

объвдмиениый ИНСтитут ядерных исследований
 дубиа

E2-90-402

S.V.Shabanov

PATH INTEGRAL FOR THE YANG-MILLS
THEORY IN A NONPERTURBATIVE REGION

Submitted to "Physics Letters B"

1. It is known for systems with first-olass oonstraints (gauge systems) [1] that, generally speaking, the quantization and elimination of unphysical variables do not commute [2-5] because physical variables (space of gauge orbits) are desoribed by ourvilinear ooordinates. However, the introduction of curvilinear coordinates and quantization do not oommute. Nevertheless, the usual way of deriving a Hamiltonian path integral (HPI) for constrained systems corresponds just to quantization of a system after eliminating all unphysioal variables, and, moreover, the phase spaoe of physioal degrees of Preedom is assumed a priori to be an even-dimensional Euolidean space. So, this $H P I$ approach differs from the one in the operator formeI1sm by Dirac[1]. It is shown for a simple model in [6] how one should modify the HPI approe oh so that it oould correspond to the operatur sohme by $D_{1 r a c}$. It $1 s$ neoessary to take into account both the curvilinearity of physical variables and a possible reduotion of a physical phase spaoe $[3,7]$ in order to Pind a oorreot HPI.

In the present letter the method of deriving BPI oorresponding to the Dirac operator soheme is suggested for any way of a fixing physical variables (any gauge). It is also shown that the elimination of unphysical varlables before quantization leads to a gange-dependent quantum theory. In the framework of the found BPI approach the problem of non-axistenoe of global gauge fixing in the Yang-Milis theory [B-IO] is oonsidered. It is argued in favour of that "ooples" of intermadiate field conflgurations (i.e. being between in- and out-field configurations in the transition amplitude) do not influenoe the HPI
description. However, unlike [11] "copies" of in- and outfield configurations should be taken into account in HPI. The found HPI modification does not change a perturbative $\mathrm{Y}_{\text {and }}-\mathrm{Mill}_{1} \mathrm{~s}$ theory but it may turn out to be essential for a quasiolassical calculations [12].
2. Before the $Y_{\text {gang }} M_{111 s}$ theory, consider the simplest and well-known example $[3,13]$ in order to illustrate the key point of the problem. The Lagrangian reads as

$$
\begin{equation*}
L=\frac{1}{2}(\dot{x}+y T \underline{x})^{2}-V\left(\underline{x}^{2}\right) \tag{I}
\end{equation*}
$$

where a two -dimensional vector $\underline{x}=\left(x_{1}, x_{2}\right)$ and a scalar y are dynamical variables, $T=i \tau_{2}$ is a generator of rotations in a plane $\underline{X} \in \mathbb{R}^{2}\left(\tau_{2}\right.$ is the Pauli matrix), V is a potential. Lagrangian (I) is invariant under gauge transformations

$$
\begin{equation*}
\underline{x} \rightarrow \exp (T \omega) \underline{x}, y \rightarrow y-\dot{\omega}, \omega=\omega(t) . \tag{2}
\end{equation*}
$$

Canonical momenta are $\underline{P}=\partial L / \partial \underline{\dot{x}}$ and $\pi=\partial L / \partial \dot{y}=0$, so the Hamiltonian has the form

$$
\begin{equation*}
H=\frac{1}{2} \underline{p}^{2}+V\left(x^{2}\right)-y \underline{p} \underline{x} . \tag{3}
\end{equation*}
$$

There are two first-olas s constraints [1] in the theory: $\pi=0$ and $\sigma=\{\pi, H\}=\underline{p} \underline{x}=0$, where σ is an angular momentum of a particle $\underline{\mathcal{X}}$. So, the system has only one physical degree of freedom.

Apparently, gauge group orbits are circles with centers at $x_{i}=0(1=1,2)$. A line $l \quad x_{i}=f_{i}(u), u$ is a parameter, on a plane forms a gauge oondition. The line ℓ should intersect every gauge orbit, at least, once so that u may describe the orbit space. The simplest case is $X_{1}=u, x_{2}=0$. (unitary gauge). $\mathbb{E}_{\text {however, }}$ there remains a residual gauge group \mathbb{Z}_{2}.

This group acts in a physical configuration space: $X_{1} \rightarrow \pm X_{1}$ identifying points in it, ie., the physical region of X_{1} is the semiaris $X_{1} \geqslant 0$. This leads to a physical phase space reduction $[3,7]$ and a modification of $\operatorname{HPI}[6,7,14]$.

In the general case of arbitrary f_{i}, a highly intricate discrete group $S(u)$ acts on $u \in \mathbb{R}: u \rightarrow u_{s}(u)$. Obviously, the group $S(u)$ rearranges cyclically intersection points of the line ℓ with circles of the fixed radius $r(u)=\left(f_{i}^{2}(u)^{1 / 2}\right.$. All functions $U_{s}(u)$ can be found from the equation

$$
\begin{equation*}
r^{2}\left(u_{5}\right)=r^{2}(u) \tag{4}
\end{equation*}
$$

(Here $r(0)=0$ and $r(\pm \infty)=\infty$ are assumed). For describing the physical region of $u \in K$, we divide the axis $u \in \mathbb{R}$ into parts $\mathbb{R}=\bigcup_{\alpha} R_{\alpha}$ so that Eq. (4) could have a fixed number of solutions at $u \in \mathbb{R}_{\alpha}$. Then $S(u)=\prod_{\alpha} \otimes S_{\alpha}$, 1.e. $S(u)=S_{\alpha}$ when $u \in \mathbb{R}_{\alpha}$. In every \mathbb{R}_{α} we piok out a fundamental region K_{α} with respect to an action of S_{α} in \mathbb{R}_{α}, 1.e. $K_{\alpha}=R_{\alpha} / S_{\alpha}$. Therefore, $K=\bigcup_{\alpha} K_{\alpha}$.

The quantum theory is given by equations [1]

$$
\begin{align*}
& {\left[-\frac{1}{2} \Delta+V\left(\underline{x}^{2}\right)\right] \Phi_{E}(\underline{x})=E \Phi_{E}} \tag{5}\\
& \sigma \Phi_{E}(\underline{x})=-i \underline{x} T \frac{\partial}{\partial \underline{x}} \Phi_{E}(\underline{x})=0 \tag{6}
\end{align*}
$$

where $\Delta=(\partial / \partial x)^{2}$ (we do not consider the third trivial equation $\pi \Phi_{E}=-i \partial_{y} \Phi_{E}=0$). To get the correct quantum theory corespodding, to a gauge oondition $x_{i}=f_{i}(u)$, we introduce new ourviinner coordinates in (5), (6)

$$
\begin{equation*}
\binom{x_{1}}{x_{2}}=\exp (T \theta)\binom{f_{1}(u)}{f_{2}(u)} \tag{7}
\end{equation*}
$$

In the simplest case $f_{1}=u \equiv r, f_{2}=0(7)$ gives polar coordinates. Since (7) should be the change of variables, one-to-one carespondenoe should exist between points $\mathscr{X} \in \mathbb{R}^{2}$ and $(\theta, u) \in \mathbb{R}^{2}$. So, $\theta \in(0,2 \pi)$ and $u \in \widetilde{K} \subset \mathbb{R}$. To determine \tilde{K}, oonsider the symmetry group of the change of variables $\widetilde{C}: \theta \rightarrow \theta+\theta_{5}(u)$, $u \rightarrow u_{5}(u)$ so that x in (7) does not change. It is easily seen that transformations from $\tilde{S}\left(u \rightarrow u_{s}(u)\right)$ can be found from (4). Indeed, \widetilde{S} is a composition of two transformations: 1) a point $x_{i}=x_{i}(\theta, u)$ being on a circle of a radius $r(u)$ passes at another point $x_{i}^{s}=x_{i}\left(\theta, u_{s}\right)$, 2) a point x_{i}^{s} returns to an initial point x_{i} by the rotation $\exp \left(T \theta_{s}(u)\right)$. Thus, $\widetilde{S}=S(u)$ and $\tilde{K}=K$ for $u \in \mathbb{R}^{x)}$.

$$
\text { In Eqs. (5), (6) } \Phi_{E}(\theta, u)=\Phi_{E}(u) \text { sine } \sigma=-i \partial / \partial \theta \text { in }
$$ the new variables. S_{0}, in a physical subspace of states $\mathcal{H}_{p h}$ the scalar product reads as follows

$$
\begin{equation*}
\sum_{\alpha} \int_{K_{\alpha}} d u \rho \mu(u) \Phi_{E}^{*}(u) \Phi_{\varepsilon^{\prime}}(u)=\delta_{E E^{\prime}} \tag{8}
\end{equation*}
$$

where $d^{2} x=d \theta d u \rho(u), \rho \mu(u)=f_{i}(u) \partial_{u} f_{L}(u)$ and the factor $\int d \theta=2 \pi$ is included into the norm of Φ_{E}.
x) One should emphasize that the groups \bar{S} and \tilde{S} are differrent in nature in spite of the formal equality $S=\tilde{S}$. The group S is the residual discrete gauge group (group of "coptes li) acting in a configuration space of physical degree of freer dom when unphysical variables are eliminated in a non-invariant way (1.0. , by a gauge fixing). On the contrary, $\tilde{\mathrm{S}}$ is the symmetry group of a change of variables $\underline{X} \rightarrow(\theta, u)$ where o θ is an unphysical degree of freedom and U is a gaugo-invariant one. So, saying below about "copies" we shell just imply the group \widetilde{S}.

Eq. (5) in $\mathrm{He}_{\mathrm{ph}}$ turns into

$$
\begin{equation*}
H_{p h} \Phi_{E}=\left(\frac{1}{2} P_{u} g(u) P_{u}+V_{q}(u)+V\right) \Phi_{E}=E \Phi_{E} . \tag{9}
\end{equation*}
$$

where $V_{q}=1 / 2 \mu^{-1 / 2} \partial_{u}\left(g(u) \partial_{\mu} \mu^{1 / 2}\right)$ is an effective quantum oorreotron $\left(\sim \hbar^{2}\right)$ to a potential, $g(u)=r^{2}(u) / \mu^{2}(u)$ and $P_{u}=$ $=-i \mu^{-1 / 2} \partial_{u} \circ \mu^{1 / 2}$ is a Hermitian momentum operator. The first two terms in $H_{\text {ph }}$ are, in fact, the Laplace - Beltrami operater Δ in coordinates (7) without terms containing $\partial / \partial \theta$. Amplitudes (solar products in $\mathrm{He}_{\mathrm{ph}}$) do not depend on the ohotes of f_{i} although the Hem11tonian $H_{p h}$ depends on f_{i}. Indeed, making the substitution $\partial_{k}=\mu / r \partial_{\Gamma}$ in (9) we see that eq. (9) turns into the usual radial part of the Schrodinger equation (5) in polar coordinates, 1.e. $\Phi_{E}(u)=\widetilde{\Phi}_{E}(r)$. Moreover, purely radial-exoitations (s-states) should be even $\widetilde{\Phi}_{E}(r)=$ - $\widetilde{\Phi}_{E}(-r)$. So, all physical states are manifestly gauge-1nvariant

$$
\begin{equation*}
\Phi_{E}(u)=\widetilde{\Phi}_{E}\left(r^{2}\right)=\tilde{\Phi}_{E}\left(\underline{x}^{2}\right) \tag{IO}
\end{equation*}
$$

At last, by the definition of K the equality $\sum_{\alpha} \int_{K_{\alpha}} d u \rho(u)=$ $=\int_{0}^{\infty} d r r$ should take place. As a result, amplitudes $\left\langle\Phi \mid \Phi^{\prime}\right\rangle$ are independent of functions f_{i}.

If unphysioal variables are eliminated in Hamiltonian (3) before quantization with the help of constraints and supplemen teary conditions $y=0, x_{i}=f_{i}(u)$ (or $X\left(x_{1}, x_{2}\right)=0$, where \mathcal{X} depends on f_{i}), the quantum theory (spectrum, amplitudes, etc.) depends on the photo of physical variables f_{i} (on a gauge), sine eq. (IO) is not valid and a scalar product does not ooinoide with (8).
3. Now oonaldor the BPI approach. It follows from (IO) and (4) that $\Phi_{E}\left(u_{s}\right)=\Phi_{E}(u)$. This property allows us to continue
analytically the unit operator kernel $\left\langle u \mid u^{\prime}\right\rangle_{p h}=\sum_{E} \Phi_{E}(u) \Phi_{E}^{*}\left(u^{\prime}\right)$ into the unphysical region $u \in \mathbb{R}$. In accordance with (8) we may write

$$
\begin{equation*}
\left\langle u \mid u^{\prime}\right\rangle_{p h}=\sum_{s}\left[\mu(u) \mu\left(u_{s}^{\prime}\right)\right]^{-1 / 2} \delta\left(u-u_{s}^{\prime}\right) \text {. } \tag{11}
\end{equation*}
$$

where $u_{s}^{\prime}=u_{s}\left(u^{\prime}\right), u^{\prime} \in K, u \in \mathbb{R}$. The infinitesimal evolution operator kernel is defined as

$$
U_{\varepsilon}^{p h}\left(u, u^{\prime}\right) \equiv\langle u| e^{-i \varepsilon H_{p h}}\left|u^{\prime}\right\rangle_{p h} \approx\left(1-i \varepsilon H_{p h}(u)\right)\left\langle u \mid u^{\prime}\right\rangle_{p h}:(12)
$$

where $\varepsilon \rightarrow 0$. We transform the kernel (11) in (12) to the form

$$
\begin{equation*}
\left\langle u \mid u^{\prime}\right\rangle_{p h}=\int_{-\infty}^{\infty} \frac{d u^{\prime \prime}}{\left(\rho \mu u^{\prime \prime}\right)^{1 / 2}}\left[\int_{-\infty}^{\infty} \frac{d p}{2 \pi} \exp i p\left(u-u^{\prime \prime}\right)\right] Q\left(u^{\prime \prime}, u^{\prime}\right) \tag{13}
\end{equation*}
$$

where $\mu^{\mu}=\rho(u), \mu^{\prime \prime}=\mu\left(u^{\prime \prime}\right)$ and

$$
\begin{equation*}
Q\left(u^{\prime \prime}, u^{\prime}\right)=\sum_{S} \delta\left(u^{\prime \prime}-u_{s}^{\prime}\right) \tag{14}
\end{equation*}
$$

Substituting (13) into (12) and taking $H_{p h}(u)$ from (9) we find

$$
\begin{align*}
& U_{\varepsilon}^{p h}\left(u, u^{\prime}\right)=\int_{-\infty}^{\infty} \frac{d u^{\prime \prime}}{\left(\mu \mu^{\prime \prime}\right)^{1 / 2}} U_{\varepsilon}^{e+f}\left(u, u^{\prime \prime}\right) Q\left(u^{\prime \prime}, u^{\prime}\right) \\
& \text { accurate to } O\left(\varepsilon^{2}\right) \cdot \text {.Here } \\
& V_{\varepsilon}^{e f f}\left(u, u^{\prime \prime}\right)=\int_{-\infty}^{\infty} \frac{d p}{2 \pi} \exp \left[i p\left(u-u^{\prime \prime}\right)-i \varepsilon H^{e f f}(u, p)\right], \tag{16}\\
& H^{e f f}=\frac{1}{2} g(u) p^{2}+\frac{i}{2} p \partial_{u} g(u)+V_{q}(u)+V \tag{17}
\end{align*}
$$

is the effective Hamiltonian. Further, we should oalculate the convolution

$$
\begin{equation*}
U_{2 \varepsilon}^{p h}\left(u, u^{\prime}\right)=\sum_{\alpha} \int_{K_{\alpha}} d u^{\prime \prime} \mu^{\prime}\left(u^{\prime \prime}\right) U_{\varepsilon}^{p h}\left(u, u^{\prime \prime}\right) U_{\varepsilon}^{p h}\left(u^{\prime \prime}, u^{\prime}\right) \tag{18}
\end{equation*}
$$

to get the evolution operator kernel for a finite time interval. One may check that formula (15) is correct for the kernel (18) and what's more $U_{2 \varepsilon}^{e f f}\left(u, u^{\prime}\right)=\int_{-\infty}^{\infty} d u^{\prime \prime} U_{\varepsilon}^{e f f}\left(u, u^{\prime \prime}\right) U_{\varepsilon}^{e f f}\left(u^{\prime \prime}, u^{\prime}\right)$. Th1s statement follows directly from the equality

$$
\sum_{\alpha} \int_{K_{\alpha}} d u^{\prime \prime} \mu\left(u^{\prime \prime}\right) Q\left(u, u^{\prime \prime}\right) U_{\varepsilon}^{p h}\left(u^{\prime \prime}, u^{\prime}\right)=\mu(u) U_{\varepsilon}^{p h}\left(u, u^{\prime}\right)(19)
$$

which is a simple oonsequence of the equalities $H_{p h}\left(u_{s}\right)=H_{p h}(u)$ in (9) and $\left\langle u_{s} \mid u^{\prime}\right\rangle_{p h}=\left\langle u \mid u^{\prime}\right\rangle_{p h}, d r r=d u g u(u)=d u_{s} \rho u\left(u_{s}\right)$. On the whole, formula (15) is correct for a finite time interval $t\left(\varepsilon \rightarrow t \quad\right.$ in (15)) and the kernel $U_{t}^{e f f}$ is determined by the usual HPI

$$
U_{t}^{e i f}\left(u, u^{\prime \prime}\right)=\int_{\tau=0}^{t}\left(\frac{d p(\tau) d u(\tau)}{2 \pi}\right) \exp i \int_{0}^{L} d \tau\left[p \dot{u}-H^{e f f}(p, u)\right],(20)
$$

where $u=u(t), u^{\prime \prime}=u(0)$.
Thus, "copies" of intermediate points on a trajeotory connecting U and U^{\prime} in (15) ($\varepsilon \rightarrow t$) do not influence the transition amplitude. It is necessary to take into account only "copies" of initial or final points.

The problem of gauge fixing is usually oonnected with zeros of the Faddeev - Popov detefminant [8] as if they prevent on fPI definition in a total oonfiguration space. However, knowing only zeros of the determinant we oannot judge about the permis sibility of a gauge. In this model, assuming $f_{1}=u, f_{2}=u-a$, 1.e., $\mathcal{X}=x_{2}-x_{1}+a=0$ we find the determinant $M=\{\sigma, X\}=$ $=x_{2}+x_{1}=2 x_{1}-a$. So, $M=0$ at $x_{1}=a / 2$. Nevertheless, the gauge $X=0$ is admissible only for $a=0$ stnce the ine $X=0$ intersecte all gauge orbits only at $a=0$. Therefore, the only
criterion for a choice of physical variables is the possibility of making the change of variables in which we may solve constrrainte in a quantum theory.
4. Let us turn now to the Yang - Mills theory. Gauge transformations of vector potentials A_{μ} being elements of a Lie algebra of a simple compact group G read as follows

$$
\begin{equation*}
A_{\mu} \rightarrow \perp 2 A_{\mu} \Omega^{-1}+\frac{1}{g} \Omega \partial_{\mu} \Omega^{-1}, \tag{21}
\end{equation*}
$$

where $\Omega \in G$ and g is a coupling constant. The Hamiltonian formalism for this theory is well-known [15]. In fact, A_{0} is the Lagrangian multiplier in the theory and we may ignore it in the quantum the org. So, physical states satisfy the following equation [15]

$$
\begin{equation*}
\sigma \Phi[\underline{A}] \equiv\left(\partial_{k} \pi_{k}+g\left[A_{k}, \pi_{k}\right]\right) \Phi[\underline{A}]=0, \tag{22}
\end{equation*}
$$

where $\pi_{K}(\underline{x})=-i \delta / \delta A_{K}(\underline{x}) \quad(K=1,2,3)$ are momentum operators canonically conjugated to $A_{K}(\underline{x})$ and $[$,$] is a commute-$ tor in a Lie algebra. It follows from (22) that physical states $\Phi[A]$ viewed as funotionala of dynamical variables $A_{k}(\underline{x})$, must be invariant under transformations generated by σ, ie.

$$
\delta \Phi=\int d^{3} x \operatorname{Tr} \delta A_{k}(x) \frac{\delta \Phi}{\delta A_{k}(x)} \equiv g^{-1} \int d^{3} x \operatorname{Tr}(\omega(x) \sigma(x)) \Phi=0
$$

where $\delta A_{K}=\left[\omega, A_{K}\right]-g^{-1} \partial_{K} \omega$ is an infinitesimal transformation (21) $(\Omega \approx 1+\omega)$. .

The scalar product in a physical subspace Of ph has the form

$$
\begin{equation*}
\int D \underline{D} \Phi_{E}^{*}\left[(A) \Phi_{\varepsilon^{\prime}}[A]=\delta_{E E^{\prime}} .\right. \tag{24}
\end{equation*}
$$

Here $D \underline{A}=\prod_{x} d \underline{A}(\underline{x})$ is a measure in a functional field apace, the integration region $[\underline{A}]$ in (24) is defined so that every component of $A(\underline{X})$ runs the real axis at fixed $x \in \mathbb{R}^{3}$, and the states Φ_{E} satisfy the functional $s_{c h r o n d i n g e r ~ e q u a t i o n ~}^{n}$

$$
\begin{equation*}
\left[-\frac{1}{2}\left\langle\frac{\delta}{\delta A_{k}}, \frac{\delta}{\delta A_{k}}\right\rangle+V[A]\right] \Phi_{\varepsilon}=E \Phi_{\varepsilon} . \tag{25}
\end{equation*}
$$

 is the scalar product in a space of dynamical variables,

Consider now a gauge condition $F[A]=0$ picking out physical degrees of freedom. It is ne cessary explicitly to solve Eq. (22) in order to guarantee the gauge invariance of the quantum theory (see (23)) in the physical configuration spade $F[\underline{A}]=0$. With this purpose we introduce new functional surviInvar coordinates W, α by analogy with (7)

$$
\begin{equation*}
A_{k}=w \tilde{A}_{k} w^{-1}+g^{-1} w \partial_{k} w^{-1} \tag{26}
\end{equation*}
$$

Here $w=w[A] \in G, \tilde{A}_{K}=\tilde{A}_{K}[\alpha]$, and $\alpha=\alpha[\underline{A}]$ so that the equation $F[\tilde{A}]=0$ turns into the identity after the substituition $\tilde{A}_{k}=\tilde{A}_{k}[\alpha]$ into it, ice., elements of a Lie algebra \tilde{A}_{k} and variables α are analogous to the vector-oolumn f_{i} and the variable U in (7), respectively.

The condition $F=0$ should not ootradict the law of gauge transformations (21) and boundary conditions of A as $|\underline{x}| \rightarrow \infty$ [16]. In other words, wo assume that any configurati on A can be transformed to the form $F[A]=0$ by a non singular gacige transformation (21) preserving its topology [17].

The EPI derivation is similar to (8) (20). The operator of the constraint in (23) generates shifts of W in (26) and it
commutes with α being a gauge invariant, so Eq_{q}. (22) is equivalent to $\delta / \delta w \Phi=0$. Thus, in $\mathcal{H}_{\text {ph }}$, the scalar product reads es follows

$$
\begin{equation*}
\int_{\mathrm{K}} D \alpha \mu[\alpha] \Phi_{E}^{*}[\alpha] \Phi_{E^{\prime}}[\alpha]=\delta_{E E^{\prime}} \tag{27}
\end{equation*}
$$

where $\mu[\alpha]$ is a measure in a physical configuration space:
$D \underline{A}=\prod_{x} d \mu_{G}(w) D \alpha \rho[\alpha], d \mu_{G}(w)$ is an invariant measure on G (the "volume" of an upphysical configuration space included in the norm of $\left.\Phi_{E}\right), K \because[x] / S,[\alpha]$ is a configuration space of α (all components of $\alpha(\underline{X})$ run a real axis at fixed $\underset{\sim}{x} \in \mathbb{R}^{3}$). The group S i: determine a from the symmetry group of the change of variables (in) $\widetilde{S}: \alpha \rightarrow \alpha_{G}[\alpha]$. $w \rightarrow W W_{s}$ so that \underline{A} is not varied, i.e., $F[\tilde{A}][=F[\tilde{A}]$, $\tilde{H}_{S}=\widetilde{A}\left[\alpha_{S}\right]$. Therefore, S formally wonctides with the residual gene group determining ncopifs". . A in a gate $\mathrm{F}=0 *$).

Rewriting Hamiltonian in (25) in curvilinear coordinates (20) and rejecting terms with $\delta / \delta \mathrm{W}$ we get, instead of (25),

$$
\begin{equation*}
\left[\frac{1}{2}\left(P_{\alpha}, g_{p h} P_{\alpha}\right)+V_{q}[\alpha]+V\right] \Phi_{E}=E \Phi_{E} \tag{28}
\end{equation*}
$$

where $P_{\alpha}=-i \mu^{-1 / 2} \delta / \delta \alpha \cdot \rho \mu^{1 / 2}, V_{q}[\alpha]=1 / 2 \mu^{-1 / 2}\left(\delta / \delta \alpha, g_{\rho h} \delta / \delta \alpha \mu^{1 / 2}\right)$ is the effective quantum correction $\left(=\left(\hbar \delta^{3}(0)\right)^{2}\right)$ to the potential x) One has to have in mind that the transformations from \tilde{S} should be non-singular to preserve the topology of fields \widetilde{A}, i.e., \tilde{A}_{s} and $\widetilde{\mathbb{A}}$ belong to one and the same topology class [17] (compare with electrodynamics where gauge transformations with multi-valued functions are forbidden).

V, (,) is a scalar product in a space of components of α (it is induced by \langle,$\rangle), g_{\rho h}=g_{p h}[\alpha]$ is a metric tensor in a physical configuration space (is a Hermitian linear operator In a space of components of α). The metric tensor in coordinates (26) can be found from $\left\langle\delta A_{k}, \delta A_{k}\right\rangle=\left(\delta q^{a}, g_{a \delta} \delta q^{b}\right)$, $a, b=1,2$ where $\delta q^{1}=\delta \alpha, \delta q^{2}=w^{-1} \delta w\left(D \underline{A}=\left(\operatorname{det} g_{a b}\right)^{1 / 2} D q^{1} D q^{2}\right)$. Then $g_{p h}=g^{11}$. where $g^{a b} g_{6_{c}}=\delta_{c}^{a}$.

By analogy with (11) and (13), we write the unit operator kernel in Mf_{f}

$$
\left\langle\alpha \mid \alpha^{\prime}\right\rangle_{p h}=\int \frac{D \alpha^{\prime \prime}}{\left(\mu \mu^{\prime \prime}\right)^{1 / 2}} \cdot\left[\int \frac{D \varepsilon}{2 \pi} \exp i\left(\varepsilon, \alpha-\alpha^{\prime \prime}\right)\right] Q\left[\alpha^{\prime \prime}, \alpha^{\prime}\right]
$$

where $\mu^{\mu}=\mu[\alpha], \mu^{\prime \prime}=\mu^{\mu}\left[\alpha^{\prime \prime}\right], \quad \alpha, \alpha^{\prime \prime} \in[\alpha], \alpha^{\prime} \in K$ and:

$$
\begin{equation*}
Q\left[\alpha, \alpha^{\prime}\right]=\sum_{S} \delta\left[\alpha-\alpha_{S}^{\prime}\right], \quad \alpha_{S}^{\prime}=\alpha_{S}\left[\alpha^{\prime}\right] \tag{29}
\end{equation*}
$$

We assume $\int D \alpha^{\prime} \delta\left[\alpha-\alpha^{\prime}\right] \cdot \Phi\left[\alpha^{\prime}\right]=\Phi[\alpha] \quad$ by definitira 2 ar a functional Φ. Repeating calculations (12), (15) - (20) we get the transition amplitude for the Yang - Mills theory

$$
\begin{equation*}
\int_{t-t^{\prime}}^{p h}\left[\alpha, \alpha^{\prime}\right]=\int_{\left(j^{\prime} \mu^{\prime \prime}\right)^{1 / 2}} \int_{t-t^{\prime}}^{e f f}\left[\alpha, \alpha^{\prime \prime}\right] Q\left[\alpha^{\prime \prime}, \alpha^{\prime}\right] \tag{30}
\end{equation*}
$$

where the kernel $\bigcup_{t-t^{\prime}}^{e f f}$ is determirta by the standard $H P I$

$$
\begin{align*}
& \int_{t-t^{\prime}}^{e f f}\left[\alpha, \alpha^{\prime \prime}\right]=\int_{\tau=t^{\prime}}^{t}\left(\frac{D \varepsilon(\tau) D \alpha(\tau)}{2 \pi}\right) \exp i S^{e f f} \tag{31}\\
& S^{e f f}=\int_{t^{\prime}}^{t} d \tau\left[(\varepsilon, \dot{\alpha})-H^{e f f}[\varepsilon, \alpha]\right] \tag{32}\\
& H^{e f f}=\frac{1}{2}\left(\varepsilon, q_{p h} \varepsilon\right)+V+\tilde{V}_{q} \tag{33}
\end{align*}
$$

Here $\alpha, \alpha^{\prime \prime}$ are out- and in- field configurations, respectiveIf $\left(\alpha(\underline{x}, t) \equiv \alpha(\underline{x}), \alpha\left(\underline{x}, t^{\prime}\right)=\alpha^{\prime \prime}(\underline{x})\right), \tilde{V}_{q}=V_{q}+i / 2\left(d / \delta \alpha, g_{p h} \varepsilon\right)$ (the second term $\sim \hbar \delta^{3}(0)$).

EPI (30) determines the evolution operator kernel, and as a consequence the $S_{\text {-matrix }}$ in the theory. We may see from (30) that the ambiguity in the ohoioe of physicsl variables is essential oniy for inm and out-field configurations. "Copies" of intermediate oonfigurations do not influence the FPI approach for the S-matrix beoause of the manifest invariance of the quantum Hamiltonian in (28) with respect to the group S (see (18),(19)). Note that the elimination of unphysical degrees of freedom before quantization breaks this property.
5. In conclusion we shall shortly disouss our result. The perturbative theory for the $S_{- \text {-matrix }}$ corre sponding to (30) does not ohange. Indeed, the following equality, obviously, should take plact

$$
\begin{equation*}
\Phi_{\text {out }}[\alpha]=\lim _{\substack{t \rightarrow \infty \\ t^{\prime} \rightarrow-\infty}} \tilde{U}_{t-t^{\prime}}^{p h} \Phi_{\text {in }, t^{\prime}}[\alpha]= \tag{34}
\end{equation*}
$$

$$
=\lim \int D \alpha^{\prime}\left(\frac{\mu^{\prime}}{\mu}\right)^{1 / 2} U_{t-t^{\prime}}^{\mathrm{eff}}\left[\alpha, \alpha^{\prime}\right] \Phi_{i n, t^{\prime}}\left[\alpha^{\prime}\right]=\lim \left[U_{t-t^{\prime}}^{\mathrm{eff}} \Phi_{i n, t^{\prime}}[\alpha]\right.
$$

acoording to (27) sinoe $\hat{Q} \Phi[\alpha]=\int_{K} D \alpha^{\prime} \rho \mu\left[\alpha^{\prime}\right] Q\left[\alpha, \alpha^{\prime}\right] \Phi\left[\alpha^{\prime}\right]=$ $=\mu \mu \Phi[\alpha]$ for $\Phi\left[\alpha_{s}\right]=\Phi[\alpha] \in$ Ylph $^{\prime}$ (compare with (19) and (IO)). Thus, the transition from $|1 n\rangle$ to |out \rangle is determined by the S-matrix connected with HPI (31) which differs from the usual S-matrix in a gauge $F[\underline{A}]=0$ (i.e. found by substituting δ furotions of both constraints and supplementary oonditions into HPI orer a tetal phase space) only by the terms of ordering in the effective aotion. However, these terms do not influenae the perturbative the ory [2]. Note that the faotor $\left(\mu^{\prime} / \rho^{\prime}\right)^{1 / 2}$ of $\int_{t \rightarrow t^{\prime}}^{e f f}$ in (34) can be elimimeted by a redefinition of terms \tilde{V}_{q} in $s^{\text {eff }}$ (32).

Nevertheless, the modification of EPI (30) conneoted with
the operator \hat{Q} may change nonperturbative. oalculations of the amplitude (30), for example, the quasiolassioal one. For simpler models with a gauge symmetry this phenomenon really exists [12].

To include fermions into consideration one should make a change of variables for solving constraints in a superspace. The corresponding technique of an HPI derivation is suggested in [18]. In this case \hat{Q} depends on fermi-degrees of freedom. Really, we must add to (26) the equality $\psi=W \xi$, where ξ is a gauge-1nvariant fermi-field, and \tilde{S} in the fermi-seotor acts as $\xi \rightarrow$ $\rightarrow W_{s}^{-1} \xi\left(W \rightarrow W W_{s}, \alpha \rightarrow \alpha_{k} ; \psi \rightarrow \psi, A_{k} \rightarrow A_{k}\right)$.

Does the HPI modification influence complete Green's functions? The answer is positive. Put, for example, $F[\underline{A}]=$ - $\partial_{k} A_{k}=0$ (Coulomb gauge), 1.e. Te may assume that physical variabies α are two transversal components of $\tilde{A}_{k}: \partial_{k} \tilde{A}_{k} \equiv \partial_{k} \alpha_{k} \equiv 0$. Consider then Green's functions $D_{i_{1} \cdots i_{n}}^{p h}=\left\langle T\left(\hat{\alpha}_{i_{1}}\left(t_{1}\right) \cdots \hat{\alpha}_{i_{n}}\left(t_{n}\right)\right)\right\rangle_{0}^{p h}$, $\hat{\alpha}_{i}(t) \equiv \hat{\alpha}_{i}(\underline{x}, t)$. The sign "ph" tells us that the scalar product is determined as (22), $\hat{\alpha}_{i}(t)=\left(\hat{U}_{t}^{\text {ph }}\right)^{+} \hat{\alpha}_{i} \hat{U}_{t}^{\text {ph }}$. In the functional representation $\langle\underline{\alpha} \mid 0\rangle=\Phi_{0}[\underline{\alpha}]$ is a vacuum state and $\hat{\alpha}_{i} \Phi_{0}=\alpha_{i} \Phi_{0}$. Repeating oalculations (34) for $\hat{U}_{t}^{p h} \hat{\alpha}_{i} \Phi_{0}=$ $=\hat{U}_{t}^{p h} \alpha_{i} \Phi_{0}=\hat{U}_{t}^{e f f} \alpha_{i}^{Q} \Phi_{0}$ we conclude that $\alpha_{i}^{Q}=\alpha_{i}^{Q}[\underline{\alpha}] \neq \alpha_{i}$ (Φ_{0} is gauge-invariant and, hence, is S-invariant) since the group S is always (ice. for any F) nontrivial for fields $A_{K}(\underline{x})$ tending to zero when $|\underline{x}| \rightarrow \infty \quad[9,19]$. Moreover $\alpha_{i}^{Q}\left[\underline{\alpha}_{s}\right]=\alpha_{i}^{Q}[\underline{\alpha}]$ because the action of \hat{Q} defines a state $\hat{\alpha}_{i} \Phi[\alpha]$ outside the region K in an Sminvariant was. For example, putting $f_{1}=u, f_{2}=0$ in (7) we have $S=Z_{2}: u \rightarrow \pm u$ $K=(0, \infty)$ and $u^{Q}(u)=|u|$. Hence $D_{i_{i}}^{p h} \cdot i_{n}=\left\langle T\left(\hat{\alpha}_{i_{i}}^{Q}\left(t_{i}\right) \cdots \hat{\alpha}_{i_{n}}^{Q}\left(t_{n}\right)\right)\right\rangle_{0}$,
 (24)), $\hat{\alpha}_{i}^{Q}(t)=\alpha_{i}^{Q}[\underline{\underline{\alpha}}(t)], \hat{\alpha}_{i}(t)=\left(\hat{U}_{t}^{\text {eff }}\right)^{+} \hat{\alpha}_{i} \hat{U}_{t}^{\text {eff }}$, ie. the function $D_{i_{1} \ldots i_{n}}=\left\langle T\left(\hat{\alpha}_{i_{1}}\left(t_{1}\right) \ldots \hat{\alpha}_{i_{n}}\left(t_{n}\right)\right)\right\rangle$ is the complete Green's function in the gauge $\partial_{i} \alpha_{i} \equiv 0$ which is determined Without both \hat{Q} in HPI and the solar product modification. Then,$D^{P h} \neq D$ if all permissible configurations of $\underline{\alpha}$ are considered. However, for small $\underline{\alpha}$ (the perturbative theory) $S[\alpha] \approx 1, K \approx[\alpha]$, hence $\hat{Q} \approx 1$ and $\alpha_{i}^{Q} \approx \alpha_{i}$, 1.e. $\cdot D^{P h} \approx D$.

Let $\Phi[\xi]$ is a fermion state in the holomorphic representation: $\hat{\xi} \Phi=\partial / \partial \xi \Phi, \hat{\xi}^{+} \Phi=\xi \Phi$. In this represennation also $\hat{U}_{t}^{\text {ph }} \Phi=\hat{U}_{t}^{\text {eff }} \hat{Q} \Phi[18]$ and the kernel of \hat{Q} coinodes with the kernel of the operator of symmetrization in the group s: $\alpha \rightarrow \alpha_{s}[\alpha], \xi \rightarrow w_{s}^{-1} 亏, w_{s}=w_{s}[\alpha]$ as in the above-considerad case (29). However, in nontrast $\boldsymbol{m} 1$ th boson variables the integration region for Gasman ones in the solar product is not changed for the change of variables $\left(A_{k}, \psi\right) \rightarrow(\alpha, \xi, w)[18]$. Beoause of this property, \widehat{Q} really symmetrizes in s states Φ converting them into gauge-invariant ones: $\hat{Q} \Phi[\xi]=\Phi^{Q}[\xi]=\Phi^{Q}\left[w^{-1} \psi\right]=\Phi^{Q}[\psi]$. So, $\hat{Q} \hat{\xi} \Phi_{0}[\xi]=0$ since $\hat{\xi} \Phi_{0}$ is not $s_{-1 n v a r i a n t ~ a n d ~ t h e n ~}$ $\widetilde{D}_{(n)}^{p h}=\left\langle T\left(\hat{\zeta}^{+}\left(t_{1}\right) \cdots \hat{\xi}^{(}\left(t_{n}\right)\right)\right\rangle_{0}=0 \quad$ at $\quad t_{1} \neq \cdots \neq t_{n}$.

Thus, Green's functions of gauge-1nvariant (or S-Invariant) objects such as $\hat{\xi}^{+}(\underline{x}, t) \hat{\xi}(\underline{x}, t)=\hat{\psi}^{+}(\underline{x}, t) \hat{\psi}(\underline{x}, t), \hat{\xi}^{+}(\underline{x}, t)$. - $\operatorname{Pexp}\left(g \int_{y}^{x_{i}} \hat{\alpha}_{i}(\underline{z}, t) d z_{i}\right) \hat{\xi}(\underline{y}, t)=\hat{\psi}^{+}(\underline{x}, t) \operatorname{Pexp}\left(g \int_{y}^{x} \hat{A}_{i}(\underline{z}, t) d z_{i}\right) \hat{\psi}(\underline{y}, t)$ etc. are only nontrivial. In other words, after an elimination of unphysioal degrees of freedom, the operator \hat{Q} is the "memory" of the reduoed system about its gauge origin:
gauge-invariant objects only have a phyeloal sense, the way of their writing is only changed $\%$).

Aoknowledgmenta
The euthor is grateful to L. V. Prokhorov, E.S. Pradkin, I. A. Betalin, M.A.Soloviev and B. Voronov far useful disoussions.

References

1. Dirac P.A.M. Leotures on Quantum Mechanics. Yeshiva University, N.Y., 1964.
2. Christ N. H., Lee T. D., Phys. Rev. D, 22 (1980) 939.
3. Prokhorov L. V., Sov.J. Nucl. Phys. 35 (1982) 129.
4. Ashtekar A., Horowity G.T., Phys.Rev. D 26 (1982) 3342.
5. Isham C.J., Prepriat of Imperial College TP/85-86/,39, 1986.
6. Prokhorov L. V., Sha banov S. V., Phys. Lett. B 216 (1989) 341.
7. Shabanor S. V., Phase Space Structure in Gauge Theories, JINR P2-89-533, Dubna, 1989 (in Russian).
B. Gribov V.N., Nuol. Phys. B 139 (1978) 1.
8. Singer I.M., Commun. Math, Phys. 60 (1978) 7.

IO. Soloviev M. A., Thear, Math, Phys. (USSR) 78 (1989) 163.
x) For example, for the model from $p .2$, the only gauge-invariant objeot (others are functions of it) is written as $x^{2}=f_{i}^{2}(u)$, where f_{i} determine a ohoioe of a physioal variable).
11. Cheng F., Tsai E.C., Preprint of Massachusetts Institute of Teohnology, Cambridge, 1987.
12. Prokhorov L.V., Shabanov S. V., in! Topologic:al Phises in Quantum Theory, Singepore, WSPC, J.989.
13. Jackiw R., in: Current Algebras and Anomalies, Prinoeton, WS, Princeton, NJ, Singapore, 1985; Topios in Planar Physics, Columbia University, N.Y., 1989.
14. Sha banov S.V., Theor. Math. Phys. (USSR) 78 (1989) 41.1.
15. Jaokiw R., Rev. Mod. Phys. 52(1980)661
16. Loos B. G., Phys. Rev. 188 (1969) 2342; J.Math. Phys.11 (1970) 3?58.
17. Coleman S. Classical Lumpa and Their Quantum Descendants, H. Y. , Plenum Press, 1977.
18. Shabanov S.V., JINR preprint E2-90_25, Dubne, 1990.
19. Schwarz A.S. Quantum Field Theory and Topology, Mos oow, Kauka, 1989.

Reoolved by Publdahing Department on Juna 11, 1990.

