


1. Introdﬁction

The nuclear reactions with participation of such a simple nuclear sys-
tem as a deuteron gain an increasing physicists’ interest. There are a lot
of papers dealing with deuteron interactions at high energies in which dif-
ferent theoretical approaches (see reviews [1,2]) to the discription of the
structure of a relativistic hadronic composite system are considered. In
many papers particular attention is paid to the reaction with a relativis-
tic deuteron dp — ppn '[3,4,5,6] where the observable proton is beyond
kinematic boundaries for frozen nucleons in the deuteron . It is shown
that at small angles of proton emission the main contribution to this pro-
cess is made by deuteron stripping, and as the proton registration angle
increases, the contribution of subprocesses with target protons increases.
For the description of secondary proton momentum spectra from reac-
tion dp — pX at large transverse momenta in some papers(7] the hard
collision model [8] was used. This model being one of the relativistic im-
pulse approximation variant [1,2] describes rather well the experimental
data [6]. An important element of this model is the nucleon momentum
distribution G(z,kl) inside the deuteron, which defines the probability
of finding in relativistic deuteron the nucleon with transverse momentum
k) and the fraction z of the deuteron longitudinal momentum . In or-
der to use this reaction for extracting the nucleon momentum distribution
in the deuteron one needs correct calculations of secondary interactions
(SI) like rescattering, final state interaction [9] etc. Unfortunately, due to
an ambiguity of the SI calculations [9,10,11,12] one can use three main
variants of the deuteron structure functions (Fig.1): i)the phenomenologi-
cal structure fuunction by Blankenbecler and Schmidt [8]; ii)the structure
function obtained from the deuteron nonrelativistic wave function(e.g. for
the Paris potential [13]); iii)the structure function similar to the previous
one but with a high momentum tail due to the exotic flucton (6q) compo-
nent [14]. In case i) BS-function is in a good agreement with data [5] and
possibly the SI-contribution is negligible. The variant ii) shows that one
can describe the data only by the significant SI-effect [9,10,11]. In iii) SI
may give an appreciable contribution only in the region of 06<z<08
and at z > 0.9 the high momentum tail dominates.

The analogous problem of relation between the impulse approxima-
tion contribution [15] and that of Sl-effects [16] now also exists in the
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description of the ed — e'pn reaction .
In this paper we investigate the correlation function

E, E;dos(dp—p1p2n)
dp1dpa " Uinel
(El do(dp—p1pn) ) (Ezdd(dp—'mpf_ll) !
dpy dp2

R =

which is the ratio of the double-inclusive differential cross section to the

product of two single-inclusive differential cross sections, and a’f,i, is the
cross section of inelastic deuteron-proton interaction. On the contrary
to the single-inclusive dp < p;pn reaction the process dp — p;psn with
registration of two final protons allows us to eliminate the SI-contributions.
The results of this paper are also valid for the reaction dp — ppX at
moderate (several Gev) energies due to the fact that the inelastic processes
contribution is small. /

In section 2 we present the double- and single-inclusive differential

cross sections formulae needed to calculate the R-function. In section 3

expressions for different aforesaid deuteron structure functions are given
and in section 4 we present results of our calculations of the R-function
and some discussion on them.

2. Cross sections in hard collision model

. One can calculate the two-inclusive differential cross sections of reac-
tion dp — ppX using the model of hard collisions. The corresponding
graphs of this process are shown in Fig.2 with an intermediate neuteron
(Fig.2a) or a proton (Fig.2b). ‘

For the analysis of the diagrams of Fig.2 it is also convenient to
parametrize different momenta using variables defined in a general set of
~ frames along the interaction axis (a particle’s name and four-momentum
are denoted by the same symbol). Four-momenta of the target proton and
the incident deuteron are defined as

' A2 . A?
A =(P £ O — —)
. 1+4P1, T, P1+4P1
B - B?
B = (P 26 —'—)
2+4P21 T’P2 4P2 . (2)

A specific frame in this set is selected by relating P, and P,. For

example, the laboratory frame is defined by the conditions

(1)

T g i, T
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For the infinite momentum frame P, — oo, and for the center-of-mass
frame such conditions are the following

P

A? B?

P—-m =P

! 4P1 2 4P2
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Also one can define the other momenta for the particles in Fig.2a and

Fig.2b, respectively, as

. C*+C: = C’+C‘%)
= b i p,— T
¢ (”P“L =P, OTT T Tagp,
6 +Ch 5 ’ﬂ2+5‘%),
= - BT _Cr,(1—2)Pr— 5 ) @3
A ((1 2DPt i o)py n(1 -2k =1 op (3)
and
L BB . B +B
- (1-ypPp+ —"F —Br,(1- P——-——————)
8 = (A-vPr gy VP i
- . BtAE 5 l§+ﬁ%)
= P, — . 4
b (sz-i' 1P, yBr,yP2 P, (4)
Note that with these parametrizations
z = Co +Cs
By + B;
_ bo + b3
y BO+B3 1.

which are the usual light-cone variables. The squared off-shell masses of
the particles 3 in Fig.2a and b in Fig.2b can be defined from the energy
conservation law for corresponding vertices of the deuteron disintegration

and are given by
2(1 - z)B? — (1 —2)C* — C}
g =
z
y(1—y)B* —yB* - BF
1—y '
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It is simple to evaluate the diagrams of Fig.2a and Fig.2b , respectively, -

as
EcEpdo z I(8,A)
oD% (AB -
i6ap AB—0DX) 1== 1B, 4) Cors(® Cr).
Epd
D U(,BA—»DX) (5)
E¢Epdo 1 I(b,4)
202D ABCDX) = [dyd
= =~(AB—CDX) /dy B Guyav,Br) | 5
E;CE“?@AHCDX) (6)

The structure functions GC/B(:c C'T) and Gy/p(y, ,BT) are in principle’

different , but they are chosen so that they differ only by the vertex func-
tions mcluded in their definitions. In fact, these vertex functions have the

same structure but differ only in the on-shell or off-shell properties of the
external connecting lines. One can set these vertex functions (approxi- -

mately) equal if it does not matter which external line is off-shell (this is
rigorously correct in the nonrelativistic limit) and the structure functions
G and G can be taken to be the same [8]. In Eqgs.(5) and (6) E¢ and
Ep are the total energies of C and D particles, I(8, A) and I(B, A) are
invariant streams of coincident particles. In this paper we consider the
contribution only of elastic n-p and p-p subprocesses of Fig.2 | i.e. there
are only two outgoing particles in the processes BA — DX in Fig.2a and
bA — CDX in Fig.2b. In this case we have

DX - - 2
iD (BA— ) ‘A_I(,B,A)c?(mx )dt’('BA_)DE)
E d
CED-’U(bA—b CD) = M5(4)(6+A—C—D)
dCdD T
| 7
dt’(bA — CD). (1)
The substitution of Eqs. (7) to (5) and (6) leads, respectively, to
EcEpdo 2 =z I*(B, I*(8,A) = \
dCdD  wl-=z I(B, A) GC/B(“’ CT)6(mx mg)

dt,(ﬂA — DE),

s

- and ¢ is the angle between ,§T and ET .
~ roots of the equation

I*(b, A)
yI(B, A)

Ei;(bA — CD). (8)

EcEDdO‘

— &b+ A-C-D)
dC dD

-2 /dydﬂ:r Gu/(y, Br) —7m—n

To calculate the correlation function R from Eq. (1), one must know the
cross sections of the proton production at different angles in the inclusive
dp — pX reaction. For such processes with large transverse momenta the
invariant cross section of the production of proton D in Fig.2a is given

[7,8] as
Epda 2my ARes o™ (1— al) |r3 |2
(AB - DX) 7ra,B3 /"‘"‘ / e 4] l ay — Qg l
Gﬁ/B(a Ar) dt,(ﬂA — DE)prdprdg, (9)
where
Bo + Bs
Bo + Bs’ .
a = 2 4 (Bo + Bs)(ma — Do + Ds),

The quantities a; and a;-are '

— 2
C? + fr

l—-«

—mza—(ﬁr—ﬁTf:O,

[mA—Do—Ds-*_a] a@—
By + B3

- which represents the four-momentum conservation law §+A = D+ E (see

Fig.2a) and the integration limits ™™ A7 and ¢™* are defined from
the condition that ‘a; and a; be real numbers.

For the deuteron stripping processes the invariant cross section of the
AB — CX reaction in Fig.2a is given [7,8,14] by

Ecdo

(AB CX)= A(lﬁ):l:GC/B(:L' CT) atOt( ’) Srin (10) :

where a‘°‘(3’ ) is the total cross section of the n-p interaction, s’ is the
square of the total energy in the center-of-mass frame of interacting parti-
cles in the subprocess of Fig.2a , z = (Co+ C3)/(Bo + Bj) is the light-cone
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variable and A(l3) is the factor modifying o%f(s') due to the virtuality of
the neutron and fii, = [s'(s' — 4m?))V/2/[2m(1 — z)Bs] stands to take ac-
count of the phase volume boundary because of a finite momentum of the
projectile nucleus. In our calculations the cross sections of the interaction

of real and virtual neutrons with protons were set to be the same, hense
A(lZ) =1

3. Structure functions

To calculate the correlation function R, three types of structure func-
tions pretending now to describe the deuteron relativistic structure were
used.

1. The phenomenological structure function [7,8]

[=(1 — =)}
2 52 3 ol
[12(e) + 63 1+ g

No
2(27)3

Geyp(z, éT) = (11)

where
Mz(:c) =(1- :c)C’2 + z8% — z(1 - :c)B2
and g = 3, §* = 0.8(Gev/c)?, N, = 331.5(Gev/c)? [2].
2, The structure function [12] deduced from the nonrelativistic wave

function iI’,,_,., for the Paris potential depending on the relativistic invariant
variable k? [17]

| &, (k) 7

m%,-}-lzt‘fr)% 1 (12)

Grya(w, br) = (m(l —z)/ 4z(l - =)

and

2 2
+k

k2 — my r .2

4z(1 — z) N
where k is the four-momentum of the nucleon inside the deuteron, ET is
its transverse momentum.

3. The structure function [14] defined as

G(:B, ET) - (1 —_ w) GN/d(:D, ]_‘;T) + w éd(z, ET) s (13)

where Gy/4(z, ET) is the function from Eq. (12), w = 0.036 is the six-quark
component probability in the deuteron and the function é’d(:c, ET) giving

6

.
3

the momentum distrubution of a colourless 3q-cluster in the six-quark
flucton can be deduced with the help of the quark-gluon-string model in
the following form

- . b
Ga(z,kr) = o Gy(z) exp(—bkr) ,
_ F(A2 + B2 + 2) A2 _ Bz
G®) = Fa,rrB+n° 7T
(1-A)(B2+2)—2
A, .

2~ (1— Ay)

The value of the parameter b was set to be 2 (Gev/c)~!. Other parameters
were Ay = 0.34 and B, = 1.1 . The structure functions of Eqs. (11),(12)
and (13) have the following normalization

[ Gla,fu)dzdi, = 1.
For the function é’d(m) we have
1.
/ Gy(z)dz = 1
o

and
1-A,

/01 z Gy(z)de =

The latter condition is necessary for the description of the "EMC”-effect
and it means, in.fact, that the valence quarks in the six-quark cluster do
not have its total momentum and part of the cluster momentum is carried
by a collective sea of the flucton. )

4. Results and discussions

We present three variants of calculations for the correlation function R
of Eq. (1) with structure functions of Eqs. (11)-(13) for different angles of
observable protons : (0.01°,19°,Fig.3); (7°,19°,Fig.4);(7°,7°,Fig.5).The an-
gles are given in the rest system of target protons and projectile deuteron
momentum 9Gev/c according to forthcoming Dubna experiments. ..

Parametrizations of the differential cross sections of the elastic p-p
and 7n-p interaction and of the total cross sections for n-p interactions
used in the calculation of the function R of Eq. (1) are given in Appendix
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Table 1. The parametrization of the cross section (d—”) PP in the re-

el

at’
gions of pb*¢™ € [1.75;12.1]Gev/c and | t' |< t, .

T O
(Gev/c) (Geb/c)? (mb/(Gev/c)?)
1.75—3.0 | [t'|<t; |ezp(a;+bit' +¢t?)
[t >t A /() '] —0.55)"
3.0 - 4.0 |t |<t, |ezp(az+bet +c2t?)
|t |>t, Az/(] '] —0.55)"
40-50 | |t'|<t, |ezp(az+bet' +cyt?)
[t > t, Az/(] '] —0.55)"
5.0—-17.0 [t < t, exp(az + b t' + ¢, t'%)
[t > t, As/(| t'| —0.55)"
7.0 — 8.0 [t'|<t, |exp(as+byt' +ct?)
ty <|t'|<ty | exp(as + bst' + cst™)
>ty exp(ag + byt + cst?)
8.0 -9.2 [t |<ts exp(az + b t' + 2 t'z)
ts <|t'|<ts | exp(as + bst' + cat’®)
[t ]> 4 exp(ag + byt + cyt?)
92-121| |t|<t;s exp(az + b t' + ¢, t'z)
ts <|t'|<ts | exp(as+ bst' + c5t”?)
[t > ts exp(as + byt' + ¢4 t’z)

A. The inclusive cross sections of Eq.(8) contain §- functions which just
fix the two-particle elastic kinematics in the subprocesses in Fig.2. We
calculated these cross sections for the case when one of the secondary
protons is detected at the angle range [0, 8 + Af], where A8 is defined by
an experimental set-up acceptance (we chose it to be 7.5 mrad). Note that
we have used for the single-inclusive cross sections in the denominator of
the correlation function R of Eq.(1) the BS-structure function of Eq.(11)
(variant i)).This function described rather well inclusive cross sections at
. different angles and played the role of data parametrization.We should
like to stress again that one can get good description of the inclusive
data using three different deuteron structure functions ( i)-iii) ) due to
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Fig.1. Momentum stectra of protons emitted at 0° in dp — pX reac-
tion at incident deuteron momenta 17.8 [3] and 9.1 Gev/c [5] versus the
final proton momentum gq in the rest frame of the deuteron. BS, PARIS
and EKKLS curves represent the results for the deuteron structure func-
tions by [8], [13] and [14], respectively.

ambiguous SI-calculations (rescattering,final state interactions etc.) [9,
10,11,12] . However,in the double inclusive reaction dp — ppn one can be
separated from Sl-effects.



(b)

Fig.2. Mechanisms of the reaction dp — ppX.

To define the "real” structure function of the deuteron, it is preferable
to detect one of the two final protons at a small angle and the other one at
a large angle.In this case (see the diagram in Fig.2a) the stripping proton
reveals the undisturbed "real” structure function for the two reasons :

1) the interaction between the neuteron and the target proton occures

with a large transfer momentum and hence the final state interaction is
suppressed ; 2) due to the elastic kinematics of the subprocess one can
fix the momenta and angles so that the momentum and angle distortions
from fescattering will be diminished.

Thus the curves in Figs.3,4,5 present the behaviour of the function R
for three types of structure functions substituted to the double-inclusive
cross section standing in the R’s nominator while the denominator remains
to be the same for all cases. The light-cone variable = = (Co + Cs)/ (Bo +
B;;) for one of the secondary protons is plotted on the horisontal axis
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Fig.3. Comparison of the correlation functions R calculated using
different structure functions of the deuteron for the reaction dp — ppn
at an incoming deuteron momentum of 9 Gev/c and proton-detecting
angles 6, = 0.01° and §; = 19° .The dashed, solid and dashed-dot curves
represent the R functions for the structure functions of Eqgs.(11), (12) and
(13), respectively. '

and the momentum of the other protons is defined by the two-particle
kinematics in the subprocesses BA — DE and bA — CD in Fig.2 when
values of z, 8; and 8, are fixed. The region = > 0.6 (which corresponds to
the region g > 0.2Gev/c in Fig.1) is more critical to the choice of the type
of the deuteron structure function G(z, k 1) because here the discrepances
become essential.

In summary, we have shown that measurements of two-proton corre-
lations in dp — ppn reaction may reveal the deuteron structure function
among different available model structure functions because the chosen
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Fig.4'. The same as in Fig.3, but for , = 7° and 6, = 19°.
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Fig.5. The same as in Fig.3, but for §, = 7° and 6, = 7°.
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kinematics eliminates secondary interaction effects. There is a hope that
the above consideration is suitable for dp — ppX reaction at moderate
energies due to the main contribution of elastic channels in subprocesses. .
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Appendix A

The experimental data [17] were used to parametrize the oL}, | (%) o
and (dt') .l Cross sections.

1. The parametrization of the total cross section for the n-p interaction

in the p{sg™ region from 0.2 to 10 Gev/c was taken in the following form

B (mb) = exp(8.57 — 14.37 - p + 10.566 - p*) , at p < 0.66 (Gev/c)
Tt 40 , at p > 0.66 (Gev/c).

2. The parametrization of the ((%,) = elastic cross section in the pfee™
region from 1.26 to 6.5 Gev/c is

dO‘ P 7 12 3
— = Aexp(at' + bt” + ct”),

'),
where
A = -—1566.82728 + 661.3355275 s’ — 79.1214071 s + 2.9376385 5>
a = —29.133999 + 14.9313095 s’ — 1.80687 s'* + 0.06760491 5"
b = 15.543675 — 1.4586209 s’ — 0.05262461 s'° 4 0.00638351 5"

¢ = 50158815 — 1.0077129 s’ — 0.0666055 ' — 0.00139486 5 .

3. The parametrization of the (dz') PP in the region of pbeg™ €[1.75; 12.1]
Gev/c seems to be rather cumbersome,but it quite well fits the experimen-
tal data. To take account of the symmetry of the angular distribution in
the elastic p-p scattering (see the subprocess 84 — CD in Fig.2b ) with
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respect to 6* = 90° in the center-of-mass frame for the region | t' [> ¢, ,

Where to _ A(sl2’ mfb lg)
-o28 , .
one must use, instead of t/, the quantity (—2%p —t') . In the region
| ' |< to for different intervals of the incident proton momentum ptee™ the

parametrization of the (%’7) PP given in Table 1 was used.
The parameters ay, .. .,a4,br,...,ba,c1, ..., cayt1, .. ., t5, A1, Az, Az and
n are expressed through s’ as follows :

5.449 — 0.0926 s,

ay =

a;, = 5.02—-0.0393¢,

az = 9.2877 —1.0934 s' + 0.02565 s,
as = 4.2149 — 0.2363 s’ — 0.00361 5%,

by = 7.279 +0.0706 ',

b, = 4.828 4 0.4088 s’ — 0.01054 s,
by, = 4.2667 —0.2885 s’ +0.00744 5",
by = 1.0984 4 0.1421s' — 0.004865s',

a = 7.189—0.5195

2.936 — 0.0449 s/,

0.17043 — 0.00658 s,

cs = 0.1242 4 0.00694 s’ — 0.000344 s,

il

C2

C3

t, = —1.4208 +0.6612s' — 0.04506 s,
t, = —3.307+0.6107s' — 0.0187 "%,
t; = —3.059 +0.4225s' — 0.00837 s’

ty = 26.9309 —3.18s' + 0.10675 s,

ts —0.1383 + 0.5858 s’ — 0.01617 s,
Ay = 44.3369'— 11.19824 ' + 0.71574 5%,
A, = 5.7121 — 1.0438 s' + 0.04837 5”2,
As = 0.817 —0.1007 s’ + 0.00325 5",

n = —1.7894 +0.366 s’ — 0.005355".
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Ebpemor A.B., Kana¢un A.B., Kum B.T. '~ E2-90-368
Koppenauuy ABYX TPOTOHOB B PeNIATHBHCTCKHUX '
dp~coynapeHusx

PaccMmoTpeHb OBYXNpOTOHHBle KoppesiAuHH B dp ~ ppn B3au~
MOJeHCTBHAX PeJIATHBHCTCKHUX NEeHTPOHOB C NpoToHaMmu. [JaHHbe
Koppensauuu ainT Gosbile HHboOpMALlMH, uYeM HHKINO3HUBHLIE . PO —
TOHHbBlE CTIeKTPbl, ONHCAHHbBe B paMKaxX pas3JIMuUHbIX Mojesiei
CTPYKTYDPHOM GYHKUMHM peitTpoHa, [BJf KOTODBX CYWECTBYWT He-
onpenesIeHHOCTH B pacueTax BKJ1aJa BTODHYHLIX B3aHMOAEHCTBHI
/npouieccsl nmepepaccesiHHs, B3aHMONEHCTBHUA B KOHEUHOM CO-—
croanuu/ . TlpencrasiieHsl npelcKasaTesIbHble pacueThl, NOKas3bl~
Bawile pasJiMyHoe IoBeleHHe KOPppeNAuUOHHON GYHKLUMH IJIf
PAasNIUuyHLIX MoOpesiel CTPYKTYDHOH ¢YHKUHH geHTpoHa B KHHeMa-
THueckoi#l o06JlacTH, rAe BKIIaubl BTODHUHBIX BsanmoneﬁéTBHﬁ
MaJjibt,

PaGora BbmosHeHa B JlaGopaTOpHH TeopeTHUeCKOll GH3UKH
ousIu. ' ‘

Mpenpunat O6benHHEeHHOTO HHCTHTYTA ANEPHBIX uccnenoaakui&. HOy6na 1990

Efremov A.V., Kanafin A.B,, Kim V.T. E2-90-368
Correlations of Two Protons
in Relativistic dp-Collisions

Two-proton correlations in the dp - ppn collisions of
relativistic deuterons with protons are considered. These
correlations give more information than inclusive proton
spectra described in the framework of different deuteron
structure function models bacause of uncertainty in the
calculation of secondary interaction contribution /re-
scattering processes and final state interactions/. We
present the predictable calculations which show different
behaviour of the correlation function for different deu-
teron structure function models in the kinematic region
where contributions of secondary interactions are negli-
gible,

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR,
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