


1, In the model of independent one-particle sources emitt-
ing unpolarized identicel particles with spin J, the proba.bili-
ty for the creation of two particles with 4-momenta Pq and Ps
at the spece-time points X,= [I;‘,L‘j and %=f7F,%} is desc-

" ribed by the expresasion

W[&&) 1+ ‘.+ cos(32) (1)

g=P~r-F , X=X, IX =g’,z‘—¥z‘_'.
Formula (1), which characterizes the effect of Bose or Femmi
statistics on pelr correlations of identicel particles, farms
the basis of the method for detexmining the space-ﬁme paremet-
ers of the region of multiple elementary particle production
- 6/. In the spirit of statisticel concepts the function

cos (3%) in formula (1) should be aversged over the space=time
distribution of chaotically located sources. As a result, the
corrélation function of two non-interacting identical particles
in the region of small relative momenta takes a simple form

R = 1+ ELL 5G]

J-f:t

where

(2)
where L '
F(g)= J.W/f)ﬁ‘qxo/qf' (3)
In formula (3) the function W[‘i") déacribes the probabi-

1ity distribution of 4-coordinates of one-particle sources and
gatisfies the nommelization condition

fW/f)O/qx = 4 . (4)

2, In the case of identical pions
Lrnud 2' ’ N
Rly)= 1+ 5] (5)

When analyzing the experimental data, eq.(5) is frequently
replaced by a more complicated expression

Rlz)= 1+ 253N | (6)

where the coefficient /| # 1.As is shown in pa.pers/7/, there is
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a number of simple reagons for the appearance of the factor/q
for example, the presence of two or several space~time parameters
of the process. On the other hand, in many papers the introduc-
tion of /} is related to the assumption of pion emission in
coherent states and to the existence of a mixture of coherent

and chaotic states (see, for example, 8- ). The role of cohe-
rent states for the description of narrow pair correlations of )
bosons congists in the fact that there are no correlations due
to symmetrization of wave functlons between pions in the same
coherent state.

But the absence of interference correlations is characteris-
tic of all. the situations when several bosons are created in the
same quantum state, in particular, for any fixed number of par-
ticles as well. In commection with this, it is interesting to
investigate the structure of palr correlations of pions with -

- slightly different momenta in the presence of both one-~particle
and multi-particle sources. The corresponding model has been sug-
gested earlier in our paper/ 6/. In the framework of such & model
it is easy to explain not only the difference of A from unity
but also the appearance of several characteristic dimensions
(see also ref./ 117y,

3. Following paper/16/, let us consider a situation when a
gset of ¢) identicel plons is emitted simultaneously from the
same point (or from different polnts located at distances which
are very small in comparison with the wave length 2~ {45 ).

Then we cen speak of an n-particle point-like source.It is essen-
tial that In this situation, in contrast to the case of one~par-
ticle sources, the symmetrizatibn effect is absent, and there

are no interference correlations. If the generation amplitudes
are assumed to be constants, then the probability of pibn'regis-
tration with momenta Py and Ps doeg not depend on momentum
differences

We are interested in palr correlations in‘the inclusive
approach when the momenta of some two identical particles are
fixed and averaging over the remaining momenta is performed. Then
each pair of pions can be considered independently of all the.
other pairs. Besides, we suggest that the momenta of all the par-~
ticles are so large that the interference maximum occupies only
a very small part of the phase volume ‘and the rare events with

three or more particles having nearly equal momente can be neglec-
ted. Under these conditioﬂé it 1s sufficient to restrict ourselves
to a simple summation of the two-pariicle probabllities corres-
ponding to different pairs of plons, taking into account that the
production probability is independent of momentum difference for
two ldentical.pions from the same multiparticle source, and thils
probabllity is proportional to (1 +4<;oslizﬂf j])) for pions
from different sources. -

Let us assume that in each interaction one n-particle source
and m one-particle sources are exclted. We denote the probabi-
lity of a process,when the momenta of all the pilons differ great-
ly, by Ws . How does this probability change when the momenta
of any two plons become close to each other? The answer to thils
question depends on that which pair is chosen out of the total
number of possible pailrs E (n+m(n+m=~=1). If the momenta
of two pions from the n-particle source approach each other, then
the probability does not chenge, but for other combinations the
probability change follows the law (1 +A<Gos q/&'a@ﬂ)-). The
number of pairs from the n~-particle source is equal to % n(n-1),
the number of pairs from one-particle gources E m(m-1) and the
number of "mixed" pairs nm. After averaging over space-time
distributions of sources, we obtain for the process probabllity
at small relative momente the following expression:

ey {2 Hee i)

rom [ 1+ Re (BR)E )]} %

Here gf(%) is the Fourier transform of the function W 4§) des-
cribing the probability distribution of 4~-coordinates of one-
particle sources,and Gr[%) is the Fourier transform of the
analogous function 1({) for the n-particle source (see formu-
la (4)). Thus, narrow palr correlations of identical pions are
expressed by the formula

R(3)= L= 1+ N |5l2)] "+ N fe (f@/%/) , (8

where



A m (m-4) /4 B 2 nm
1 (’7*"7)(’7-"71 ) 2 (n+m)(nrm-1) « (9)
In particular, if the numbers n and m fluctuate in accordance

with the Poisson law when passing from one aot of interaction to
another, then we have
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It should be emphasized that the result (10) takes place for
arbitrary multiplicity distributions when the conditions T >> 1,
m>» 1 are valid (in particular, for fixed numbers n> 1 and
m>» 1 as well).

It is interesting that formulae (10) are in full accordance
with the relations obtained in paper/12/ on the bagis of the co-
herent state approach (see also ref. 13 ). This coincidence is
not mere chance: reélly, for the coherent state the probability
distribution over the states with a given number n is the
Poisson distribution’ 18/

4. Taking into account relations (10), we can rewrite for-
mule (8) in the form

Rl(3) = 1 + % |E@)+ 2010 fe (u?@ffg/) , (1)

where
m

P = ——=
n+m

(12)

is the "chaoticity" parameter introduced by Weiner/15/. In our
model the parameter p describes a relative contribution of
chaotically located one-particle sources. '

Let us agsume that the symmetry centres of the distributions
Méﬂ%) and Mé[%) coincide and the root-mean-square radii are
equal to ry and r, , respectively. In accordance with the
definition (4), in this case the equalities \9"[) be} and
Im JQ[;) 0 hold. It is easy to see that the root—mean-square
redius determining the dependence upon momentum difference g
for the second term in formula (11), which is proportionsl to £?
is equal to ﬁ;=k§’1; « The root-mean~square radius determining
the g -dependence of the third term in formula (11), which is

proportional to .2/0[/-/") , equals /fe'—‘ res ,_\52 .

If rz‘@ T, , we obtain the relation presented in paper/15/:

A,;1= [[e_ﬁz -' . (13)

Let us consider the case when the point-like multiparticle
gource is in the centre of the spherical-symmetrical Gaussien
distribution of independent one-particle sources. Then we have:

W{f”z‘l) 7 €%, /D( 2rs% znz) W(" Zy X('y;() (14)

% ly) - fx/a( wotew), FGL.

Ags a result, if the time parameter 7, = 0, the correlation
function takes the same form as in paper/15/:

Rlz) = 4+ plexp(-§n-giz) + (16)

+ Zp(1-£) exp (-+3%*- 495 |

However, in the framework of our approach the relations (13) and
(16) are not of a general character, and they are violated at
Ty ~ Tqe These relations are also changed in the case when
r, = 0 but the multlparticle gource. ig located at a definite
distance g {f ’7’] from the symmetxry centre of the space~
~time digtribution of one~particle sources. Under thege condi-~

tions we should write instead of (16) the following expression
for the correlation function of identical pions:.

Rly)= 1+ pesp (35" 57) .
# 20 (1-2) cos(By) exp (4§75 2920

5. Other situations with the participation of multiperticle
gources are also possible in the framework of our approache. Some
of them have been analyzed .in paper/16/

Let us congider, in particular, N multiparticle sources
located at chance space-time pointg, each of them instantaneously
emitting n didentical pions.-Let us assume that one-particle
sources are generally absent. The number of pairs of pions from
the same source ig equal to E n(n - 1) N, end the number of
pairs of piong from different sources equals n2 H&EE:_ll « This
leads at once to a formula of the type (6) with one parameter/4 :



R(y)= 1+ 7B, o)

where

/\: n[/V—i) ) (19)
nk — 41

— .
and ULéV is determined by the equality (4) with the function

W(%#) describing the probability distribution of 4-coordinates

of multiparticle sources. Taeking into account the fluctuations
of n and N , we obtain™

PR o
('7} //Z/V-i) + nin-1) ¥

If the fluctuations correspond to the Poisson law, then
[1-4). (21)
A/Z

This result is also valid for any distributions when
the condition #i » 1 1s satisfled. The expression (21) coincides
with the relation obtained in pape by means of the coherent
state approach. We see that the appearance of the factor /11 1
needs not be always connected with the manifestation of a joint
action of multiparticle and one-particle sources. The interpreta-~
tion in the sense of formula (10) 1s quite possible in the pre-
sence of only multiparticle sources. '

In the general case, in the model including both one-par-—
ticle and multiparticle sources, the pair correlations of identi-
cal plons with nearly equal momenta may depend on several dimen-
sions and several parameters A . Let us assume that m one=
particle sources with 4-coordinate distribution W/ () are added
to N former n-particle sources with 4-coordinate distribution

Mé[l) o Then E n{n - 1) N pairs meke a oontribution to the
generation probabllity which does not change when the pion
momenta approach each other, E m (m-1) pairs make a contribution
proportional to (1 + [F(»*) ? n2N(N - 1) pairs make a con-

*
) We agsume that the multiplicity distributions are the same
for all the sources, but the fluctuations of number n cor-
regponding to different sources are independent.

tribution proportional to (1 + | Sfﬂ%ﬁ‘) and the contribution
of nm/V "mixed" pairs is proportionsl to [1 +Re(F (¢)\¢'[¢)]
In thls situatlon the palr correlations of identical pilons with
slightly different momenta are described by the expression:

f(s) = 1+ AIEGI+
' + /L /Pe(&;(yg/i))‘f/’\,/%_(yll, (22)

where
=) __25ml . N (%)
/11 = -% , A= B P Aa- J2; 2/ » (23)
B = nlo-2) N + mlm-2) + H-4) (5)*+ 27wl . (24)

If N = 1, then /b‘ = 0, B = (n+m)(n+tm-1) , and we come to the
results (8)~(9)s If m = O, we have /,=/4=0 , and the relations
(18) - (20) follow from eqs. (22)-(24). When the multiplicities
n and m are distributed in accordance with the Polsson law
(and also for any distributions with n> 1, m>> 1),

1 ,ZJ’M/ Aﬂ?fié J’
e = G 5)
/s 4L+ cH)* A= (Lryw)*’ /5 (1+7K)*

where JP = n/fl. An analogous result has been obtained in paper/14/
by means of the coherent state approach.

6. Thus, the properties of correlations of bosons with near-
ly equal momenta, which are usually explained by means of a spe~
cial role of coherent states, can be interpreted in the freme-
work of the simple model including both multiparticle and one-
particle sources. It should be emphasized that our results are
related to arbitrary multiplicity distributions, in particular,
to reactions with a fixed number of partlcles. In this sense they
are of a more general character.

The coincldence of our concrete formulae with the relations
obtalned in terms of coherent states corresponds to the particu-
lar case of the Poisson distribution of bosons from sources (or
to the limit of very large multiplicities for any distributions).

It should be noted once again that, from our point of view,



the essence of the problem is that there are no interference cor-
relations of the pions which are in the same quantum state. The
concrete interpretation of coherent states as superpositions

over the number of bosons is of no importance since correlations
contain no contribution from the interference of states with a
different number of particles; the superpositions of states with
a different number of particles behave like non-coherent mixtures
of such states.

It should also be noted that for charged pions the coherent
stetes are the superpositions of states with different electric
charges. In the framework of modern concéptions the existence of
such superpositions is prohibited by the well-known rule of
superselection -following from the exact conservation of electric
charge/19/. This circumstance prevents a literal application of
the coherent state technidue for the description of pair corre-~
lations of Jrf or Jr “-mesons with slightly different momenta.
However, there is not any necessity in this since the superposi-~
tion properties of coherent states are not really used. At the
same time multiparticle sources were in fact first introduced
just due to the conception of coherent states, which has led to
a new view on the structure of narrow pair correlations of iden-
tical bosons. o

The author is grateful to R.Lednicky and M.I.Podgoretsky for
valuable discussions.
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