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Lately, the idea of succession of the lepton-quark gene

rations (or families) becomes very popular in the elementary 

particle physics. At present time, we have two total and 

third almost accomplished (now only the t-quark needs confir

mation) generations 

v
0

,e,u,d; Vil, 1-L, C, s; v,:,-c,t?,b. 

The most remarkable property of these generations is the 

recurrence of the interaction characteristics: The correspon

ding leptons and quarks have the same electric charges (0,-1, 

2/3, -1/3) and are submitted to the same electroweak inter

action, all quarks participate in the strong interaction with 

the same (universal) gluons, and the corresponding SU(3) 
C 

symmetry is perfect. It is very. likely that leptons and 

quarks from different generations differ only by their masses 

(Here we digress from the problem of the quark-mixing in the 

~eak interaction). 

In this report, I propose to compare the repetition of 

the quark-lepton generations with some mathematical scheme of 

post-octonions obtained by means of the Cayley-Dickson pro

cedure of doubling of hypernumber systems/!/. Maybe, the 

adequate mathematical description can help us to answer the 

physical sacramental questions? 

It is well known that this doubling procedure* yields to 

the recurrence: real number (~) ~ complex numbers (~) ~ 

quaternions (Q) ~ octonions (0), with the loss of commutati

vjty for Q and the associativity for O, successively. These 

hypernumber systems contain 0,1,3,7 imaginary units, 

respectively. This series may be continued by the doubling of 

* This procedure is taken out into Appendix A 



octonions. Then, we receive di-octonions with the number of 

imaginary units equal to 15. Further, we obtain di-dioctoni

ons with 31 imaginary units and so on. We name these hyper

number systems obtained from octonions by the doubling 

procedure postoctonions. All these systems are non-

associative*. 

Now we compose the hyperfield. 
p 

1/J(x) = [ eai'a(x), 
a=l 

(1) 

where i'a(x) are the charge-self-conjugated Majorana fields 

obeying ordinary Fermi statistics with normal (Fermi) 

relative anticommutation relations, and quantities e are the . a 
imeginary units of a given hypernumber system. Thus, the 

hyperfield (1) satisfies the Dirac equation 

(1 µ aµ- m)I/J(x) = o, (2) 

where r µ = i; µ_ We make use of the Majorana basis for the 

Dirac gamma matrices and · thus matrices r µ are real. This 

condition is essential because the hypernumbers are defined 

over real numbers, and we .have no right to, use imaginary 

numbers. In the Majorana basis the charge conjugation 

involves only Hermitian conjugation for the fields: 

1/1 (x) = 1/1 + (x) , 
C 

(3) 

·and for the Majorana field (1) (and its components) we have 

1/1+ (x) = 1/1 (x) • (4) 

As the imaginary units satisfy the Clifford algebra 

(with the nonessential change of the sign in the left-hand 

side of equation) 

* The octonions are nonassociative but they remain alter-
native and power-associative. Already dioctonions lose the 
latter properties. The flexibility is the only property re
maining valid for all postoctonions. 
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eae~ + e~ea= - 2 oa~' (5) 

the hyperfield (1) is ·the Green parafield satisfying the 

Green trilinear commutation relations/2/. Thus, we can 

consider the hyperfield (l)as nonassociative algebraic reali

zation of the para-Fermi statistics of an order p of identi

cal particles. 

Gunaydin and Gursey/3/ were the first who adopted 

octonions for the description of colour quarks. Then, 

Gursey/4/ proposed to use octonions for the unified descrip

tion of leptons and coloured quarks. 

In the case of octonions, we have seven imaginary units. 

The octofield (octonionic hyperfield) (1) can be represented 

as a column 

[ 
1 (X) l 

1/1 (x) = q (x) , ( 6) 

where a scalar component l(x) coincides with th~. seventh com

ponent I/J7 (x), and it is the Majorana field v(x) times i which 

we call~d a lepton (Majorana neutrino) component of the octo

field; the vector components are the Dirac fields* 

~ ~k+-~k• 3 k-1 2 3. qk- T 1Y r - r 1 (7) 

which we named colour quark components of octofield. 

The product of two octofields is defined in the same 

manner as a product of two octonions (see, Appendix A) with a 
substitution of the complex conjugation by the charge- or 

Hermitian-conjugation (without an alternation of the order of 

initial anticommuting field operators). 

* . . . To avoid misunderstanding, one should. emphasize that the 
appearance o_f -the ~maginary unit i in these components is a 
consequence of our special representation of octonionic units 
(see, Appendix A). The octonionic algebra- remains to· be de
fined over real numbers. 
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Let us extend this scheme and pass to dioctonions with 
fifteen imaginary units/l/. Then, we can include the full 

first lepton-quark generation into the dioctofield which can 
be represented by two columns 

1/J(x) = [ iv(x) 

u(x) 
e (x) l . 
d(X) 

(8) 

The second step gives us· tvo lepton-quark generations 
within the di-dioctofield 

V,(X) = ( i:., e 

d 

v/.l 

C : l . (9) 

One ought to emphasize that in the construction (9) only 

the electron neutrino 11 is a Majorana particle, whereas the 
" . 

muon neutrino 11µ is a Dirac particle. 
If we continue this process, we shall achieve four (not 

three!) lepton-quark generations at the next step of this 
procedure. Thus, the existence of four lepton-quark genera

tions is an inevitable result of this construction. 

At the next step we have eight generations, and our mind 

gives up to estimate the finish of this avalanche-like gene
ration doubling process. 

Now we consider a gauging of theories of that kind. 

It is remarkable that beginning from octonions the group 
of automorphisms of _ hypernumber systems is always the same 
Cartan exceptional G group/S/ (14 parameters, rank 2) *. The 

2. 
G

2 
group transforms separate columns of postoctonions (8), 

(9) by the vertical independently. 
For the gauging of this automorphism group we ought to 

introduce gauge vector fields and change the derivative to 

* The automorphism group of complex numbers is complex conju
gation Z

2 
• The automorphism group of quaternions is SO( 3) 

whose gauging was presented in/61. 
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the gauge-covariant derivative 

[1] (a 1-ig(y• •q+y •q•) ] 
D = /.l /.l /.l 3 

/.l q a/.lq::..ig[y/.l(1-1•)-y~xq•+ [w~q
1

] 
J=l 

(10) 

where gauge fields y /.l are responsible· for the lepton-quark 
transitions, and w~ are gluon fields mixing up colour compo
nents of quarks. The components of the gluon fields obey the 
following conditions: 

\llj = (WJJ)+ 
/.l /.l , 

11+ 22+ 33 Q 
'1,1/.l '1,1/.l \Iµ = • (11) 

Naturally, we need to suppress the lepton-quark transi
tions. This suppression can be obtained by the Higgs 
mechanism. 

We introduce the scalar octofield with only first non
vanishing column_ 

[
i¢ 0 l ,,. . = ¢ . 

0 I '+' O 0 ¢ = f 0 
. (12) 

The Lagrangian of this scalar octofield has the Higgs form 

f,,_= -(D ¢)(D /.l¢)-µ 2 ¢ 2 -A¢4 = (D ¢) (D /.l¢ )++(D f)(D µf)•+ 
y Jl /,l O O /,l 

+ µ 2 (¢ 2+f•f•) - A(¢ 2+f•f•) 2 
0 0 •-

(13) 

The minimum of the scalar potential is achieved•at 

2 2 + 2 -<¢ > = <¢ > + <f•f > = V /2, 
0 0 0 0 

V2=ll2/L (14) 

Using the G2 - gauge invariance we can choose the gauging with 

f=O. Then, decomposing ¢ = <¢ > + B (x) we take the Higgs 
0 0 0 

scalar 8 with the mass equal to V2 /.l, vector bosons Yµ with 
the masses equal to V2 gv, and massless gluons wi,. We can 

choose the value of the parameter v sufficiently large for 
the strong suppression of lepton-quark transitions. Thus, the 
perfect SU(3) symmetry of colour quarks belonging to 
different generations can be explained as an unbroken 
subgroup of the spontaneously broken automorphism group G

2
• 
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The gauge SU(2) xu(i)-symmetry of electroweak inter-
L 

actions mi;ices up the (left) components of two columns of di-

octofields by the horizontal. As usual, left components 

(v ,e ), (u ,d) etc. compose doublets and right components L L L L · 
e, u, and d etc. compose singlets. 

R R R 

For the spontaneous breakdown of the electrowe·ak 

symmetry we introduce another Higgs scalar hyperfield inclu

ding the usual unit: 

( (X) = [(: (X) 

x(x) 

~x
0
:(x)], 

X (x) . 
(15) 

so(+*-(. We can get rid of colour components x and X - via 
o a ~ 

G
2

- gauge transformation. However, this gauge could not coin-

cide with the previous one eliminating fields f. If we pass 

to this latter gauge, the colour components in (15) could 

appear again: 

X = iy(( -(♦), 
0 0 

X = iy[X --(X -)+] 
0 0 I 

(16) 

where the parameters y characterize the transition from one 

gauge to another. But now we can apply the SU(2)LxU(1) gauge 

invariance and shake off the component X - from the beginning 
. 0 

and turn th~ ( -component into the proper Hermitian (real) 
0 

form: ( =(+ (to compare with the proper imaginary iip in 
0 0 · 0 

(12)). Thus, we achieve the gauge when the dioctofield ((x) 
turns into the usual Higgs scalar field, and our theory be

comes the usual Glashow-Salam-Weinberg theory. 

. Spinar lepton-quark fields and Higgs-scalar fields can 

be embedded into the post-octonionic para fields. However, 

gauge fields cannot be formulated within proper octofields. 

For their formula~ion we need to transform the separate com

ponents of spinor and scalar hyperfields. 

The only self-consistent gauge hyperfield is the quater

nionic one which is equivalent to the SO(3)-gauge theory. In 

this case, gauge fields become "quaterfiels" too/ 6
/. 
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Now we consider the possibility of determining charges 

of leptons and quarks in the framework of the postoctonionic 

hyperfield theory. 

We propose, following· Giinaydin and Giirsey13 ' 4/, that 

only associative combinations of nonassociative hyperfields 

can be involved into the consistent theory*. Then, we shall 

consider the transformations which leave these combinations 

invariant. 

For the inclusion of two quark-lepton generations we at 

once consider di-dioctofield (9). 
The bilinear associative combination has the form of a 

commutator 

1 ee 1 ~ + + 1 '°" + + -2[~a•~~]_= vav~+ 2 L .(lal~+lal~)+ 2 L (qaq~+qaq~),(17) 
l=e,Vµ,µ q=u,d,c,s 

where only spinor indices a and~ are kept in arguments. 

Now we consider the phase-trasformation 

l ~ l exp(iw Q
1
), q ~ q exp(iw Q ), 

q 
(18) 

where w is an arbitrary phase, and Q and Q are electric 
1 q 

charges of leptons and quarks, respectively. The invariance 

of the form (17) under transformations (18) implies only that 

the electron neutrino v being the Majorana particle has no .. 
electric charge. Other charges of leptons and quarks remain 

arbitrary. 

Remark, the Lagrangian contains the commutator of free 

fields in the form (17) which is antisymmetric under the 

exchange of a and~-
Further, we consider the only trilinear associative 

combination in the form** 

* One may consider this requirement as the demand of the 
c-number character of the Wightman vacuum distributions. 
** . . i The analogous tr1.l1.near form was considered by Gamba n 
the investigation of peculiarities of the eight-dimensional 

space/8/. 
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¢(¢a¢)+(¢ ¢a)¢= [-ive(v~vµ•+ua•u•+c;•c )+vµua•c•+vµ•u;•c a P ; ; P a a P ; P ; ~ ; a P ; a P ; 

-!u •u xu -!u••u•xu•+!u •c xc +lu••c•xc•] + 
6 a (3 ; 6 a (3 ; 2 a (3 ; 2 a (3 ; 

• e + + + + µ + + µ+ + + 
+[-iv (eae +µaµ +da•d +sa•S )+v (eaµ· +da•S )+v (eaµ +da•S) a P ; P ; P ; P ; a P ; P ; a P o P ; 

+e (u/3•d•+s
13
••c )+e•(u

13
••d +s

13
•c•)+ a ; ; a ; ; 

+µ (s
13
••u +d

13
••c )+µ•(s

13
•u•+d

13
•c•)+ a ; ; a ; ; 

+!u •d Xd +!u••d·xd•-!u •S XS _!u••s·xs·-d •S XC -d·•s·xc·] + 
2 a (3 ; 2 a (3 ; 2 a (3 ; 2 a (3 ; a (3 ; a (3 ; 

+ all permutations of (a,(3,;). (19) 

The terms in the first square brackets are obtained when 

second and fourth columns of di-dioctofields (9) vanish, i.e. 

di-dioctofields (9) contain only two half-generations. Any 

phase-transformati!Jn ( 18) is forbidden by these terms. To 

avoid such prohibition of any phase-transformation we are 

compeled to subtract the form (19) with first half:..genera

tions from the whole form (19) at the onset. Then, only terms 

standing in the second square brackets remain. The demand of 

the invariance of these terms under the transformation (18) 

leads to the following relations for the electric charges of 

leptons and quarks (of two generations) 

Q +Q -Q = 0 
vµ e µ (20a) 

Q +Q -Q = 0 
e u d 

(20c) 

Q +Q -Q = 0 µ s u (20e) 

Q + 2Q = 0 
u d 

Q + 2Q = 0 
u s 

Q+Q+Q=O 
d s C 

8 

Q +Q -Q = 0 
Vµ d s 

Q +Q -Q = 0 e s C 

Q +Q-Q=O µ d c 

(20g) 

(20h) 

(20i) 

(20b) 

(20d) 

(20f) 

!]:\ 

/I 
"? 

/) 
\/ 

! 

The solution of these equations gives the following 

relations: Q =-2Q =-2Q, due to (20g) and (20h), Q = Q due to 
u d s C u 

(20i), Q = o due to (20b), Q = Q due to (20a), and finally, , V e µ · 
µ . 

Q =3Q =-(3/2)Q due to (20c). Thus, we obtain the right 
e d u , 

eigenvalues of the electric charges of leptons and quarks 

Qv = Qv = o, 
e µ 

Q = Q , µ e 

(21) 

Qu= Qc=-( 2/J)Qe, Qd= Qs =(l/J)Qe • 

We emphasize that these values are obtained automatically 

from the requirement of the invariance of the. modified tri

linear form (19) under the phase-transformation (18) .• 

Now, the main open question of this scheme is: what. is 

the reason for the increase of lepton quark masses for 

successive generations and where the limit of the -doubling 

generation process lies? 

Appendix A. The Cayley-Dickson doubling procedure 

Let there be an algebra with unity and with the number p 

of imaginary units such that their products are 

eaeb= -oab+fabcec ,·a,b=l, ••• ,p' (A.1) 

where o is the Kronecker symbol and f ·are antisymmetri-
ab abc 

cal structure constants. 

One introduces a new imaginary unit e, e
2
=-1 and 

composes other new imaginary units by means of multiplication 

of initial imaginary units one 

E =e e=-ee (A. 2) 
a a a 

Then, the algebra consisting of 1,e ,e,E (a=l, ••• ,p) is 
a a 

accomplished by the multiplication rules 
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eE =-E e=e, 
a a a 

e E =-E e =-o e-f E , 
ab b a ab abc c 

E E =-o -f e • 
ab ab abc c 

(A. 3) 

Therefore, the antisymmetry of the product of both initial 

and new imaginary units is conserved. 
For the octonions we have the following mul tiplicatioi 

table: 

1 e e e 
J J+3 7 

e -o +c e 0 e -c e -e 
l l j ljk k l j 7 ljk k+3 1+3 

e -o -c e -o -c e e 
1+3 l j l j k k+3 i J ljk k l 

e e -e -1 
7 J+3 J 

where i , j=l, 2, 3, 
C . =1. 

and Cljk 
is the antisymmetric tensor with 

123 

Any octonion can be presented by a column 

a = (:o] (A. 4) 

where a is a complex scalar, and a is a comlex vector. The 
0 • • • * product of two octonions_is defined as 

[a l [b l [a b -a• b * l ·b _ o o _ o o 

a - a b - a·b+ab*+a*xb* 
0 0 

(A. 5) 

~her~ a star denotes the comlex .conjugation (or the Hermiti

~n conjugation for the field operators without an alternation 

of the order of operators). In this representation octonionic 

units have the forms 

* ' The same multiplication rule for octonions has been applied 
by de Alfaro, Fubini and Furlan/a/ for the description of 
instantons in the eight-dimensional space. 
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1 = ( : ) , e7 ( : ) , eJ [ :J, •,., = [,:J. (A. 6) 

where e are three orthonormal basis vectors• J . . • 

e •e = o , 
l j l j 

e xe = c e 
l J ljk k 

The conjugate octo_nion (and any conjugate postoctonion 

as well) marked by a tilda is determined by a change of signs 
of all imaginary units, i.e. 

a [_:=] (A. 7) 

Any dioctonions can be presented by two columns 

a = ( :o :0 ) (A.8) 

and the product of two dioctonions is 

[ :0 A ][ :0 B l ab= 0 0 = 
A B 

* * * [ab -a•b -AB -A •B a B 
* * * * ab +ab +a Xb + a B 

0 * 0 * * * 0 

+AB-AB -A XB 
0 0 

* * * -a •B+A b +A•b 

* * +a B -a XB + 
0 * * +A b -A b -A Xb 
0 0 

l . (A. 9) 

The dioctonionic units have the forms 

1 = [: : ], 

e=(o 1], 

e = 
7 [ : : ] , 

[ : : ] , 
e = 

J [ :, : l· 
( : : ] , 

eJ•3= Ii: : I 
. J 

0 0 

where j=l,2,3. 

E = 
7 

E = 
J 

J . 
E,.,= [ : ,:J • 

Any di-dioctonions can be presented by four colums 

a= [ :o A 
0 

A 

:11 

a' 
0 

a' 
A: l 
A' 

(A.10) 



·.1:ne proauct or two di-dioctonions is 

[ :0 A a' A' 
][ :0 

B b' B' l 0 0 0 0 0 0 = 
A a' A' B b' B' 

I 
ab -a•b*-A B*-A!B-a 1 b 1 *-a,*•b 1 -A1 *B 1 -A1 •B 1 * 

0 0 0 0 0 0 0 O 

* * * * * * * * * * * a b +a b +a Xb +A B-AB -A xB +a' b' -a' b'· -a' xb' -
0 0 0 0 0 O 

-A1 *B 1 +A 1 B 1 *+A 1 *xB 1 * 
0 0 

a B -a*•B+A b*+A•b*+a 1 *B 1 +a'*•B1 -A1 b 1 *-A 1 •b 1 * 
0 0 0 0 0 0 0 0 

a*B +a B -a*xB*-A b+Ab -A*xb*+a'B'-a'B'+a'*xB'*+ 
0 0 0 ,0 . 0 0 

+A 1 b 1 -A1 b 1 +A 1 *xb 1 * 
·o o 

a b 1 -a*•b1 +a 1 b*+a 1 •b*-A*B 1 +A 1 B*-A•B 1 *+A'*•B 
0 0 0 0 0 ~ 0 0 

a*b'+a b 1 -a*xb1 *-A*B 1 +AB 1 *+A*xB 1 *-a 1 b+a 1 b -a'*xb* 
0 0 0 0 0 0 

-A'*B+A'B*+A'*xB* 
0 0 

a*B'+a*•B'+A b'-A•b 1 *-a 1 B +a'*•B+A'b -A'•b* I 
0 0 0 0 0 0 0 

* * * * * * * * a B'-a B'+a XB' +A b'+Ab' +A xb' -a' B-a'B +a' XB +. 
0 0 0 0 0 0 

+A'b+A'b*+A'*xb* 
0 • 0 

The di-dioctonionic units have the forms 

( 
1 0 0 0 

l= ·o O O 0 ) ( iooo) (0000) , (0000) 'e7 = o o o o 'e J = e o o o 'e J+J = ie o o o 

e=( 

e' =( 
E'=( 

0 1 0 0 
0 0 0 0 

0 0 1 0 
0 0 0 0 

0 0 0 1 
0 0 0 0 

J J 

) . ( 0 i O O )' ( 0 0 0 0 ) ( 0 0 0 0 ) 
,E7= 0 0 0 0 ,EJ= 0 e O O ,EJ+J= 0ie O 0 

J J 

) 
1 (00i0), (0000) 1 ·(0000) ,e7= o o o o ,eJ= o o e o ,eJ+J= o 0ie O 

J J 

) , (OOOi), (0000), (0000) ,E7= 0 0 0 0 ,EJ=. 0 0 0 ej ,EJ+l= 0 0 0iej 
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