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At present, great interest in high energy physics stems 

from the spin phenomena. The modern theory of strong 

interaction has many difficulties there11{They are very 

crucial for QCD too;Really, the perturbative QCD leads to 

small polarization at large momenta transfer/ 2/. This· result 

is in contradiction with the experiment. This contradiction. 

may be due to the fact that the experimentally investigated 

region is far from asymptotics. and the perturbative theory 

can not be used here. 

The large-distance effects play an important role · in 

investigations of high energy hadron scattering at small 

angles. As a result, different dynamical models/ 3- 5/are used 

usually for studying of these processes. Some of them / 4- 5/ 

lead' to the spin effects which do not disappear as S➔oo. In 

this region the contribution comes from the t-channel 

exchange with the vacuum quantum numbers (pomeron) •. So inve

stigation of the pomeron spin structqre is very important. 

The amplitude with the vacuum quantum numbers in the 

t-channel is due to the two-gluon exchange/ 6/. The nonper

turbative properties of the theory, which are important in 

this case / 7/, were taken into account in the model /S/for 
' 

the case of qq scattering. It was shown that taking into' 

account the full matrix structure·of the two-gluon amplitude 

leads to the spin-flip am~litude growing ass 

m !ti 
(1) 

IT I lns/s
0 

a(m,t) 
non-f I Ip 

Herem is a constituent quark mass and a is a linear function 

of !ti at large !ti. 
In this paper on the basis of /S, 9/ i~ is shown that the 

-quark loops in the t-channel gluon exchange and qq sea 

contribution lead to the spin-flip amplitude growing ass. 

Physical mechanisms lead to such a behaviour of the spin-flip 

amplitude will be discussed too. • 



we shall calculate the qq scattering at high energies and 

fixed momenta transfer. In our model we suppose, following 

/ 7 , 8/, that nonperturbative 

region and the followii:ig 

and gluon propagators: 

effects are important in this 

representations for the quark 

G q(p)=i(~+m)D(-p2); G g (q)=-ig F(-q2) 
cx(3 cx(3 (2) 

are used. The problems· of normalization of F and gauge 
invariance in this case are piscussed in / 7 ,lo/. 

We shall investigate the quark-loop contribution to the 
imaginary part of two-gluon ladder diagrams(fig 1). 

(a) (b) ( c) 

Fig.1 The quark-loop contribution to the ladder gg-amplitude. 

For the diagram, fig.la, £or a definite flavor in the quark 
loop we have 
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were m and a are the masses of a constituent quark and a 

quark in the loop, respectively, ca is a color factor, 

Ha= F[-(k+r)
2
JF[-(k-r) 2}F{-(l+r)2}F{-(l-r)2] 

• 
2 2 2 ~2 D(-(q+r) +a }D[-(q-r) +a], 

a A A A A . A 4 A A 
S--. = Sp{'1--.[q+K+a}'1 {q-r+a}'1 [q+i+ah [q+r+a]}, (4) nµ,va n µ a V 

Aµ va - A A A µ - VI\ 4 a . 
N • =u(p-r)'1 (p-K+m)'1 u(p+r) u(p'+r)'1 (p 1 +1.+m)'1 u(p'-r). 
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In the light-cone variables: k=(xp ,k ,k ), l= (yp ,1 ,1 ), 
+ - .I. + - .I. 

q=(-zp+,q-,q.1.), p±=p
0
±pz integration over k_,1_,q_,y can be 

performed with the help of o-functions. This leads to the 

cut-off over transverse momenta in the upper 

limit:q:,k:,1:"'s. The main contribution to the amplitude with 

the non-spin-flip in the down quark 'line comes from the 

following term of the ~atrix element/81: 

va - + v " 4 a • v a N
1 

= u (p'+r )'1 (p'+1.+m)'1 u (p'-r) "'4P' p' . 

The spin-flip matrix element !n the upper quark line has 

a more complicated structure. It can be decomposed into the 

sum of symmetric and antisymmetric parts 

" " NAµ= u {S1µ+A 1µ] u, 
(5) 

;1µ,,, 8 A'1µ+Sµ'1A+gAµ* " AAµ"'iCAµops '1 '1 -im a 1µ. 
0 p 5 

Here and in what follows ·s=p-k and b. is a momentum transfer. 

Using the results from 181 we can calculate the spin-flip 

matrix elements of ~Aµ in terms of the light-cone variables 

""A. 
<S µa'A.vµ>r

11
p= mb. {(sa)v+/P++(sv)a+/P++(av)k+/P+l• 

"i 
<S µgAµ>n1p= 2mb. [l+k+/P+l• 

(6) 

For the matrix element of the antisymmetric part _of (5) we 

have 

"A 
<A µq,b > =m {k {(q b )-(b q )]+k [q b -b q ]+ 

n µ flip X + - + - + - X - X 

2 
+{bxq+/p+-qxb+/P+l(b. /2 -p+k_)}. 

The quantities a,v,b,q in (6,7) are some vectors. 

result, for the spin-flip matrix element of the 

(fig.la) we have 
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(7) 

As a 

diagram 
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·-------- • 
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It is easy to see that the integrals over d
2
k.L, d

2
1.1 are 

convergent in the upper limit. The main logarithmic 

asymptotics of ( 3) is connected with the integration over 

d
2q.L near q~"'S. In this region the momenta squared in the 

quark loop are large and we can use the asymptotically free 

quark propagators D.It is convenient to write (8) in the form 

<S~ NA/.l,VCT> =mlls 2[a 6 (X,Z) q 2 +~a(x,z,q ,k ,fl)]. 
"'/.l,VCT flip .l .l .l 

As a resalt of integration over q~ we find 

where 

Here 

T (s,t)=imlls[lns/s T (t)+T (t)+ •.. J 
fl Ip O 1 0 
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Tl(t)= 2Nf ~ 
( 2rr J 4 I 2 2 2 

d l.L F{-(l+r) }F{-(1-r) ]x 

Y ( ~x fd
2
k.L F[-(k+r/JF{-·(k-r/Jia(X). 

Yx (1-x) 

I a( ) - a Ix dz (x-z) a( ) X -C -~--a X,Z. 
Y (z-y) 

The gluon propagators in (11) depend on the variables 

2 22,,. ➔ 2 2 1 ➔ 2 -(k±r)={xm+[k ±(1-x)r J }/(1-x); -(l±r)=( ±r), 
• .L .L .L .L 

(9) 

(10) 

(11) 

(12) 

In calculations of T one must take into account the 
0 

· nonperturbative properties of the theory. 

Similar calculations can be performed for the nonplanar 

graph (fig.lb). In this case, the spin-flip matrix element 

has a term proportional to q~ as in eq. (9) 
4 
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b A/.l VCT 2 b 2 b <S~/.l N , > =mils {a (x,z) q +~ (x,z,q ,k ,·fl)]. (13) 
"' , VCT fl Ip .l .l .l 

Expression (11) is fulfilled for the leading logarithmic term 

of the nonplanar graph but instead of (12) we have 

Ib(x) bfx b C dz a (X. z) , 
y 

where 
b(x.z) =16[2z2 (1-x)-2zx(l-x)-x

3
+x

2
]. 

As a result of integration over x, we obtain 

I a( ) Ib( ) 32 3(l ) (a,bl X =- X =- J X -x C • ( 14) · 

It is easy to see that in the case of quantum electrodynamics 

the leading logarithmic terms compensate each other because 

of the absence of colour factors in this case. 

This compensation·does not occur in the sum of diagrams 

drawn in fig la, b for the colour singlet exchange in QCD 

where we have: 
I(x )=Ia(X )+Ib(x )=- !6 

x
3

( 1-x) 

because in QCD there exists the third diagram with a quark 

loop in the s-channel gluon propagator (fig le) which 

contributes to the imaginary part of the spin-flip amplitude. 

The calculation of this contribution shows that the 

spin-flip matrix element in the diagram ( fig le) numerator 

has a term proportional to q~ as before. The integration of 

the a-functions leads to the appearance of q~ ~n the 

s-channel gluon propagators. As a result, the asymptotical 

equation ( 10, 11) is fulfilled for' this contribution. For the 

integral Ic in the case of the colour singlet exchange in the 

t-channel we have: 
c cfx (x-z)(z-y) c 16 3 

I (x) = c dz 
2 

a (x,z)= 9 x (1-x). 
y X 

Thus, in QCD we obtain the compensation of leading 

logarithms for the sum of diagrams (fig. la-c). All these Ins 

terms are determined by short · distances in t-channel quark 

propagators in the diagrams (fig.la,b) and ins-channel gluon 

propagators in the diagram (fig.le). As a result, the 

diagrams fig.la-c, have the same topological structure in the 
q~~ limit. 5 



There are many terms in spin-flip matrix elements which 

do not contain q~(see Eq.(8) for the diagram in fig.la e.g.). 

They contribute to the nonlogarithmic term T
0 

in (10).It is 

difficult to believe in full compensation of all these terms 

because of their different structure. Now, the accurate 

calculation of these contributions pre impossible in QCD 

because the diagram propagators are in the nonperturbative 

region. 

To show this let us calculate the nonlogarithmic terms 

for the sum of diagrams (fig. la, b) in the case of quantum 

electrodynamics. Let us r~write T in the form 
0 

T (t )= 
2 

</>(t) 
0 

( 2rr /m4 
• 

(15) 

For simplicity we shall calculate the function q,(t) in (15) 

for zero momenta transfer. We shall conclude that a term 

proportional to sexists in the spin-flip amplitude if ¢(0) 

is not equal to zero-. Let us introduce the photon mass A to 

avoid singularities at t=O. The calculations show for the 

diagram (fig.la) 

The behavior 

¢a(O )=¢~ (0 )/A
2
+</>~(0 ). 

different from (16) takes 

( 16) 

place for the 

diagram of fig. lb: 

</>b ( 0 )=</>~ ( 0 )/A 2 +</>b (lnA 2 /m2
) +¢b (0), 

" In O 
(17) 

The existence of logarithmic terms ~n (17) is connected 

with the presence of 1 2 terms in the diagram numerator. These .l 
terms are absent in the planar graph ( see Eq. ( 8) ) . As a 

resu·1t, we obtain integrals of the form: 

d 2 1.1 1f f(lf) 
ll'(r.l,A)=J------------- , • (18) 

[( 1 +r /H2
] [( 1 -r /H2

] 

(18) 

.l .l .l .t 

where f( 1 2
) decreases as 1 2➔oo.The integrals (18) 

.t .l in the r ➔O .l 
limit lead to the following behaviour: 

11'(0, A)=ln(A2/m
2 

). (19) 

a b 
The REDUCE program allows us to calculate the terms ¢A' 

and </>b in ( 16, 17) up to the end. As a result of these 
In 
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--, .... ---···- --···J;'------- ------
of contri~utions (fig. la, b) but logarithmic terms are not 

equal to zero 
• 3 . 

q/ (ln(;\.2
/m

2 
))= 

5
rr4 a

4 
{ 537-112rr

2
-180lnp. 

2/m2
) Jln(">, 2/m2 

). (20) 
In s 

Thus, the planar and nonplanar contributions have different 

dependences on momenta transfer. In the case of nonzero t, 

the logarithmic form ln(A2/m2
) turn to ln(~2/m2

). As a result 

there is no singularity at A=O in the spin-flip amplitude at 

all It I . 
So we see that in 

contributions proportional to 

sum of diagrams (fig.la,b) and 

T,.,.. (t )"' 
111p 

quantum electrodynamics 

s are not compensated in 

the asymptotic form 

i ~ s </>(t) 
m 

the 

the 

( 21) 

is true for the spin- flip amplitude as s➔oo, t-fixed. Thus 

this amplitude is suppressed only logarithmically with re

spect to the spin-non- flip amplitude. In order to conclude 

this, we use the results from/ll/for the spin-non-flip ampli

tude. The behaviour like (21) must be correct in QCD too. 

Let us exemplify by the diagram (Fig. la) the physical 

reason which leads to the growing as s contribution to the 

spin-flip amplitude. This diagram can be decomposed· into two 

quark-quark subgraphs with the two-gluon exchange in 

t-channel. The corresponding spin-flip amplitude in this case 

has the following energy dependence: 

qq 

T (t)~ 
flip 

11 qq , m v It I . T non-fl Ip 
sqq 

wheres is the quark subprocess energy.It can be shown that 
qq 

in the integration region .which contributes to the T spine 
flip amplitude the energies in the up and down subgraph 

are of the following order of magnitude: 
Sup "' m2; Sdown "' S. 

qq qq 

Thus_the up quark subprocess is at low energies and the spin-

flip amplitude has not energy suppression in it 

Tqq-up t "' ~ Tqq 
fl Ip ( ) m non-fl Ip • 

The spin-non-flip amplitude growing as s contribute to the 
7 



down quark subprocess. As a result, we obtain the behaviour 

(10,11) for the total diagram. 

So we can conclude that in QCD the terms "'Sin the spin

flip amplitude are determined by the nonperturbative region 

in the up subprocess of the diagram. From our point of view 

the qq sea contribution (Fig.2) can be very important 

here.The method of effective meson lagrangians/l 3/ permits us 

to replace the qq interactions int-channel by the rr-meson 

exchanges (Fig.3). 

Fig.2. Diagram with the Fig.3. Effective diagrams with the 

qq sea contribution. rr-meson exchanges. 

It is easy to see that in this case the spin-flip and 

flip amplitude in the up quark subprocess are of the 

order of magnitude: 

q q-up 

T (t) "' 
non-flip 

2 2 
m X 

(1-x) 
kf 

+ (1-x) 

qq-up 

T (t) "' -mb.x. 
fl Ip 

f,,,2 

4 

non

same 

The large magnitude of the quark-meson coupling constant 

a "'l permits us to conclude that the diagrams (Fig.3) must 
qqm 

be important in spin effects in high energy hadron interac-

tions. This can explain the success of the meson-cloud 

model/5/ which take into account similar effects phenomenolo

gically. 

Thus, the quark loop effects in gluon t-channel exchange 

and qq sea contributioi:is lead to the spin-flip amp_litude 

. growing ass. Similar contribution can be obtained from the 

nonperturbative diquark state in' the wave function for 

example/l4/_ In all cases such a behaviour of the spin-flip 
amplitude is determined by the long-distance effects. 

8 

So it is shown that in QCD the spin effects which 

decrease very slowly (only logarithmically) with energy 

growth really can be obtained in the s~ limit. They are 

connected with the nonperturbative contributions. It is 

necessary to use the theo~y properties at large distances to 

obtain some quantitative estimations. 

The autho~ expresses his deep gratitude to V.G.Kad~shevsky 

and V.A.Matveev for the interest in the work and support. 
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ronocKoKoB C.B. EZ-90-383 
0 MeXaHH3MaX B03HHKHOBeHHH cnHHOBblX 3~~eKTOB 
B KX~ Ha 6onbWHX paccTOHHHHX 

06cy)K,l];eHbl pa3nHqHbie ~H3HqecKHe, MeXaHH3MbI, npHBOroJ~He 
K aMnnHTyge C nepeaopOTOM CTTHHa, pacTy~eH KaK s, npH Bbl
COKHX 3Heprm1x H ~HKCHpOBaHHb!X nepegaHHblX HMnynbcax, 

Pa6oTa BbinOnHeHa B J1a6opaTOpHH TeopeTHqecKOH ~H3HKH 
mum. 

Ilpenp~T 06'be,1:umeHHOrO HHCfflTyT& RAepHJ>IX HCC11eAOBIIHHH. ny6Ha -1990 

Goloskokov S. V. · 
On Generation Mechanisms of Spin Effects 
in QCD at Large Distances 

EZ-90-383 

· The discussion of the different physical mechanisms 
which lead to the spin-flip amplitude growing ass at 
high energies and fixed momenta transfer is done. 

The investigation has ~een performed at the Laboratory 
of Theoretical Physics, JINR. 
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