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1, In the model of independent one-particle sources emitt­
ing unpolarized ide'1tical particles with spin j, the probabili­
ty for the creation of two par!icles with 4-mo1!enta p1 and p2 
at the space-time points X.1.={r;,,l-1] and x.z.=[,;; 1 t2.] is desc-

. ribed by the expression 

(1) 

where t ~ ➔ 
Cf,=P,-P:z.) x=X,-X,:z.} i.r=-<Jo -'J,:r, 

Formula (1), which characterizes th~ effect of Bose or Fermi 
statistics on pair correlations of identical particles, forms 
the basis of the method for determining the space-time paramet­
ers of the region of multiple elementary particle production 
11-6/, In the spirit of statistical co~cepts the function 
COS (cp:) in formula (1) should be averaged over the space-time 
distribution.of chaotically located sources, As a result, the 
correlation.function of two non-interacting identical particles 
in the region of small relative.momenta takes a simple form 

R {i) = 1 ➔ ~~~;;J / T{ot,)/2., . 
where 

.:F{i) = J W(x)e'°"; ol'lx. (3) 

In formula (3) the function. W(x) d~scribes the probabi­
lity distribution ~f 4-coordinates of one-particle sources and 
satisfies the normalization condition 

2•, In the case of identical pions 

When analyzing the experimental data, eq.(5) is frequently 
replaced by a more complicated expression 

!? ( i) = i -r 11 I iT(t) /'-, 

(4) 

(5) 

(6) 

where the coefficient /1 I 1,As is shown in papers/7/, there is 
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a number of simple reasons for the appearance of the factor/\ , 
for example, the presence of two or several space-time parameters 
of the process. On the other hand, in many papers the introduc­
tion of /I is related to the assumption of pion emission in 
coherent states and to the existence of a mixture of coherent 
and chaotic states (see, for example/8- 151 ). The_ role of cohe­
rent states for the description of narrow pair correlations of 
bosons consists in the fact that there are no correlations due 
to symmetrization of wave functions between pions in the same 
coherent state. 

But the absence of interference correlations is characteris­
tic of all the situations when several bosons.are created in the 
same quantum state, in particular, for any fixed number of par­
ticles as well. In connection with this, it is interesting to 
investigate the structure of pair correlations of pions with 
slightly different momenta in the presence of both one-particle 
and multi-particle sources. The corresponding model has been sug­
gested earlier in our pape/ 161. In the framework of such a model 
it is easy to explain not only the difference of ,'1 from unity 
but also the appearance of several characteristic dimensions 
(see also ref.7171). · 

J. Following papei/161, let us consider a situation when a 
set of YJ identical pions is emitted simuitaneo~sly from the 
same point (or from different points located at distances which 
are very small in comparison with the wave length ,)~ d,/4 ). 
Then we can speak of an n-particle point-like source.It is essen­
tial that in this situation, in contrast to the case of one-par­
ticle sources, the symmetrization effect is absent, and there 
are no interference correlations. If the generation amplitudes 
are .assumed to be constants, then the probability of pion regis­
tration with momenta p1 a~d p2 does not depend on momentum 
difference. 

We are interested in pair correlations in the inclusive 
approach when the momenta of some two identical particles are 
fixed and averaging over the remaining momenta is performed. Then 
each pair of piona can be considered independently of all the 
other pairs. Besides, we suggest that the momenta of all the par­
ticles are so large that the interference maximum occupies only 
a very small part of the phase volume ·and the rare events with 
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three or more particles having nearly equal momenta can be neglec­
ted. Under these conditions it is sufficient to restrict ourselves 
to a simple summation of the two-particle probabilities corres­
ponding to different pairs of piona,taking into account that the 
production probability is independent of momentum difference for 
two identical.piona from the same multiparticle source, and this 
probability is proportional to (1 +<cos[<f.{Zi-X"')])) for pions 
from different sources. 

Let us assume that in each interaction one n-particle source 
and m one-particle sources are excited. We denote the probabi­
lity of a proceaa,when the momenta of all the piona differ great­
ly, by i-¼ • How does this probability change when the momenta 
of any two pions become close to each other? The answer to this 
question depends on that which pair is chosen out of the total 
number of possible pairs -½ (n + m)(n + m - 1). If the momenta 
of two pions from then-particle source approach each other, then 
the probability does not change, but for other combinations the 
probability change follows the law ( 1 + {cos [ 'I, (~-.:x.,)]> ) • The 
number of pairs from then-particle source is equal to ½ n(n-1), 
the number of pairs from one-particle sources ½ m(m-1) and the 
number of "mixed" pairs nm. After averaging over apace-time 
distributions of sources, we obtain for the process probability 
at small relative momenta the following expression: 

W- 2 Wo { n{n-1.) · rn(m-1.)( } I )1
2
) 

- (n+m)Cntm-1) ~ t ~ j_ -t :Ji. l <J.)/ + 

-,. nm [ i + Re {J;(1).f('IJ]} · <1> 

Here :Ji { 'V is the Fourier transform of the function U{(.:y des­
cribing the probability distribution of 4-coordinates of one­
part:lcle sources, and Ji. { 'f;) is the Fourier transform of the 
analogous f~ction ~ (x) for the n-particle source (see formu­
la (4)). Thus, narrow pair correlations of identical pions are 
expressed by the formula 

* 
R(v= ~ = 1. + /l4-f~{i)(-t1\Re {.Ji{i)Ji(~ . <a> 

where 
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I\ _ m (m-:1.) 
:t. - (n+m){ll+/'JJ-.:f) ;, 

/\ _ 2 nrn 
;z - (n+m)(nrm-i) • (9) 

In particular, if the numbers n and m fluctuate in accordance 
with the Poisson law when passing from one act of interaction to 
another, then we have 

A= i 
( j_ + r )Z ,) 

.z r 
A,<. =- ( 1. ..,. rJ" ,) I""= :, 

' . ( 10) · 

It should be emphasized that the result (10) takes place for 
arbitrary multiplicity distributions when the conditions n>> 1, 
iii~ 1 are valid (in particular, for fixed numbers n>> 1 and 
m>? 1 as well). 

It is interesting that formulae (10) are in full accordance 
with the relations obtained in pape-r.112/ on the basis of the co­
herent state approach (see also ref.l 13I). This coincidence is 
not mere chance: really, for the coherent state the probability 
distribution over the states with a given number n is the 
Poisson distrib~tion/ 181. . 

4. Taking into account relations (10), we can rewrite for­
mula (8) in the form 

f?('t):: 1 + pZ /.Ji(<t,)r-t- ,2p(1-~J?e {:ii('!,)Ji[v) ' (11) 

where 

p = m 
n +- m (12) 

is the "chaoticity" parameter introduced by Weinexf15I. In our 
model the parameter p describes a relative contribution of 
chaotically located one-particle sources. 

Let us assume that the symmetry centres of the distributions 
U{ [:i) and /¼(x) coincide and the root-mean-square radii are 
equal to r 1 and r 2 , respectively. In accordance with the 
definition (4), in this case the equalities Im 8;{<,,J=O and 
Im :J;_ {'f)-= 0 hold. It is easy to see that the root-mean-square 

radius determining the dependence upon momentum difference q 
for the second term in formula (11), which is proportional to p.z, 
is equal to f?.1. = Y.z ~ • The root-mean-square radius determining 
the 'i -dependence of the third term in formula ( 11) , which is 
proportional to 2p{!-,P) , equals JG-= /0.z+ ,:.i • 
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If r 2 (@: r 1 , we obtain the relation presented in pape-r.1 15/: 

l?.t. = /IT R.,_ (13) 

Let us consider the case when the point-like multiparticle 
source is in the centre of the spherical-symmetrical Gaussian 
distribution of independent one-particle sources. Then we have: 

r ;"l 1 ( F-.z £) w.1.➔ n 3
~ r .. n · \i,t__tf-,i-1=c2cr)"r.Jr.3 exr -.:zr;,"--.2r,, .. ,} <(f,1~-=J{,Vtc-p./(14) 

rr-(t) ( ,f -.z :,. ,( 4 •4) 
V .J.. ;, -= ext - T 't le - T _'l-o ~ /,} :Ji(i)= 1. , ( 15) 

As a result, if the time parameter To = 0, the correlation 
function takes the same form as in pape-r.1 151: 

R fr) =- 1. + P < ext (- f·,;.i- tJ}T.1/ + 
• ( ,/ ---.z z ,,, z i) 

+ 2P {.1.-P) exf - ;:-tf,; -Ttft, l"i/ 
( 16) 

However, in the framework of our approach the relations (13) and 
(16) are not of a general character, and they are violated at 
r 2 ,.., r 1• These relations are also_ changed in the case when 
r 2 = 0 but the ~ultiparticle source is located at a definite 
distance g = { ~ 7} from the symmetry centre of the space­
-time distribution of one-particle sources. Under these condi­
tions we should write instead of (16) the following expression 
for the correlation function of identical pions: 

R { 1/ = j -t P.i ext (-1.zr:"- i: r;~ + 

-r- 2P {J-P} Cos (f ff-) ext {-f iJZ,,,"- J 1l?;)_ ( 17) 

5. Other situations with the participation of multiparticle 
sources are also possible in the framework of our approach. Some 
of them have been analyzed_;,iµ pape-r.116/. 

Let us consider, in particular, N multiparticle sources 
located at chance space-time points, each of them instantaneously 
emitting n identical pions. -Let us assume that one-particle 
sources are generally absent. The number of pairs of pions from 
the same source is equal to ~ n(n - 1) N, and the number of 
pairs of pions from different sources equals n2 N(N2- 1> . This 
leads at once to a formula of the type (6) with one parameter/I: 
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R(i)= 1.+/\Jr(i)/\ ( 18) 

where 

/I = n ( 11-1.) 
nN' - j__ 

(19) 

and Y:(1) is determined by the equality (4) with the function 
W(.i) describing the probability distribution of 4-coordinates 

of multiparticle sources. Talcing into account the fluctuations 
of n and N, we obtain*) 

/\ ~ 2. (r1/' #lll:._!j_ - . 
{~) 11(11-1) -t n(n-1) II 

(20) 

If the fluctuations correspond to the Poisson law, then 

A= ( i - ;). (21) 

This result is also valid for any distributions when 
the condition n>,> 1 is satisfied. The expression (21) coincides 
with the relation obtained in pape./ 121 by means of the coherent 
state approach. We see that the appearance of, the factor /1.( 1 
needs not be always connected with the manifestation of a joint 
action o! multiparticle and one-particle sources. The interpreta­
tion in the sense of formula (10) is quite possible in the pre­
sence of only multiparticle sources. 

In the general case, in the model including both one-par­
ticle and multiparticle sources, the pair correlations of identi­
cal pions with nearly equal momenta may depend on several dimen­
sions and several parameters/\ • Let us assume that m one­
particle sources with 4-coordinate distribution vl{(x) are added 
to N former n-particle sources with 4-coordinate distribution 
~(:i) • Then ¼ n(n - 1) N pairs make a oontribution to the 

generation probability which does not change when the pion 
momenta approach each other,¼ m (m-1) pairs make a contribution 
proportional to (1 + /:F,,(i}/~ , ¼ n2N(N - 1) pairs make a con-

*) We assume that the multiplicity distributions are the same 
for all the sources, but the fluctuations of number n cor­
responding to different sources are independent. 
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tribution proportional to ( 1 + / J;_ (i)/':} and the contribution 
of nm JI "mixed" pairs is proportional to [ i -t l?e( .!f{<J):JiliJ] • 
In this situation the,pair correlations of identical pions with 
slightly different momenta are described by the expression: 

R{r,) 1 + 11.L I .7i tiJ/2 + 

where 

11_1 = 
m(m-D 

B ) 

+ l'-2 Re (.J;(Cf)/£(ij)-1-1,.1 /J;M(, (22) 

11,l. = 2niii!I A-=~ (nl, c23 > 
.i J .J /3 

B = n(~-1.) ii+ m(m-1-)-tAI/Y-1.){n}
2-t-.2nmAI (24) 

If N = 1, then ~. = o, B = (n+m) (n+m-1) , and we come to the 
results (8)-(9). If m = 0, we have ~~=A~=O, and the relations 
(18) - (20) follow from eqs. (22)-(24). When the multiplicities 
n and m are distributed in accordance with the Poisson law 
(and also for any distributions with n ;,-;, 1, m >> 1), 

1 
1\1- ==- u -1- r11/'- ) 

;1 = :zrH ;1 = li1iEif T2. (25) 
;z (1..rf"}(f) J {i-t r/1)2." 

where f = ii/m. An analogous result has been obtained in paperl 14/ 
by means of the coherent state approach. 

6. Thus, the properties of correlations of bosons with near­
ly equal momenta, which are usually explained by means of a spe­
cial role of coherent states, can be interpreted, in the frame­
work of the simple model including both multiparticle and one­
particle sources. It should be emphasized that our results are 
related to arbitrary multiplicity distributions, in particular, 
:o reactions with a fixed number of particles, In this sense they 
are of a more general character, 

The coincidence of our concrete formulae with the relations 
obtained in terms of coherent states corresponds to the particu­
lar case of the Poisson distribution of bosons from sources (or 
to the limit of very large multiplicities for any distributions), 

It should be noted once again that,from our point of view, 
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the essence of the problem is that there are no interference cor­
relations of the pions which are in the same quantum state. The 
concrete interpretation of coherent states as superpositions 
over the number of bosons is of no importance since correlations 
contain no contribution from the interference of states with a 
different number of particles; the superpositions of states with 
a different number of particles behave like non-coherent mixtures 
of such states. 

It should also be noted that for charged pions the coherent 
states are the superpositions of states with different electric 
charges. In the framework of modern conceptions the existence of 
such superpositions is prohibited by the well-known rule of 
superselection.following from the exact conservation of electric 
charge/ 191. This circumstance prevents a literal application of 
the coherent state technique for the description of pair corre­
lations of Jr+ or or--mesons with slightly different momenta. 
However, there is not any necessity in this since the superposi­
tion properties of coherent states are not really used. At the 
same time multiparticle sources were in fact first introduced 
just due to the conception of coherent states, which has led to 
a new view on the structure of narrow pair correlations of iden­
tical bosons. 

The author is grateful to R.Lednicky and M.I.Podgoretsky for 
valuable discussions. 
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