auxiliary fields 
while Ao(f) turns into a constant as a consequence of eq. (6.3). This way, one is left with 
"He physical boson and four physical fermions. The specificity of IV = 4 ID case manifests 
itself ш the appearance of the SO{4) = 517,(2) x SUn{2) automorphism group of spinor 
charges while N = 1 4D Poincare superalegbra possesses the Tb X SL(2,C) automorphism 
group (>ь invariance times Lorentz in variance) As a result, the parameter m in (6.2b) can 
be interpreted as a component of some constant SU(2) vector and constraints (6.2* admit 
a manifestly SO(4) invariant form (2.5a). Also, the FI term giving rise to the bre?.-ing of 
SI'n(2( can be defined, with a constant SUu(2) vector A„j as the coupling constant. The 
existence of two dual-equivalent descriptions of the same N = 4, d = 1 system (through 
superfields cS(;) or u(z)) is also a pure ID phenomenon. Since upon the reduction 4D 
-• ID. one of the automorphism SU(2)'s conies from SL(2,C), one may expect that the 
general Л' = 4, d - 1 action, e.g. (2.10), is obtainable from the general N = 1 4D tensor 
multiplet action modified by terms which explicitly break Lorentz invariance. We did not 
examine this possibility in detail. 

In the dual d = 2 description through chiral superfields fl.fl, the N = 1 4D tensor 
multiplet origin of the actions (6.8), (6.21) is expressed in that CI and Й always appear 
in the fixed £'(1) invariant combination ft + ft. This is a generic feature of the dual-
transformed tensor multiplet actions [9]. The 2D action (6.21) can be obtained by a direct 
reduction from the corresponding 4D dual-transformed action while further reduction 2D 
-> ID goes nontrivially: it involves the identification (6.23) which breaks 2D lorentz group 
SO(l , 1) (a remnant of 4D Lorentz group). 

7. Conclusions 
In the present paper we have described the simplest example of N = 4 SQM model where 
the arguments of Witten's no-go theorem [2] fail and, as a result, the partial spontaneous 
breaking of supersymmetry becomes possible. The crucial property allowing to circum
vent the theorem just mentioned is the appearance of a non-zero constant central charge 
ш the anticommutator of .V = 4 ID supercharges. This central charge is proportional to 
the product of two parameters measuring the strength of explicit breaking of two auto
morphism 5£'(2) symmetries. Thus, the necessary condition for N = 4 supersymmetry to 
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be partially broken in the model under consideration is that both automorphism SU{2)'a 
are explicitly broken 

We have also found an interesting relation between our ID models and N - 2 2D 
Kahler sigma models with (7(1) isometry. The former models follow from the latter ones 
via a dimensional reduction of the Scherk-Schwarz type with further restriction of the 
relevant space of states to a subspace spanned by the states having the same value of 
the U(\) charge. As a result of dimensional reduction, the U{\) generator becomes the 
central charge generator of N — 4 ID Poincare superalgebra. 

There exist several conceivable ways of extending these results. E.g., it would be 
interesting to construct multicomponent N = 4 SQM models involving more superfields 
<й(г) and to study the phenomenon of partial supersymmetry breaking in these general 
models. They may bear a tight relation to higher dimensional gauge theories, such as 
super Yang-Mills and supergravity. It is known that in these theories supersymmetry may 
happen to be partially broken on account uf appropriate classical solutions (instantons, 
monopoles, ...) [lj [6] [12]. 

A separate intriguing question raised by the above consideration is as follows. As was 
already discussed, in the formulations of AT = 4. <i = 1 SQM via real superfields 0(г) 
or u(z) the central charge of jV = 4 superalgebra is a constant producing no transfor
mations of the involved fields. However, after performing a duality transformation the 
central charge becomes active and generates a nontrivial U(l) symmetry. One may wonder 
whether a similar phenomenon can be revealed in 2D models based on infinite-dimensional 
algebras of the Kac-Moody or Virasoro types, which also involve constant central charges. 
In other words, may such models be embedded into more general ones in which the rele
vant central charges are generators of some symmetries having a nontrivial action on the 
fields? " E.g.. the constant central charges characterizing various conformally invariant 
2D systems (in particular, the minimal models) ronld come out as different eigenvalues 
of a single central charge operator in some more general embracing theory. The spaces 
of states of these specific systems could then be identified with appropriate subspaces of 
the Hilbert space of the general theory. One may think about the Chern-Simons and 
topological field theories as possible candidates for such a theory [14]. 
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