


1. It is known for systems with first-olass gonstraints
(gauge systems){1]that, gensrally speaking, the quantization
and elimination of unphysical variables ‘do not commute [2-5]
because physical variablas (spaoe of gauge orbits) are desori-
bed by ourvilinear ooordinates. However, the introduction of
curvilinear coordinates and quantization do not commute., Never-
theless, the usual way of deriving a Hamiltonian path integral
(HPI) for oconstrained systems corresponds Jjust to guantigzation
of a system after eliminating all unphysioal variables, and,
moreovery, the phase spaoe 0f physioal degrees of freedom 1s
assumed & priori to be an even-~dimensional Euolidean space. So,
thils HFI appromch differs from the cne in the operator forma-
11sm by Dirac[1]. It 1s shown for a simple model in [&] how
one should modify the HPI approach so that 1t could correspond
to the operatJor soheme by Dirac. It 1s neoessary to take into
acoount both the curvilinearity of physical variambles and a
possible reduotion of a physical phase spaoe [3,7]1n order to
find a ocorreot HPI.

In the present letter the method of deriving EFI oorres—
ponding to the Dirac operator scheme 1s suggested for any way
of a fixing physical'variables (any gauge). It 1s also shown
that the elimination of unphysical varlables before quantiza-
tion leads to a gauge-dependent quantum theory. In the framework
of the found HPI approach the problem of non-existence of global
gauge fixing in the Yang-Mills theory [8—10] 13 oonsidered. It
is argued im favour of that "ooples™ of intermediate field
configurations (1.e. being between in- and out-field configu-

rations in the transition amplitude) do not influenoe the HPI



desoription. However, unlike [11] "coples" of in- and ocut-field
oconfigurations should be taken into aoocount in HPI. The found
HPI modifioation does not ohamge a perturbative Yang-Mills
theory but it may turn out to be essential for a quaslolassical
calculations [12].

2. Before the Yang-Mills theory, oonsider the simplest and
well-known example [3,13] in order to illustrate the key point
of the problem. The Lagrangian reads as

L:-‘z-(i,+3"ro_c)2_\/(§2) (1)
where a two-dlmensional vector X =(2%,,X,)and a scalar y
are dynamical variables,T= LTQ 1s a generator of rotations in
a plane ':X_:E'Rz( T, 1s the Pauli matrix), V is a potential.
Lagrangian (I) is invariant umder gauge transformations
x - exP<Tco)9_C ) ‘:]“’U'_C:)’ w= W), (2)
Canonical momenta are P:lbl'/ax and T = 'BL‘/QH =0,
so the Hamiltonian has the Ezm B

H=1p*+ V() -yplx. o)
There are two first-olass constreints [1]} 1in the theory: J=0
and Q~={5T, H]: PT?_C= 0, wherse G 1s an angular momentum of
a particle 2C . Eo, the 'aystem has only one physical degree of
freedom.

Apparently, gauge group orbits are ciroles with centers
at ILIO (1=1,2). A line 2 x.-':&(‘u) » WU 18 a parameter, on
a plane forms a gauge ocndition. The line (Z should interseot
every. gauge orbit, at least, onoe so that WU may desoribe the
orbit space. The simplest case is X,=U , %= 0 (unitary

gauge). However, there remains a residual gauge group ZZ .



This group acts in a physical configuration spacet X, £,
identifying points in 1it, 1.e,, the physical region of :x:i 1s
the semiaxia O, 20 . This leads to a physical phase spaoce
reduction [3,7] and a modifioation of HPI [6,7,14] .

.In the general case of arbitrary 'Y-i. y & highly intricate
discrete group S(u) acts on 'HER U U (u) . ‘Obviouuly,
the group S(’M) rearranges cyclically intersection points
of the line e with circles of the fixed radius v ()= (‘f,_z("“‘)‘/%
All functions Ug(“)can be found from the equation

i) = v, )

(Here Y'(0) =0 and I"'(to0)= 00 are assumed). For desoridbing
the physical region of U GK , we divide the axis UE R into
parts R= L-‘) Ra so that Eq. (4) could have a fixed number of
solutions at UE Qu . Then S('u)=g® Su s l.e. S('u)=S,L
when U € Rd ., In every Pd we plok out a fundamental region
K, with respect to an aotion of Su in R“ ) 1.e.K,L=R.(/S“_

Therefore, K = L} Ku. .

The quantum theory is given by equations [1]

[-56+ VD [ ) = B, )
<>"<I>E(°_c)-----“LO_CT%E $, (x)=0, (&

2

where A—‘(%I) (we do not oconsider the third trivial eguation
:ﬂ'@E=-i,%3¢E=O ). To get the ocorreot guantum theory oorres—
pording to a gauge ocondition '13&='&('u) y We introduce new ourvi-
lipaar ocoordinates in (5),(6) ¢

a g U

‘) = exp (Te) S $)
' {,
2 .

Xy,



In the simplestocase ﬂ=u3¥‘ ’ &: 0 ¢)) glves polar coordinates,
Sinoe (7) should be the change of variables, one-to-one corres—
pondence should exist batween points X € R and (9 u) € Rz
So, 65(0 237) and U € KCR To determine K , oonsider the
symmetry group of the change of variables ..8 : 8> B8+0,(),
Y- 'uS(u) so that X 1in (7)£oes not change. It.is easily
seen that transformations from S (u~» U (k) ) can be found
from (4). Indeed, S is a oomposition of two transformations:
1) a point x; =:x:&(e,u) being on a circle of a radius Y ()
passes at another point SC‘LS=T£ (8,45) , 2) a point IE‘ returns
to an initial point X; by the rotation exp(TBs('u)) . Thus,
S S(w) ana K=K for ueR® .

In Egs. (5),(6) @E(e,u) = CPE (W) since o= -—i.rb/ae in
the new varlables. 80, in a physical subspaoce of states ARP}*

the scalar product reads as follows

2§ dupeo 8w, 0= B (&)

where &Qx d@dupu) , mu) = £ (W3, fifu) ana the factor
Sde AT 1s 1inoluded into the norm of P .

*) One should emphasize that the groups O and § are diffe-
rent in nature in spite of the formal equality S:g . The
group S 1s the residual disorete gauge group (group of “copi-
es") aoting in a configuration space of physiocal degree of free-
dom when unphysical variables are eliminated in aﬂnon—invuiant
way (1.e., by a gauge ﬁxing). On the contrary, S i the
symmetry group of a change of varlables X —» (8, 'IL) where O
is an unphysical degree of freedom and ‘U 1s a gauge-lnvariant
one. So,ﬂsaying below about "coples™ we shall just imply the

group S .



Eq. (5) in l}tf’h turns into

How @ = (3 B gaoR + V)3 -E&
where V = 4/2, 5u. %"3 (g(u)'b iu ) is an effective quantum correo-
tion ('v tz) to a. potential, g(u) Y"z'(”-)/Ju (W) and ?“=
=1 n‘/;'a J\L 1s a Hermitian momentum operator. The first
two terms in HP)‘ are, in fact, the Laplace — Bsltrami ope-
rator A  in coordinates (7) without terms containing %6 .
Amplitudes (scalar products in 'EffP;.,_ ) 4o not depend on the
oholce of 'Fi. although tﬁe Hamiltonian HP‘\ depends on 'Fi. N
Indeed, making the substitution 9, = M- O in (9) we see that

(9) turns into the usual radial part of the Schroedingei
equation (5) in polar ocordimates, i.e. @E('IL)=$E(T'). Mg\x"eover,
purely radial-exoitations ( S -states) should be even CI’E(r‘) -
- %E (—r) « 80, all physioal states are manifestly gauge-in—

D (u) = 5 (r?)= ag (x®). (10

At last, by the definition of K the equality 7. S]( A'uju(u)—

variant

g drr should take place. As a result, amplitudes <<§l@>
are independent of functions 'Fi .

If. unphysical variables are eliminated in Hamiltonian »
before quantization with the help of constraints and supplemen-
tary conditions Y= g, X; -ﬂ: (W) Cor _x(achxa) O, where
j depends on ~F ), the quanhm theory (spectrum, amplitudes,
etc.) depends on the chcioe of physiocal variables ‘Fi (on a
gauge), sinoe eg. (I0) is not valid and & soalar product does
not ooinoide with (8).

3, Now consider the HPI approach. It follows from (I0) and
(4) that és (u5)=§E(‘U). This property allows us to oontinue



analytically the unit operator kernel <u|u >h ZE@E('L()(I):@’)
into the unphysical region u.GiR In accordance with (B) we

may write ’
Lulu’ Do = Z( [;u('u)ju(us)] 3 (u-ug) - (11)
where u = U ('u’) ueK HE‘R The infinitesimal evolution

operator kernel 1s defined as .
ph -ieHp . ty (12)
U, (w, W) =<ule [u o (i—LeHF,,(u))@lek-

where £-> 0 . We transform the kernel (11) 1n (12) to the form

<“("“/>Ph =—§; ( du,,;%. [ S dp £ exp ipu- u’)] Q" u') (13)

where jl(:jll('u) ’ jull=ju(u”) and
(,u//u/) Z g(u —u ) (14)

Substituting (13) 1nto (12) and taking HPh (%) from (9) we

find
ph , qo,_‘_“i_”__ He“uu”)Q(u" ') (15)
wu)=- 7 ’ ’
UE ( ) )‘S (j“j"‘ )‘/ﬁ. E

acourate to O(E) mHera
U ek ('u u ) S exF [1{)(_’1& u" - \.EH ('\A,P)} (16)

H - _2, %Q“)P + l‘i P'b“ g(u) +V$(ru§ +V amn

is the effeotive Hamiltonian. Further, we ghould ocalculate the

convolution

h h
U )=, § ' p ) Uy )V v (18)
ol Kd



to get the evolutilon operdtor kernel for a finite time intexrval.
One may check that formula (15) 1s correct for the kernel (18)
eff ; Q artreff nrredt
and what's more UZE (u,u )= du UE (u,u)UE (u ,u').
- o0

This statement follows dirsctly from the equality

h ]
2 S du’p ") Q (u,u") U:(U”,u')=y(u5U£L(v,v') (19)

=< K
- .
which is a simple consequence of the equalities HPh(us)zHPh('u>

I i
1n (9) and <UglU >Ph=<'1"'l'u >P}' ) drr= cl'UjU(’U.): O{USJM(’MS),
On the whole, formula (15) 1s correct for a finite time inter-
eff
val t (E->t 1n (15)) and the kernel Ut is determined by

the usual) HPI ¢
e, o %t dp@)dumn -EC{J T LA
W)= dprE)aU T A exp t\dT | pie = H (p,w)! . (20)
Ut o= J (557 piiepi-H e

where 1 = 'K (t\ , w'=u (0)

Thus, "copies" of intermediate points on a trajeotory con-—
necting W and W 1n (15) ( £+t ) do not influence the
transition amplitude. It is necessary to take 1nto account only
"copies™ of initial or final points.

The problem of gauges fixing 1s usually oconnected with zeros
of the Fauddeev - Popov dete{minant [8] as if they prevent on
pPI definition in a total oonfiguration spaoe. However, knowing
only zeros of the detsrminant we ocannot Judge about the permis -
sibility of a gauge, In this model, assuming {-1: U » ¥z=u—a ’
teen, L=Xp-2, +Q =0 we £ind the determimant M= {o. X} =
=X+ X =2x,-0 . So, M=0 at X, =0 . Nevertheless, the
gaugs}: 0 is admissible only for A = O since the line ]=O
intersects all gauge orbits only at & =0 , Therefore, the only



oriterion for a ohoice of physical variables is the possibility

of making the change of variables in which we may solve const-
raints in a quantum theory.

4, Let us turn now to the Yang - Mills theory. Gauge trans-—
formations of vector potentials AP_ being elements of a Lie

algebra of a simple oompaot group (3 7read as follows
-4 i -1
- Q ++=03.Q 21

where {2 € G and 9 is a coupling constant, The Hamiltonian
formalism for this theory is well-known [15]. In fact, Ao is
the Laegrangian multiplier in the theory and we may ignore it in

the quantum theory. So, physical states satisfy the following

equation [15]
e bLAl= (AT + glA,T]) @LAT =0, 9

where jr :— i S/S‘A ) {K=4,2,3 ) are momentum operators
canonically conjJugated to A ('.):) and [ ] 1s a commuta-
tor in a Lie algebra. It follows from (22) that physical states

Cﬁ[A] viewed os funotionals of dynamical variables AK@E), must

be invariant under tra.nsfom.a,tions generated by 6 y l.e.
3
5% = gd x Tr SALX) 770 5 A (x) 9 de Tr(w(;c)o‘(a_c))@o(,zj)

where 5A ={w,A l‘ g., AKQ 18 an infinitesimal transformation

(21) (Q. Lty ),
The scalar product in a physical subspace m?“ haa the

form

SDA_ @:[A] chl[A] Z%EE' ’ (24)



Here DA = n dA(?E) is a measure in a functional field apacs,
- o

the integration region [I_\] in (24) 1s defined so that every

compeonent of A(Z) runs the real axis at fixed X € R” yand

the states ‘EE setisfy the funotional Schrordinger equation
Ly 5 -
[ %< 350+ VAL &= &, @)

where V[ A] is the Yang- Mills potential energy and <))=Sda’)cTr~

is the scalar product in a space of dynamical variubies,
Consider now a gauge condition F \_!_\_]: O picking out

physical degrees of freedom. It 18 necesasary explicitly teo

solve Eq. (22) in order to guarantee the gauge invariance of the

quantum theory (see (23)) in the physical configuration space

F[ A]:O . With this purpose we introduce new functional .urvi-

linear ocoordinates W ,ot Dby analogy with n ]
'[\' -1 LD wot 726)

AK:wKw»r%wKw, .
Bere w=w[AJ€G, KK= EK[d] , and &=LA] 6o that tne
equation F[g] = 0 turns into the identity after the substi-
tution XK =KKI¢] into it, l.e., elements of a Lie algebra Kx
and variables ol are analogous to the vector-column -Fi_ and
the variable W  in (7), respectively.

The condition F=( should not ootradict the law of gauge
transformations (21) and boundary 'aonditions of _A_ as |xj>x
[16]. In other words, we agsume tbat any configuration _A_ can
be transformed to the form F[_A_]= O by a non-singular gauge
transformation (21) preserving its topology [17].

The HPI derivation is similar to €8)-(20). The operator of

the conatraint in (23) generatss shifts of W 1in (26) and it



commutes with O( being a gauge lnvariant, ao Eg. (22) 1s
equivalent to 8/5\” @ =0 . Thus, in I}f?k s the scalar produst

reads as follows

IngOL'fu'[d] C]?E*[m] q)E’ L] = SEE’ : (e7)

whe re _)’lA\'_o(] 18 a measure in a physlcal configuration space!
DA= ﬂd_[“g(w) del‘[d] s CJJIAG(w) is an invariant
mea:;,ure Dtcm G1 (the "volume" of an unphysical configurat:ion
space included in the norm of CEE ), K- {_rxj/s , Ltal ig

a configuration space of o (all components of oA (X) run a real
axis at fixed X € !p3 J. The group S i= determined from the

symmetry group of the change of variables {:5) S R~ dg[d]‘

W WW 50 that _A_ 1s not varied, ! AE *‘F‘__;.‘

N g = A [ds_q . Therefore, D Pormally woincides with the
reslidual genge group determining "coples® o A_ in a gauge
Fag ¥ )

Rewriting Hamiltoniun in (25) in curvilinear coordinates

4]
(70) and rejecting terms with a/SW we get, instead of (25),

[%(ng')hp ) + Vy oL]A/\@ <, - 28
oo D= i Y o ]~%f4/(5/a3fh%w)

18 the effective quantum oorrectionk (tS to) )to the potential

o

®) One has to have in mind that the transformations from S
shnould be non-singulaer to preserve the topclogy of Fields A' ,
ioe.y 53 and E belong to one amd the same topology class

127] (compare with electrodynamics where gauge tranaformationa

with multi—valued funotions are forbidden).

10



v s (,) 15 a scalar product in a space of oomponents of &
(1t 1s 1nduced by <, > ), Qen =3Ph[d] 1s a metrig temsor in
a physical configuration space (1s a Hermitian linear operator

in a space of componeﬂts of o ). The metric tensor in coordi-
nates (26) can be found from <SAK,SA >= (S% Jae XCL )
a,b=1,2.where 8(1 8 8‘1 wilw (:DA (detgae)’/z D% Dq’z)

Th =q*. wn =8¢
en gph—.g . where 8 36:" C !

By analogy with (11) amd (13), we write the unit cperator

kernel in Mph

otfol ?h:j (—;%i—”— [ g %exf)i(&,q-d")}g[d:fd,}"

jMu)‘)/z
where fu= M o) )J’M”:ju "]  o,0”€[«] ow'e X ane
r . 2
Qlo, ') = 7 8la-atf ), o= A T, (29)
Ye assume SDOL/ 8[“’0‘-'}@['1'] = @[d] by definitira ®or a
functional P . Rapeating calculations (12),(15)-(20) we get

the transition a:nplitude for the Yang - Mills thecry

U7, ] =St Ut ) QL) O

L-

where the kernel Ut -y 1s cetermir:zd by the standard HPT

eff ., t (De@Dald . qeff
Ut~t’ laat' = Stﬂt( 2 ) Pt S o
gett_ | e ] (e, - WHLea], o0

(33

'
eH‘_ %:—(E ‘-jft.f) N V V

[/
Here Ol , o? are out- and in- field oonfigurations, respeoctive~

1y (@, )z, dlx,t)=a"(x)), V Vo % (Yha,908)

(the second term ~ kS (0) PP

1



HPI (30) determines the evolution operator kernel,and as
a consequence the S-matrix in the theory. We may ses from (30)
that the ambiguity in the oholoe of physical variables 1s
essential only for in- and out-field configurations. "Copies"
of intermediate oonfigurations do not influence the HPI appro-
ach for the S-matrix beoause of the manifest invariance of the
quantum Hamiltonian in (28) with respect to the group S (see
(18),(19)). Note that the elimination of unphysical degrees
of freedom before guantization breaks this property.

5. In conclusic;n we shall shortly disouss our result. The
perturbative theory for tpe S_matrix corresponding to (30) does
not ohange. Indeed, the following egquality, obviously, should
take pluoe A oh
Cbout [°‘]=3£Y2, Uw éi.n,t’ L4} = (34)

n Ll;;._m ~eff .

-t D (£ UL 1018, [21tn U7 B 0
acoording to (27) since é(b[d}=SK:Dd]“[d']Q[d,d.'] @[o(,’] =

= (b[OL] for @[ols_] =(§[0L]e gfrk (compare with (19) and
(10)). Thus, the transition from |in> to |outd is determined by
the S-matrix comnected with HPI (31) which differs from the usual

S-matrix in a gauge F{ A] = 0 (4.e. found by substituting § -
furotions of both constraints and supplementary conditidns into
HPI over a total phase apace) 'only by the terms of ordering

in the effective aotion, However, these terms do not influfnne
the perturbative theory [2]. Note that the faotor (J“ I/Jh)/z
of U:ft: in (34) can be elimimted by a redefinition of

terms \71 1 8*% (2).
Nevertheless, the modification of HPI (30) conneocted with

12



A

the operator Q may ohange nonperturbative, calculations of the
amplitude (30), for example, the quasiolassical one. For simpler
models with a gauge symmetry this phenomenon really exists [_12].
To include fermions 1nto consideration one should make a

change of variables for solving oonstraints in a superspace. The
corresponding l:eohnique of an HPI derivation is suggested in[18].
In this case Qdepends on fermi~degrees of freedom.Really,we must
add to (26) the equality $= WS where 5 is a gauge-inva-

riant fermi-field, and 5 in the fermi-seotor acts as Y\ —»
> oWty (wWewwg, ooty g b A A) .
Does the HPI modifiocation influence oomplete Green's

funotions? The answer is positive. Put, for example, F[A] -

- A =0 (Coulsmb gauge), i.e. we may assume that physical vari-

ables O are two tranaversal components of A Bx AK"'a dl—o

Consider then Green s funotions 1) q-- = <T(°4 (t R d- (t,.,))>
(t) 0(. (=, 't') The sign "ph" tells us that the socalar pro=-

duct 1s determined as (22), & RGE (U f o UP“ . In the

funotional representation {|0) = @ fot] 15 a vaouum state

and 01 @ = (P . Repeating ocalculations (34) for Ut 0( é =

= UPl'o( é UeFFo(Q @ we conclude that 0((-3=0L?_[9‘]?‘ oy

¢ q’-o is gauge-invariant and, hence, 1s S—invariant) since

the group & 1s always (i.e. for any F) nontrivial for fields

A (x) tending to zero when [X| +o0 [9, 19] Moreover

o(‘i [ae] = d [ o] beoause the action of Q defines a sta-

ted (}[d]outside the reglon K in an S-invariant way. For

example, putting ‘F u, ‘F 0 1n (7) we have S=Z,: U=

=(o,ao) and "U @0=[1A| Hanoe ':DP "'Ln <T(0LQ (‘f‘ O(Q (t,.)))

13



where the scalar product 1s determined as (24) ( A—’ oL in

(24)), & QG:) o} [o((t)l oL(t) (Ue“)'fﬁ Ue“c’ i.e. the

funotion L;"'in=<T(Q‘L,(t4)'f' ai—n(t"))>o is the complete
Green's functio:x\ in the gauge 'bl-_otl-_a O which 1s determined
without both Q in HPI and the scalar product modification.
Then, 'DP"I?! D 1f all permissidle configurations of o are
considered. However, for small ol (the perturbative theory)
SOL] lK [o], nence Q"' 1 and OlQ di , 1.e. Dph~
@ [3] is a fermion state in the holomorphic re-

presentation: (D —a/BSQD 3+Cb $D . In this represen-
tation alse UP"¢ Ue“qu {18] and the kernel of Q ¢oin-
cides with the kernel of the operator of symmetrization in
the group 8 ¢ O = glol , % —> wi'y | w = w[ex]
as in the above-considered ocase (29). However, 1n nontrast with
boson varlables the integration region for Grassman ones in
the scalar product is not ohanged for the change of variables
(AK ,4') > (O(,‘S,W) [18]. Beoause of this property, é
really symmetrizes in S states @ converting them into
gauge:invarie.nt ones: é@[%] = @Q[Sl"cﬁ[wdw] @Q[‘p]
So, QS [S-] 0 since ‘3@ 1s not S-invariant and then

Doy =< TR @) §@y=0  at t# gty

Thus, Green's funotions of gauge-imvariant (or S-invariant)

objeots suoh as g+('x t) g (=, t) = ¢+(°“ t) @( S ) €+(?5.,{)'
*Pexp (3 °" (Zt)dz )E(y t)= PGXP( g (2 t)dz)t}'(gt\

etc. are only non-trivial, In other words, after an elimina.tion

of unphysiocal degrees of freedom, the operator Q 1as the

*nemory" of the reduced system about its gauge origint

14



gauge=-invariant objects only have a physical sense, the way

of their writing is only changed =)
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