
A.B.Govorkov 

0 ti b e A M H e H H bl M 
MHCTMTYT 
RAB PH bl X 

MccneAOBaHMM 

AYtiHa 

E2-90-364 

THE GENERALIZED FIELD QUANTIZATION 

AND THE PAULI PRINCIPLE 

Submitted to "Fifth International Conference 
on Hadronic Mechanics and Nonpotential Interactions", 
13-17 August,1990, USA 

1990 



1. Introduction. The identical particles and the second 

quantization 

Our experience teaches us that all particles, which can 

be imagined as point-like objects, obey either Fermi-Dirac or 

Bose-Einstein statistics. This law can be applied to par

ticles really observed in our laboratories (electrons, 

photons, nucleons, mesons, and so on) or to only imaginary 

particles such as quarks and gluons which cannot be outside 

hadrons in principle. The reason for this Law of Nature, we 

may expect, lies in deep properties of the Matter ·such as its 

identity and reproduction. 

There is the famous Pauli theorem on the connection bet

ween a particle spin and particle statistics: particles wi:th 

integer spins obey Bose statistics and particles with 

half-integer spins obey Fermi statistics. 

However, a question arises: are there any other possibi

lities for particle statistics besides the ordinary Fermi and 

Bose statistics? For example, can we have a small violation 

of the Pauli principle (for electrons)? - the question which 

has been raised recently by Ignatiev and Kuzmin again/1
/ (For 

a previous history of this problem see a remarkable 
review/2

/) • 

In this report I shall try to derive possible statistics 

of identical particles from their indistinguishability and.to 

answer the question: how high is the price for a very small 

violation of the Pauli principle? 

The usual way of defining the indistinguishability of 

identical particles consists in the following: "we use the 

word identical to describe particles that can be substituted 

for each other u.-1der tlie most gen('!l'."'al possible circumst-··"1es 

with no change in the physica! . . :" .uation11• ;/. A shortcoming 
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of this definition _is obvious: ·we are in need of the notion 

of permutations of identical particles which is meaningless. 

A more correct definition of the indistinguishability 

can be obtained by means of the concept of quantum fields: 

identical particles can be considered as excitations (quanta) 

of· the same field. The field quantization rules yield to 

certain symmetrized prop~rties of particle wave functions. 

But then the problem turns about: we are in need of a deter

mination of quantization rules for the definition of the• 

indistinguishability. 

The most self.-consistent consideration of the problem of 

statistics of (massive) fields was done by Doplicher,Haag and 

R9berts in their works/4
/ within the local algebra of obser

vables. In free words~ their conception of a particle can be 

described as a well-localized system which. is completely un

correlat.ed to the rest of the world ,in sense that one may 

take it out of the world or add it without effecting measure

ments. in the space-like complement of its localization 

region* (More subtle concept of a particle was formulated by 

Buchholz and Fredenhagen/s/. for the case_ when "the particles 

sitting at the endpoints of a string (flux lines) cannot be 

t t d 
. ** . . rea e as isolat_ed system") . The result . consists in 

· the possib~lity of the existence of only three types of 

statistics: paria-!1erunl and paria-7JO<IB statistics of identical 

particles for _which the number of particles in a symmetric or 

antisymmetric state, respectively, cannot exceed some given 

integer p , which is called the order of the (finite) para

statistics, and lnflnlte statistics without any restrictions 

* Such a possibility is tightly connected with a topology of 
the space and models. For e·xample, it cannot be applied to 
the ·(l+l) - space-time models: we cannot take out one 
particle (along .one-dimensional space direction) _without 
disterbing other particles. In these cases, statistics of 
particles may be very uncommon . 
** The same classification of identical particle statistics 

was obtained by Hartle, Stolt and Taylor/6
/ whose ,point of 

departure was the <:luster properties of the wave functions of 
. particles. 
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on the number of particles in the symmetric and antisymmetric 

states. Obviously, the finite statistics corresponding to p=l 

coincides with ordinary Fermi and Bose statistics. Then, in 

the works/s/ it has been shown that "in the ca~e of infinite

statistics a reasonable conjugate sector cannot be construc

ted" or, in other words, in this case antiparticles cannot be 

included. So the case of infinite statistics was excluded 

'from the local theory. 

All the same, we need the definition of certain field 

commutation relations (second-quantized theory) for the local 

field formulation of parastatistics. Green/7/ was the first 

who gave such example in the form of trilinear commutation 

relations of fields (Independently, the same relations for a 

special case of para-F~rmi statistics of order two have been 

proposed by Volkov/B/) . Greenberg and Messiah/9
/ proved the 

sufficiency of the Green paraquantization for the description 

of parastatistics of order p . Then, the question of the 

necessity of the Green quantization for the description of 

parastatistics arose/lO/. 

At the first step we, declining from an excessive 

regour, .consider a system of the fixed number n of non

relativistic particles. We propose the principle of the in

distinguishability of identical particles in the form of the 

requirement of symmetry of the density matrix with respect to 

all permutations 'P of its arguments 

p(x , ••• ,x ;x', .•• ,x';t) =p(x'P , ••• ,x'P ;x'P' , ... ,x'P' ;t).(1) 
1 n 1 n 1 n 1 ,n 

Recall, the diagonal density matrix when x = x' , ... , x = x' 
1 1 n n 

represent density of probability to find any particle in a 

position x, any particle in a position x, and so on, at an 
1 2 

istant t *. Considering Fermi and Bose statistics 
/11/ • h . . 't Bogolubov noted this common property and emp asizing is 

* This requirement can be compared with tlie independence of 
the order of the product p o p o ••• o p of morphisms 

1 2 n 

p 
1 

, ••• , p n of the local 

space-like supports/4
/ 

algebra of observables with mutual 
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correspondence to the symmetry property of classical distri

bution function for nondistinguishable classical particles 

called it "the classical symmetry" of the density matrix in 

contrast with the more specific "quantum symmetry" of wave 

functions or, which is the same thing, symmetry ( or anti

symmetry) of the density matrix with respect to the "primary" 

x , ... ,x and "secondary" x' , ... ,x' arguments separately. 
1 n • 1 n 

Now we put the classical symmetry of the density matrix 

in the basis of our consideration of possible statistics of 

identical particles in a general case without any assumptions 

of symmetry properties of the density matrix with respect to 

permutations of primary arguments or permutations of secon

dary arguments performed separately. Then, the density matrix 

rather than the wave function undergoes the second quantiza-

t . /10/ ion . 

Although we cannot introduce occupation numbers for each 

of these sets of arguments of density matrix separately, this 

can ·be done for the two sets together. One can define the 

number n 
1 

J of particles occupying the given state k< 
11 

( for 

instant, momentum and spin state) among all the primary 

states and the state k< J 1 among all the secondary states. 

Then, we can consider the "space of double occupation number 

n " and characterize the state of the system by specifying 
lJ 

the density matrix in this space: p{n,), 
(X) 

:E 
n =1 

l l 

p{n"} = 1. 

After this, we can introduce operators of transition of 

a particle from one primary state, says, to another primary 

state, say r, without any transitions in the secondary states 

N lno > 
sr lj 

where 

(X) 

L [no <no - o +1)]1/2lno +1,no -1>, 
q=l sq rq rs rq sq 

ln° > 
l J 

(X) 

TT 
l 'J 

0 0 
n n 

l J l J 

(2) 

are basis vectors with fixed · double number. The operator 

N = N is the operator of the total number of particles in 
r rr 

.the primary stater. The Hernitian-conjugate operator is 

4 

j ,, 

ll 

f 

j 
t 
l 

N + = N (3) 
rs sr 

For the commutator of two operators (2) we have 

N , N 
lj rs 

= o N - o N 
ls rj Jr ls 

(4) 

In these relations, we can readily recognize the Lie 

algebra of the generators of the unitary group SU(~) in the 

space of all possible single-particle states whose number 

goes to infinity. Note that relations (4) have been obtained 

by Bogolubov when quantizing the density matrix in Bose and 

Fermi statistics/1
1/. Our analysis/to/ shows that they must 

be satisfied for any generalization of the statistics of 

identical ·particles. 
For the advancement to the system with a va~iable number 

of particles we need to introduce the operators of creation 

and annihilation of particles. Here, we must formulate a num-
. . * ber of propositions 

Proposition 1. The transition operator N can be repreIJ 
sented as a product of two operators 

(5) - 1 + 
N = a [a a) + c 
lj 1 1 JC lj 

where the bracket is defined as [a ,a+) = a a++ c a+a 
l JC ij Jl 

and a, c, c : · are numbers. By vertue of ( 3) , the numbers a and 
l j * 

c must be real and c = c 
I j j I 

Proposition 2. The operators·a and a+ lower and raise, 
l l 

respectively, the number of particles in a state i by unity, 

i.e., we have the following relation Mith thE! par~icle-number 

operator 

[N ,a ] 
J l -

- o,1a,, [N
1

,a;]_ = olJa; (6) 

* Our consideration is very close to that presented in the 

book/1
2/ for the special cases c = ± 1. In our case c and a 

are left arbitrary real numbers. The parameter a may be ex
cluded by renormalization of operators but we conserve it ar
bitrary_for attaching him values which are met in the litera
ture.Note also that our notation must .be changed as c=>l/c 
and a=>a/c" for a conformity with the notation in 

papers/10
' 
14

/. 
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Proposition 3. The theory does not depend on the choice 

of basis vectors of representations, i.e. it must be invari

ant under undegenerate transformations 

a' = L u1JaJ, 
I J 

ca'>+= E 
J J 

• + u a 
IJ J 

(7) 

The importance of this assumption was first pointed out 

by Bialyn'icki-Birula1121
• 

Substitution of (5) into (4) and the requirement of in

dependence of the result under transformations (7) lead to 

a condition of unitarity of these trasformations 

E 
m 

• u u 
Im Jm 

0 

and a condition for the constants 

E 
m,n 

The latter gives 

• U U C Im Jn mn 

C = C o 
I J I J 

I J 
(8) 

cl J (9) 

(10) 

where c is some real constant. Substitution ( 5) into ( 6) 

gives 

[[ a a+] a] = - a o a 
)

1 JC~ I - IJ I (11) 

Performing the infinitesimal trasformation of the operators 

·a' 
I = a1 + E 

J 

w a 
IJ J 

w 
I J 

• = - w JI 

and equating the small quantities of the first order in won 

both sides of (11), we ~rrive at the initial trilinear rela

tion for the creation and annihilation operators1101 

[[ a a+] a] = - a o a 
1 1 JC' k - Jk i 

(12) 

plus its Hermitian-conjugate relation. We can readily verify 

that (12) transforms (4) into an identity (with allowance for 

(5) and (10)). 

However, now we order the positive definiteness of 

diagonal elements of the density matrix, or the fulfilment of 

the requirement that the squares of norms of state vectors in 

6 

·1 

j! 
.'1 

I 
tl 
II I 
1: 

,1 

I 
{ 
j, 

1 

I 
j 

I 

the Fack representation of (12) be positive. 

2. The Fack representation and allowed quantization 

schemes 

We postulate the existence of a unique vacuum state IO> 
such that 

a IO>= o 
I 

for all i. (13) 

The action of (11) on the vacuum state due to the uni

quiness of this state leads to a proportionality* 

a a+IO> = f IO> , (14) 
I J IJ 

where f
11 

are some numbers. The action of (4) on the vacuum 

state (taking into account (5) and (10)) gives 

f = p o • 
I j I J 

(15) 

For the norm of any single-particle state we have 

II E 
J 

• a+IO> 11 2 = p EI• 12 
2: o, 

J J J J 

so, it is p 2: o. 
The following theorem was proved1141

: If c :I- 0, then 

from (A) the condition of positive definiteness of the norm 

of the state vectors in the Fack space and (B) the require

ment that the number of particles in either a symmetric or an 

antisymmetric state cannot exceed a given number M.::2 (the 

condition of finite parastatistics**> it follows that c=-1 

and c=+l, respectively. 

The main line of the proof is as follows: The norms of 

symmetrical (characterized by the parameter ;\.=+1) or anti

symmetrical (;\.=-1) in M+l particles vector (in the presence 

* The following proof is analogous to the proof for the Green 
quantization in the special cases c = ±1 which was given by 

Greenberg and Messiah191
• 

** . . . . . . . As it has been mentioned befor, the infinite statistics 

was excluded from the local theory151
• Below, we shall consi

der a nonlocal theory of infinite statistics. 
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of other nonsymmetrized particles) were calculated by means 

of the (Hermitian cojugate) relations (12) and conditions 

(13)-(15) and equated to zero. Then, Z=Ac=-1 turns out to be 

the only real root of this equation (of the 2M-2 degree). 

From this it follows that c=-1 for para-Fermi statistics 

(A=+l) and c=+l for para-Bose statistics (A=-1). At the same 

time, it was proved that ac>O and for the parameter p=acM/2. 

If we put ac=2, then p=M and p coincides merely with the 

order of parastatistics. In this case relations (12) become 
the Green ones/71• 

As we have mentioned be for, Greenberg and Messiah191 

proved the sufficiency of the Green paraquantization for the 

description of parastatistics on the same basic assumptions 

of the existence of a unique vacuum state ( 13) and the 

requirement of the positive definiteness of norms of sym

metrical ( for c=-1) or antisymmetrical ( for c=+l) vectors. 

Greenberg and Messiah proved that . the parameter p in ( 15) . 

must be a positive integer number (1,2, ... ) which determines 

the order of parastatistics. 

So, if there is no exclusion c=O, we could assert the 

necessity and sufficiency of the Green paraquantization for 

the description of parastatistics. However, a recent investi

gation1~51 shows that .the case c=O is also convenient for 

describing parastatistics. In this case, relation ( 12) be
comes 

[a a+,a] = - a o a 
I J k - Jk I 

(16) 

plus_ its Hermitian conjugate relation (In 1151 the sign of a 
. * . was opposite: a 9 -a). The same relations (13)-(15) are 

valid and the requirement of positi~e definiteness of norms 

of symmetrical for a,5;O or antisymmetrical for a~O vectors 

gives p = Mlal, where Mis a maximal number of particles in 

* There is another exclusion from the above theorem corres
ponding to the limiting case in (12): C900,a900 and c/a-finite. 
However, this case can be reduced to the case c=O by means of 
a redefinition of creation and annihilation operators, 

+ /15/ .a 9 a 
I I 

8 
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these states. If one puts lal=l, then p =Mand defines the 

order of para-Fermi(a=-1) or para-Bose(a=+l) statistics. 

Now, we have two local field theories which are conveni

ent for the description of parastatistics! What is the dif

ference between them? 

The basis vectors of the Fack space are obtai~ed by ap

plying polynomials in a+ to the vacuum vector lo>. In the 

case 

some 

take 

of the Green paraquantization, these vectors possess 

additional symmetry and additional commutation relations 
. . * place within the Fack space 

[[a ,a.] ,a] = O, 
I J C k -

C = ±1 (17) 

plus Hermitian-conjugate relations. Due to (17) some symmet

rized multiparticle states disappear and the Fack space con

tains one and only one irreducible subspace corresponding to 

each irreducible representation of the particle permutation 

group (Young diagram) admitted by a given order of parasta
tistics1121. 

In the case of the new paraquantization (16) there are 

no such additional restrictions1151 . ·In this sense, the new 

quantization is more adequate to the particle parastatistics 

than the Green one. 

However, we shall see below that the new field theory, 

corresponding to eqs.(16), carries an inherent asymmetry with 

respect to particles and antiparticles. At present time, we 

cannot decide whether it is a virtue or a shortcoming of the 

new theory. 

Other peculiarity of the new quantization (16) consists 

in the limiting behaviour asp 9 oo. In this limiting case the 

relations 

a a+= o 
I J I J 

hold for all state vectors in the 
/15/ 

Fack space 

(18) 

This is 

* For comparision recall that the relations [a ,a] · = O in 
I J C 

the case of ordinary Fermi or··aose statistics (c=±l) are con-

sequences of the relations [a ,a .. ] =·o within the Fack re-
' JC lj 

presentation. 
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j~st the equation which Greenberg (as he noted, by suggestion 

of R. Hegstrom-) /l 6
/ has recently assumed for the description 

of infinite statist1cs. It can be suggested that this quanti

zation should correspond to the statistics of identical 

particles with an infinite number of internal hidden degrees 

of freedom, which is equivalent to the statistics of noniden

tical particles since they are distinguishable by their in

ternal states. The particles corresponding to eqs. ( 18) , as 

Greenberg showed, obey the Maxwell-Boltzmann statistics/1
6/. 

In this limiting case, the corresponding field theory becomes 

nonlocal/15
'
16

/ in accordance with the general prediction/s/. 

We are prepared now to analyze the possibility (or im

possibility) of a small violation of the Pauli principle. As 

it has been mentioned in the beginning, Ignatiev and 

Kuzmin/l/ have recently raised again the problem of verifica

tion of the accuracy and possible 'small violation of the 

Pauli principle, for instance, when electrons occupy the 

atomic levels. Greenberg and Mohapatri/17
/ have formulated 

trilinear relations for field operators that should be a 

generalization of the one-level Ignatiev-Kuzmin simple model 

for the local quantum field theory of violation of the Pauli 

principle. It is important that this theory is really a local 

theory. However, it is not rather unexpected that the 

Greenberg-Mahapatra relations coincide with ( 12) written in 

some other parametrization/la, 19
/: 

C = (l-2~ 2 )/(2-~ 2
), 

2 4 2 
a= (1-~ +~ )/(-2+~ ), (19) 

where ~2 is a real positive parameter characterizing the 

small violation of the Pauli principle. In this parametriza

tion, more than two identical particles cannot occupy the 

same level (when parameter in (15) p = 1) and ~=O corresponds 

to ordinary Fermi statistics, ~2=1 (c=-1) corresponds to 

Green's para-Fermi statistics of order 2, and {3
2=1/2 (c=O) 

corresponds to the new para-Fermi statistics of order 2. How

ever, according to our preceding discussion of the thee-
/14/ rem , only these descrete values of the parameter -c 

IO 

(and 

:\ 
I 
' 

l 

' 

~
2

) are admissible. So the parameter ~2 cannot take arbitrary 

continuous values and, particularly, small values ~2«1. The 

dire~t calculations/18
' 
19

/ in the framework of the Greenberg-. 

Mahapatra scheme lead to the negative norm of some (four-) 

particle state vector (with three particles in the same quan

tum state), and this negative norm is proportional to -~
2

• 

Thus, this scheme cannot be the theory of small violation of 

the Pauli principle if the norms of all particle state 

vectors must be positive. In its turn, the latter requirement 

is connected with the probabilistJc interpretation of quantum 

theory. Thus, we can conclude that our world was created so 

(in accordance with the Pauli principle) that it could be 

measured by us,! 

There were 
principle/20

•
21

/. 

other attempts 

In addition to 

to violate the Pauli 

being nonlocal these 

theories have, in my opinion, a more serious shortcoming: 

they are tied a priori to a definite representation and do 

not permit superpositions of states· (in contradiction with 

our Proposition 3). 

3. Parafields 

We now turn to the field operators 1/J (x) depending on 

space-time x. We can consider fields of any spin but for de

finiteness and taking into account the f~llowing applications 

we shall write all expressions as if we were dealing with the 

Dirac fields 1/J(x) and ~(x)=I/J•(x),
0

• We consider free fields 

which can be expanded with respect to negative- and positive

frequency solutions 

I/J(x)=(2rr)- 3
/

2 Jd3 p(m/E(p)) 1
/

2 
[ [a(u,p)u(u,p)e-,Px+ 

U=±l/2 

+ b•(u,p)v(u,p)e1 px],(20) 

where p is a momentum and u is a spin state (now the 

Kronecker symbol o means o o 1 3 
> (p -p ) ) . The operator 

1; u
1
uJ 1 J 

a ( u, p) is the annihilation operator of a - particle • and 

b•(u,p) is the creation operator of an antiparticle. 
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In accordance with the previous discussion we can 

propose two possible generalized schemes for the field 

quantization: either old Green's paraquantization correspon

ding to c=±l(a=±2) or the new one corresponding to c=O(a=±l). 

In the case of the Green paraquantization we have the 

following trilinear commutation relations: 

[[I/J(x),~(Y)]c,1/J(z)J_= - 2iS(y-z)¢(x) (21) 

and their Hermitian-conjugate relations. Here, for the half

integer spin field c=-1 and S(x) is the well-known singular 

(on the light-cone) function (for the Dirac field), and for 

the integer spin field (for example, scalar field) c=+l (and 

it is necessary to exchange I/J9(/,, ~9(/, + , and S (x) 9fJ. (x) , where 

h. (x) is a singular function for the scalar field) . Due to 

(17) we have also 

[[I/J(X),1/J(y)]C,I/J(Z)]_ = 0. (22) 

It is easy to prove that the Green theory is local if 

currents and other observables take the form of a commutator 

for c=-1 or an anticommutator for c=+l. The commutation rela

tions (21) and (22) are also invariant under the charge 

conjugate transformation which we write out for the Dirac 

field 
-r 

1/J(x) 9 1/J (x) = C 1/J (x) 
C 

(23) 

where C is the charge-conjugation matrix and T means the 

transposition matrix and spinor. 

For the Green (free) parafield the spin-statistics 

theo:i:-em was proved12
2/: the half-integer spin corresponds to 

para-Fermi statistics (c=-1) and integer spin corresponds to 

para-Bose statistics (c=+l). 

For the new parquantization col:'.responding to (16) we 

have 

[1/J(x)~(y) ,1/J(z)) iS(z-y)I/J(x) (24) 

with its Hermitian-cojugate relation. A remarkable property 

of this quantization is its universality for different 

12 

l 

.1 

.~ 

fields. This property may be useful for further supersymmet

recal generalization. All distinction consists in the spin 

structure of the field .. and singular function in the right

hand side of eq. ( 24) .. It can be proved1151 that owing to the 

properties of singular functions and the existence of anti

particles the parameter a in (16) being equal to .._1 for the 

scalar field and -1 for the Dirac spinor field corresponds to 

the correct spin-statistics connection: the scalar field 

obeys para-Bose statistics and the Dirac spinor field obeys 

para-Fermi statistics. 
Relations (24) ensure the locality of any observables 

which are taken in the form 1/J (x) ~ (x). However, these rela

tions are not invariant under the charge conjugate-transform-:

ation (23). In these ~ircumstances there are some restric

tions on the number of antiparticles in the system. The num

ber of particles in any state .can be arbitrary. In more 

detail we shall discuss this. situation in the next section •. 

We remark that due to the locality this theory is in

variant under the CPT-transformation. 

Now I make the common remark about the locality of both 

the quantization schemes. Both the relations (21) and (24) 

ensure the locality of the corresponding observables. But the 

corresponding particles do not possess the simple commutation 

<:>r anticommutation properties under particle permutations. 

The multiparticle states obey more complex permutation rules 

generating IR's(irreducible representations) of the pe~uta

tion group. The probability of finding the system of 

particles in either IR is determined by the trace of this.IR 

which is equal ~o the s'um of squares 6f modules of ortho

normalized basis.vectors of this IR. We can.think of this ex

pression as a usual probability for fermions or bosons avar

aged over some auxiliary internal degree of freedom like an 

isospin and so on which takes the number of internal states 
I 

_equal to an order of parastatistics. The impor~ant ~roperty 

of the description of a multiparticle state by means of IR's 

13 



is the cluster law. According to this law, one may take one 

particle out of the system without any influence on the IR's 

of the remaining particles. More accurately, such movig off 

consists rather in nonoverlapping of one wave function with 

other wave functions of particles than in sending away a 

certain numbered particle from others16
' 

281
• We should not 

assume the permutations of nonidentical numbered particles 

but we should imagine the identical particles (quanta of the 

same parafield) in different internal states determined by 

different order of particle operators and the corresponding 

IR's. Due to the fulfilment of the cluster law I do not 

believe in a possibility of any "kinematic" explanation of 

f . f t . 1 . t d . t2J, 24t con inement o parapar ices, as i was propose in 

(In such a manner we could forbid the existence of fermions 

in free states as well, due to their anticommutation). Para-

. statistics is the usual Fermi or Bose statistics plus some 

hidden internal degree of freedom1251
• 

4. Algebraic realization of parafields 

Let us compose the following combinations: 

p 

~(x)= L ea~a(x), 
a=t 

~(x)= 

p 

" +-a Lea~ (x). 
a=1 

(25) 

Here, ~a(x) are the Dirac fields obeying ordinary Fermi 

statistics with normal (Fermi) relative anticommutation rela

tions (For scalar parafield we take all the corresponding 

scalar fields ~a(x) to be Bose fields with the normal (Bose) 

relative commutation relations). Quantities ea are the basis 

elements of some determinative algebra. We shall call elem

ents of this algebra the hypernumbers and the field (25) 
. * constructed by means of these hypernumbers the hyperfield. 

* Here, we shall take the basis elements ea to be indepen

dent of space-time. One can develop a formulation, motivated 
by the ideas of differential geometry, in which the basis 

• /26/ elements depend on space-time . 
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For the Green paraquantization (21),(22) (c=±l) the rea-
• • ( . • . 1261 d lization 25) was introduced by Greenberg and Macrae , an 

by the author
1271

• In this case, basis elements form either a 

real Clifford algebra with the anticommutation relations 

[eN,e0 ) = 2 o 0 , e• = e (26) 
~ P + ap a a 

or a complex Clifford algebra with the anticommutation rela

tions 

[ea,e;). = 2 oaf3' (27) 

and 

[ea,e{3)+ = o. (28) 

As a consequence of (28) there is a property of nilpotence 
p+l 

TI ea 0 (29) 
I = 1 I 

and (p+l)st power of the field vanishes identically. so 

hyperfields constructed by means of the complex Clifford 

algebra can be applied only to the system with the maximal 

number of particle equal top. For the consideration of the 

system with more than p particles, we are compeled to go out 

of proper field theory and have recourse to some contrivance 

in the form of a trace-operation over states of the groups of 

p particles or particle-antiparticle pairs1261
• 

For the new paraquantization (24) the basis elements 

form a Greenberg algebra*, with the relations 

eae; = oa{3· 

In this case for the charge-conjugate field we have 
p 

~ (x) = '° + a L ea~ c (x), 
a=1 

~ (X) = 
p 

Le ~a(x) a C 
a=1 

(30) 

(31) 

a -a - -1 a r where ~ c = C ~ , ~ c =[C ~ ] . Therefore, we really have 

* As it has been mentioned be for, Greenberg1161 proposed this 
algebra for th~ description of the infinite statistics. We 
consider the finite Greenberg algebra as an auxiliary fabric 
for the construction of (25). The necessary information on 
the Greenberg algebra is presented in Appendix A. 
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the charge-asimmetrical theory since the original field (25) 

contains ea whereas its charge-conjugate field (31) contains 

e~ and relation (30) is asymmetrical with respect to ea and 
+ 

ea 
We have to introduce the vacuum state vector for the 

construction of the Feck representation of the new field. We 

choose this vector in the form 
p 

I -1/2 ~ ·1 vac.> = p Lea 0>. (32) 
a=l 

Then, for the action of antiparticle operators on the vacuum 

state we have (for any p) 

b lvac.> = o, 
r 

b b+lvac.> = o lvac.>, 
rs rs 

(33) 

(34) 

which can be compared with analogous relations for particle 

operators (13)-(15) and which reveals different vacuum condi

tions for particles and antiparticles unless p=l (usual 

statistics). 

Owing to (33) and (34) we have the same Feck represen

tation with a unique vacuum vector (32) which has to b.e done 

in 1151 
· without applying the algebraic realization (25). The 

antiparticles obey the same parastatis·tics as particles do. 

However, the number of antiparticles is limited by the number 

of particles: the former can exceed the latter not more than 

by unity. 1he number of particles can be arbitrary. 

In principle, we can choose the vacuum vector in a more 

general form 

lvac. ,N > . a 

-N 
= p a 

/2 
p 

I: + 
ea 

1 

+ 
... ea IO> (35) 

a1' ... 'aN 
a 

=1 
N 

a 

with an arbitrary N 2:1. Then, 
a 

the number of "superfluous" 

. However, these superfluous 

(Fermi or Bose) statistics 

antiparticles is limited by Na 

antiparticles obey the usual 

between themselves whereas the "normal" antiparticles which 

are included into particle-antiparticle pairs obey the para

statistics of order p between- themselves and superfluous 

16 

antiparticles. It is a curious phenomenon of the dependence 

of statistics of antiparticles on their states. 

It is interesting also that if we try to· describe the 

usual Fermi (or Bose) statistics by means of these theories 

with p=l, then the particle-antiparticle asymmetry is 

remainded and the number of antifermions (antibcsons) can 

exceed the number of fermions (bosons) not more than by N 
a 

Thus, the number of initial antifermions (antibosons) cannot 

be arbitrary large (>N) whereas the number of initial 
a 

fermions (bosons) can be arbitrary. I am not going. to assert 

that this limiting on the number of antiparticles could 

explain the world asymmetry but it is not in contradiction 
with this asymmetry, 

5. The gauging of hyperfields 

The algebraic realization of parafields in the form of 

hyperfields (25) allows us to fulfil hypernumber gauge tras
formations on the hyperfield 

-~ (x) = e-lX ,(x)e1 X = e Ha~, (x) 
a ~ 

,, (36) 

where the parameters x are hypernumbers defined by 

x = na~x~a (37) 

in the framework of a given algebra (see, Table I). Here and 

in what follows the summation sign is not exhibit; we use the 

convention that repeated indices are summed over, x~a are 

number parameters also presented in Table I. Matrix Henter

ing in (36) is the orthogonal matrix in the case of the real 

Clifford algebra and the unitary matrix in both the complex 
Clifford algebra and the Greenberg one. 

Now, supposing these parameters depending on the space

time x, we can develop a full local Yang and Mills gauge 
theory. 

For the Green paraquantization such a gauging· of the 

Clifford hyperfields has been accomplished by Greenberg and 

Macrae
1261

, and by the author1271
• In this case, for the real 

Clifford algebra (26) we have the ,SO(p) gauge theory. For 

17 



the complex Clifford algebra we have the SU(p) gauge theory 

with the above-mentioned nilpotence property of parafield126
~ 

For the new paraquantization we have the hyperfield 

realization (25) founded on the Greenberg algebra (30). In 

this case, we have also the SU(p) gauge theory this time 

without any additional restrictions on the fields but with 

the property of the charge-asymmetry discussed befor. 

Now we can show how the gauge-symmetry theories can be 

formulated in terms of hyperfields. 

The gauge vector fields are introduced in the form 

~µ(x) = na~Bµ~a(x), ~~(x) = ~µ(x) ( 38) 

where Bµ~a(x) are the usual bosonic vector fields. Their pro

perties are indicated in Table I too. Then, the derivative 

changes to the gauge-covariant derivative 

v (x) = a + tg'B (x) µ . µ µ (39) 

where g is the coupling constant and Lis an auxiliary number 

factor indicated in Table I. Note .that in this formulation, 

the gauge-covariant derivative . must enter always into the 

commutator with.the expression subjected to its action. 

The gauge-field tensor is defined in the commutator form 

!1' (X) µv 
* - G ~a. = L /g [Vµ,Vv]- - na~ µv 

The components of this tensor compose the matrix 

Gµv = aµBv-aµBv-ig[Bµ,Bv]- . 

Finally, we write the equation of motion 

hyperfields. The Dirac equation is given by 

i[Vµ,7µ~(x)] - m ~(x) = 0 

or, in components, 

(i7µa ~a- m ~a+ gB a~7µ~~)e = o. 
µ µ a 

(40) 

(41) 

in terms of 

(42) 

(43) 

For the gauge fields we have the equation of motion 
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in the form 

[V µ,!1' v<x)] - g/2 j (x) = o, µ - V 
(44) 

or, in components, 

(a µGa~_ ig[B µ G ]a~+ g/2 J ~a)n = o. 
µv ' µv v ~a (45) 

The current 

jv(x) = na~Jva~(x) ( 46) 

has components indicated' in Table I. 

Thus, we accomplish the formulation of the local gauge 

symmetries in terms of hyperfields. 

It should be taken into account that the gauge vector 

fields become parafields, i.e. satisfy the trilinear Green's 

commutation relations (21), only for the hyperfield realiza

tion by means of the real Clifford algebra in the exceptional 

case p=31271 (Remark that in this case, the Clifford algebra 

is isomorphic to the algebra of quaternions1281
) • In this 

case, we have the S0(3) gauge symmetry which can be formula

ted utterly in the framework of parafields independing of 

th . 1 b . 1 · t. 129 ' 301 th . . eir age raic rea iza ion . In e remaining cases 

the gauge fields are not proper parafields and for their 

formulation we are in need of a certain algebraic realiza

tion. Thus, starting from a proper parafield theory we arrive 

at a more broad interpretation of it as a hyperfield theory. 

This expansion of the meaning of a parafield theory was the 
• 127 30/ reason for the difference between my approach • to the 

. . . b d ,· t261 gauging of parastatistics and Green erg an Macrae s one . 

The last remark concerns the possibility of the formula

tion of the Abelian U(l) gauge symmetry within the hyperfield 

theory in both the nilpotent comlex Clifford algebra and the 

Greenberg algebra. We can take the parameter of a gauge 

transformation 

where x
0 is a real 

0 
;t' = n x 0 = aa 

(XO)+ 

number and the sum 
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naa 

(47) 

commutes with 



Tab 1 e I. Gauge symmetries in terms of hypernumbers 

SO(p) 

the real Clifford 
algebra (26) 

L=l 

na(3=(eae(3-e(3ea)/8i 

a 0 * a 0 0 a (x ,...) =x ,...=_x,... 

(B a(3)+=B a(3=-B (3a 
µ µ µ 

J a(3= ¢(30 ¢a-¢a, ¢(3 
µ µ µ 

SU(p) 

the nilpotent complex 
Clifford algebra (27,28) 

L=i 
+ 

na(3=eae(3/2 

the Greengerg 
algebra (30) 

na(3- Greenberg 
operator 

a(3 a a(3 2 x =x A /2, sum over a=l, ... ,p -1 
a 

(xa)•=xa, A - generalized Gell-Mann 
. a 

matricies: [A ,A] =2if A, A+=A, 
a b - abc c a a 

trAa~o, tr(AaAb)=2oab 

B a(3=BaAa(3 /2 (Ba)+=Ba 
µ µ a , µ µ 

J a(3= ¢a, ¢(3=[¢K(AK~/ 2), ¢~]A(3a 
µ µ a µ a 

For obtaining separate components one needs 
trace-operation" for a given algebra: for 
algebra by means of the formulae 

to take "the 
the Clifford 

1/2 [e ,e;] = o 0 , 1/2 [ [e ,n 0 ] ,e+] = a ,... + a,J ; a,... - K + 
o o a; {3K 1 

and for the Greenberg algebra by means of the formulae 

eae;= oa(3' [e,,na(3]_e; = oa,o(3K" 

all na(3" _The corresponding Abelian gauge field is 

Aµ(x) = Aµ(x)naa =A~(x) ( 48) 

where Aµ(x) = A~(x) is the usual bosonic Hermitian self-con

jugate vector field. Thus, in the framework of such hyper

field theories we have rather the SU(p)xU(l)-gauge ·symmetry 

than merely SU(p). The additional usual phase-transformation 

for the Dirac fields and the corresponding Abelian gauge 

vector field (which could coincide with Aµ) can occur too. 
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6. The conclusion 

Let us sum up our discussion and decide what we can and 

what we cannot do within the Local Quantum Field Theory 

1) We cannot introduce "a small violati_on" of the Pauli prin

ciple (i.e., Fermi statistics) or Bose statistics within the 

local QFT without a violation of the positive defih!teness of 

the state vector norms. The appearance of negative norm 

states is not compatible with the probability interpretation 

of quantum mechanics. 

The formulation of a small violation of the Pauli prin

ciple in the. framework of infinite statistics ought to be 
I • 

nonlocal and very likely infringes the principle of super-

position. 

2) We can introduce "a big violation" of the Pauli principle 

in the form of parastatistics. We can give a local formula

tion of parastatistics. In fact, we have two such theories: 

"the old" Green paraquantization and "the new" one which is 

charge-asymmetrical. Both of them have own advantages and 

presently we cannot discriminate these two possibilities. 

3) In the framework of hyperfield realizations of parafields 

we can formulate gauge-invariant the_ories. In the case o·f the 

Green paraquantization based on the real or nilpotent complex 

Clifford algebra, we can formulate the SO(p) or ·su(p) (xU(l)) 

gauge symmetries,_ respectively'. In the. case of the new 

(charge-asymmetrical) paraquantization based on the Greenberg 

algebra we also can formulate the SU(p)(xU(l)) gauge 
symmetry. 

Now a question arises: what is the connection of these 

open possibilities for the description of the local gauge 

symmetries with the physical symmetries such as 

colour, electroweak and, maybe, flavour symmetries? Can these 

possibilities help us to understand the reason of these 

physical symmetries? 

Hitherto, we consider a realization of parafields by 

means of the associative hypernumbers. There is a very 

enticing possibility to draw the nonassoc_iative hypernumbers, 
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octonions and postoctonions 
nonassociative parafields/31

•
32

/. 

possibility further. 

for 

I 

the 
plan 

construction 
to study 

of 
this 
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Appendix A. The Greenberg algebra 

The basic elements of the Greenberg algebra obey the re

lations 

ea.e; = oa.(3' a.,(3 = 1, .•. ,p. (A.1) 

The Hermitian-conjugation is defined as usually 

+ + + 
(ea.e(3) = e(3ea., ce;) + = ea. • (A. 2) 

These elements can be presented by infinite matrices. For 

example, 

presented 

in the most simple case p=l the only element e is 

by the matrix with the nonvanishing matrix 

elements equal to unity up the diagonal. 
Following Greenberg/16

/, one can define the operator in 

the form of an infinite series 

+ + + + + + n 0= e e 0+ e e e 0e + e e e e 0e e + .•• 
C1.p ct. P o ct.Pr 0 1 °2 ct. P 0 2 °1 

(A. 3). 

(summation over repeated indices is implied) which obey the 

following properties: 

n;(3 = n(3a.' 

·1 - + (na.(3'e,]_= - oa.,e(3, [na.(3'e, _= o(3,ea.' 

(n n ] = o n - o n . a.(3' oK (3, ct.K ct.K of3 
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(A. 4) 

(A. 5) 

(A. 6) 

The sum n =net.a.possesses the number operator properties 

[n,ea.]_= - ea., + + 
[n,ea.]_ = ea., [n,na.(31_= o. (A.7) 

The trace-operation is defined as 

tr(e; •.. e; e(3 •• • e(3 ) = oNM e
0 

•• • e
0 

(e; .•• e; e(3 •• • e(3 )X 
1 NH 1 1 II 1 NN 1 

and 

+ + xe ••• e 
o N 1 1 

0 0 D ... Oct, (3' 
NM ct. 1 P1 N N (A. 8) 

tr (na. (3 na. (32 ••• na.N 
1 1 2 

N + + 
13 ) = (-1) [na. (3 ,e

0 
]_e

0 
[na. f3 ,e

0 
]_e

0 
x 

N 11 1 2 22 2 3 

+ + ... xe 1n 
O 

,e 1 e 
0 u a.N PN °u - 0 1 0 D O D • •• O D 

C1.1pN C1.2p1 ct.NpN-1 (A. 9) 

• • 2 
For instance, tr na.{3= oa.{3' tr n = p, tr n = p. 
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