


1. Introduction

A poasibllity of the generalization of the usual Fermi- and Bo-
pe-guantization of (free) flelds has been considered by ths authorll/
and by Greenberg and Hohapntrdlzl on the basis of trilinear commuta-~
tion relations which are more genaral than the Green onea/3/

[n:a‘+ ta,a’,a,) =-ad, 2, (1)
whera a« and ¢ are scme real numbers. The reason for this considara-
tion was a general formulatlon of the principle of indistinguishabili-
ty of identical particles in the form of the symmetry of the denseity
matrix/1'4/. It turns out that the same relations can be derived from
the requirement of the (strong) locality of (free) tleldsfz/.

It was proved on the basls of the positive definiteness of the
norm of state vectors in the Fock space that c-11/1/ unless t=0 or
€ +a {a + = o/c - fipite). The cases c=tl correspond to the Green
quantlzation/sf, and, as it was proved by Greenberg and Henniah/s/,
any of lts represenfntion ies equivalent to the so-called Grean ansatz
which is the dlrect sum of ordinary (Fermi- or Bose-} operators with
anomalous putual commutation relationa’a/. In thia sense the Green
quantization turns cut to be equivalent to the usual quantizatioen in
the presence of some internal degrees of freaedom (sae/4'6'7/].

For the completeness of the classification of possible schemes of
quantization we need to consider two cases ¢ # 0 and € + = which have
been rejacted from the outset 1n/1/. Moreover, 1n/1/ there is an lnac~
curate assertion about the insufficiency of relationa (1) for the eli-
minated case c=0 for calculations of the state vector norme (or any
general matrix elements}. In fact, in this case tha relations (1) do
not allow those calculations if the vacuum state vector is situated on’

the right-hand slde {r.h.s.}. Hovever, as 1t w11 ba sREUR, WRASE AMl-

culation can be a success if the vacuum vector is settled down on the
left-hand side (l.h.s.). Moreover, thla case can be reduced to another
above-mentioned excluded case £ + w by soms redefinition of creation
and annihilatjon operatora. In this later case the vacuum state vector
occuples a standard place on the r.h.s. Thus, we can conslder these
twe eguivalent quantization schemes on the same footing with the
Green quantilzation.



Similar to the Green quantization the new one corresponds to
para-Fermi or para-Bose statistics for which the number of particles
in a symmetric or in antisymmetric state cannot exceed a given integer
r which is called the order {sometimes rank) of parastatistics. Howev-
er, the new quantization does not include any additional requirements
characteristic of the Green gquantization which make some symmetrized
combinations of many particle states to vanish (see/4'6'7/). on the
other hand, this new quantization turns out C-noninvariant from the
beginning in contrast with the Green one.

In the limit case r + » (which is equivalent to the limit lel » =
and a/e = 0) the new quantization corresponds to the infinite statis-
tics in which all representations of the symmetric group are allowed.
It turns out that this limit case coincides exactly with a quantiza-
tion recently propesed by Greenberg/s/ directly for the description of
infinite statistics. It is interesting that in the case of infinite
statistics the theory ceases to be local. Note that in our limiting
approach the treatment of antiparticles differs from the Greenberg
one. . ‘

The paper is organized as follows. In Section 2 we formulate the
new field quantization corresponding to cases excluded from previous
investigations/l/. Therein we are convinced of this theory being local
put not C-invariant.

In Section 3 our aim is to build the Fock representation for this
quantizatidn and to compare it with the analogous representation for
the Green quantization. )

Tn Section 4 we consider the limit case corresponding to infinite
statistice interpreted as g¢lassical statistics and comper our approach
with the Greenberg one in the description of particles and antipart-
icles in this limit.

In conclusion we discuss our results.

2, The new paraquantization
Under =0 Edg. (1) beccmes

* +
aaa-aaa=-¢d Skma A(2)

I
with the Hermitian-conjugate

ajaja - aja a,;= -« 5,.a;- (3)

Relations (2) and (3) do not allow the calculation of any matrix
elements if, as usual, a and a" are annihilation and ‘creation
operators, respectively, and the vacuum state vector is situated on
the r.h.s./l/:
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a,l0> =0 for all k. (4)

But if we redefine a and &' as creation and annihilation operators,
respectively, on condition that

a,lo> =0 or <0la, = 0 ("left vacuum") (5)

then we can calculate the action of a' onto polynomial. P(a...a)|0> by
means of Eq.{2). Evidently, we can come back to the usual definition
of the vacuum state (4) if we rename operators:a # a'. But after this
renctation we have instead of relations (2) and (3}

a aja; - a;a_a;= - a5, a (6)
* * .
aka’a-— ara_al- - o ék.a'. {7)
These relations are just those following from Eg.(1l) in the limit
€ » o, a= o on condition that f= - e¢/c is a finite (positive or nega-

tive) number. We should only put £ in Eqs.(6) and (7) instead of a.
Thus, these two ways of quantization are fully equivalent. To retain
the usual notation, we shall follow the second way with trillnear com-
mutation relations (6) and (7) and vacuum condition (4).

For definiteness, as an exaple of integer spin fields we shall
consider the (charge) scalar field

plx) = (2m)732 Id’k(Zu(k))“"*[atk)e""+ b’ (kye'* ") (8)
and as an exanple of half-integer spin fields, the Dirac field

vix) = (2m7"2 [@hmvE@)? Y ate,Kyute,xie 0
o = tir2

+ b* (o, k)v(a, ke’ **], (9)

where k is a momentum and ¢ is a spin state. In accordence with the
previous discussion we propose the following commutation relations for
the spinor field:

V() ¥ (¥} ¥(2)]_= ~ la S(z-y)¥(x), (10a)

and Hermitian-conjugate relations:
WD), B(2)) = + ia S(x-2)P(¥), {10b)

where ¥=¢*7°, and ~1S(x) is the well-known eilngular function for the
Dirac fileld. For the scalar field it is necessary to exchange in
Egs.(10) v » &, § » ¢°, and =15 + iA, where A(x) is a singular func-
tion for the scalar field. Of course, usual fermionic (or bosonic)
fields satisfy Eqgs.(10) identically with a=1 (a=-1).
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After substitution of the field decomposition (8) or (9) into
Egs.(10) we get the following relations for operators of the creation
and annihilation of particles and antiparticles

[ara;,at]_= + o 6star, [ara:,a:]_= -« Srta;, {11ia)
(a,a ,b,1_= 0, la,a_,b,1_= 0, {11b)
{ab_,a,] =0, [b:a:,a:]_= o, (11c)
-+ +* +* — *
[arbs,bt]_= o astar, [bras,bt]_— Fa Srt o (11d).
[arbs,a:]_= - Srtbs, [b:a;,at]_= + o Gstb:, (11e)
ta,b_,b,} =0, [b:a:,b:]_= o, (11£)
(bb_,a,] =0, (b’b_,a;1 =0, (119)
+* * + _ +
(b'b_,b,) =Fad b, b'b_,b,] =t a8 b, {11h)

where the upper and lower sign corresponds to the spinor and scalar
field, respectively. The symbol 3_, means aa o 6[3’(ks- kt } for the
spinor field and 87’ (k_- k,) for the scalar field.

The comparison of Egs.(lla} with Egs.(6) and (7) and Egs. (11h)
with Egs.(2} and (3) shows that quantization rules for particles cor-
responds to the limit case € » » whereas rules for antiparticles cor-
respond to the case c£=0. Thus particles and antiparticles obey quanti-
zation rules of different kinds. It is important that Dboth of then
cannot satisfy two kinds of relations simultaneously. Otherwise, a
contradiction arises. If, for example, particle operators satisfy both
Egs.(lla) and (1ih), then the summation and subtractioen of these adu-
ations leads to the Green para-Bose and para-Fermi gquantization, res-
pectively, for the same particle operators at the same time.

Nevertheless, as we shall see below, the existence of mutual com-
mutation relations (11b-g) already allow us teo perform calculations of
any matrix elements for systems containing particles and antiparticls.

The Hamiltonian and charge operator are to be written as

eptner™ " ot Idax(-iw.v + m)“uwp(x)ﬁu(x) + const, (12)

splnor_

=e o' Idax $v(x)1zvﬁ“(x) + const, (13)
and
Ky ara™ - @0 [6°5 [2,8(012,0" (x) + VE(0) 997 (x) +

st m2¢(x)¢* (x)] + const, (14)



cie o! Ia3x [6(x)8 8" (x) - 8,4(x)4" (x)] + const. (15)

scalar

Under substitution of Egs.(8) and (9) into these expressions we have
(merely due to orthogonality of solutions)

®=-aty Id’n E(k)[a(0,k)a’ (c,k)Fb" (¢, k)b(0,k)] + const,  (16)
a

Q=-e a'lz Iasklaw.ma'w.k).tb'w.k)‘bw.ku + const, amn
g

where the upper sign corresponds to the spinor field (o=t1s2) and the
lower sign corresponds to the scalar field (o=D).
Owing to Egs.(11) the following relations

[H,a(o,k)]_ =~ E(k)a(o,k),

(18)
[#¥,b{o,k)]_= - E(K)b{r,k},

and
{Q,a(o,k}])_ = - e a(o,k),
{19)
[Q,b(ﬁ,k)}_ =+ e b{o,k),
and Hermitian cojugate relations for a° and b are valid. So both
a(o,k} and b(o, k) are annihilation operators whereas a'(c,k) and
b* (o,k) are creaticn ones.
The theory is local if currents take a form y¥. Really, due to
Eq.(10) we have .
() (Y) (2B ) _= (VYY) , B(2))_§{u)+v(2) (¢ (x}E(y) B (u)] =
= - da S(z-y)(x)¥(u) + la S(x-u)y(2)d(y). t20)
The r.h.s. vanishes at spacelike separations of x _u and 2z _ ¥, At
the same time this is not valid for currents of the form ¥y¥. So,-we
can apply only currents of the former kind.

Commutation relations (10) are not invariant under the charge
conjugate transformation which we write out for the Dirac field

nccﬁr(x).
n o wix)’,
where € is the charge-cojugation matrix and T means the trasposition
matrix or spinor,lnclz=1. Equations (10) change to other relations

¥(x) = m_y_(x)
G(xy » nld (x)

{21)

W,y (91,8 (2)])_ = - ia s(y-2)¥_(x),

1B, (), (9) ¥_(2)]_ = + i S(z-X)¥_ (7). (22)

Thus, this theory is invalid for the description of any true neutral
(scalar or Majorana) fields, when wci ¢ and b'w a', unless they are
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usual fermionic or bosonic fields. Only the Green paraguantization re-
mains valid for these true neutral parafields.

Remark that under the transformation (21) the relations (11) for

operators of creation and annihilation of particles and antiparticles
remain invariable, which could be proved by substiﬁufion of a decompo-
sition of type (9) for tfasformed fields (21) into Eq.(22).

on the other hand, the theory (Lagrangian and commutation rela-
tions) is invariant under the space reflection: ¥(x} = inOW(i'x),
nz=:1, but is not invariant under the antiunitary time reflection:
ﬂ(it)W(x)F"(it)=ntc_175W(itx). pue to locality this theory is invari-
ant under the CPT-transformation and thus under the combined CT-trans-

formation:with the time reflection the (para)particles and (para)anti-
particles must exchange with orie another.

3. The Fock representation

We can construct the Fock representation of relations (11) in the
same manner as done by Greenberg and Messiah/5/ for the Green para-

quantization. We assume the existence of a umigue vacuur vector such
that

ari0> = brI0> =0 for all r. (23)
At. first, we consider states containing only particles. By épply-
ing the first Eg.(lla) to the vacuum vector due to its uniqueness we
arrive at -

aa’lo> =¢c |0>, (24)
r s rs
where €., are some numbers. Then, we have an identity
+ + _ - + + + _
[alam,aras]_— [alam,ar]_as + ar[alam,as]_

+

@3 aa —-a8 aa.
mr 1 a ls r m
By applying this identity to the wvacuum vector we get (when a+#0)
8§ ¢, =28 , where p is a common multiplier. Now the
mr s Is ls

following theorem can be proved

crm,‘l.e. cIs=p8

The or eml, The condition positive definiteness of the norm of a
symmetric, if a=0, or an antisymmetric, if «=<0, vector for r+l partic-
les implies that pzrial (r=i1,2,...).

Proof, Let az0. The relation

* * _ + + _
aa ...a lo> = p 651 a, ...a, 0>
1 n 1 2 n
n
+ + + + *
- a & a. ... -
2 81 1 2 a4 a, lo> (25)
- k2 k-1 "1 " k+1 n



can be obtained by the repeated application of the second Eq.(lla}.
The sum taken over all n! permutations (P1,...,Pn) of indices
(1,...,n) gives

+ +

a a® ,..a7 10> = [p-(n-1)a] at ...a* o>,
o ; tpy T, ; lp, Ipy 'pn
By using this relation n times we obtain
z <0la .,.a &' ..,.a' 10> = [p-(n-l)a][p-(n-2)al...
’ . I ]
P n 1 '™ Pn

o tpmedp Y. 6'1'? -..a'n'Pn. (26)
P

For the norm calculation 1'=s, (i=1,...,n). Taking in succession
n=1,2,...,r+l, in consequence of the reguirement of posltiveness of
corresponding norms, we get
p=0, pea, p=2a,..., pEra, . (27)

which proves the thecrem for a=|a|. The case a=-lal can be proved for
antisymmetric vectors analogously. ’ ‘

Now we have two pessibilitiesieither p is a finite (positive)
nunber or it is infinite. The later case will be considered in the
next section. Here we consider the case with a finite p. In this case
we can always choose a sufficiently large number of particles r in a
symmmetric (antisymmetric) state such that r>p/la|, and theorem 1 is
broken unless the norm for r+l1 particles vanishes and p=rlal. Thus
Eq.(24) becomes

+
a_a’|0> = rizld (0>, (28)

where the number r takes any integer 1,2,... The following theorem is
valid )
Teorem?2, If BEq.{(28) iz fulfilled, the norm of any vector with
the number of particles nzr+l under symmetrizatlon for a=0 and anti-
symmetrization for as0 over any r+l of them vanishes,

The proof of this theorem is presented in Appendixrn.

Thus at a finite p=rial the number of particles in a symmetric
(for «=0) or in an antilsymmetric (for as0) state cannot exceed a cer-
tain given integer r. In this case one speaks about para-Fermi or
para-Bose statistics of order (or rank) r, respectively {(see, for ex-
ample, /4'9/). We conclude that cur theory is convenient for the des-
cription of C-noninvariant parastatistics.

Now we include antiparticles intc our consideration. For the same
reasons employed for deriving Eq.(24), via applying of the second
Egq.(1ld) we arrive at

b bll0> = d_, 10>, (29)



where drt are some numbers. But the action of the second Eq.(11h) on
the vacuum vector gives at once

+
b b 10> =1« 5 10>, (30)
where the up and down sign correspons to the spinor and scalar field,
respectively.

The requirement of the positiveness of a norm of an antiparticle

vécto: gives the condition
Wy £,bj10> 1* = ¥ £1f <0lb b l0> =2 Y « I£,1* = 0,

I . I,m 1
that means taz0. Thus, we have for the spinor field «=0 and for the
scalar field a=0. Then in accordance with theorems 1 and 2 spinor
parafields must cbey para-Fermi statistics whereas scalar parafields
must obey para-Bose statistics. Thus, we have a generalization of the
Pauli spin-statistics theorem to parastatistics. Now in Egs.(11d,h) we
can write |a| instead of *a. Then Eq.(29) becomes

+
brbt|0> = Ialart|0>. (31)

The comparison of Eqgs. (28) and (31) reveals different vacuum condi-~
tions for particles and antiparticles unless r=1 (for usual statis-
tics).

Analogously, by applying the first Eg.(lle) to the vacuum vector
we arrive at

+
bsat|0> - fst|0>'
and then the action of the second Eq.(11g) gives fst=0' S0 we have
N +
b a’lo> = 0. (32)

Remark that an analogous relation for asb:10> cannot be derived.
In general, we cannot calculate the norm of a state vector con-

- taining only antiparticles because the relation (11h) does not allow

us to remove the annihilation operator to right vacuum vector. How-
ever, we can do this for each particle-antiparticle pair by means of
Eq.{11d). Thus, we conclude that the present theory admits only states
with the number of antiparticles which can exceed the number of par-
ticles in a system not more than unity. The number of particles in the

system can be arbitrary. We have two types of allowed states with
antiparticles:

+ + + * +* +
b, a; b; a; ...b, a, a: ...a: o>, (33a)
1 1 2 2 n = m+1 m+n
-
b, a; b, a ...b, a] a, ...a, b, 10>, (33b)
1 1 2 2 ] n m+1 m+n mn+1



Due to the second relations (1llc,f) these vectors obey the symmetly

under permutations of any pairs b: a: and b: a; (k,5=1,...,m). With

k k I F i
the help of the same relations all antiparticle creation operators can
be gathered in front of particle operators (except b: in (33b)).

=41

Ac follows from the norm calculation for vector (33), the number
of antiparticles in a symmetric state for az0' (the spinor field) or in
antisymmetric state for os0 (the scalar field) cannot exceed the num-
ber r (but can be r,r-1,r-2,etc.). So orders of particles and aﬁtipar—
ticles parastatistics coincide. ; ’

Thus, we can construct the Fock representation for the parasta-
tistics of finite order with the above-mentioned restriction on the
number of antiparticles as compared with the number of particles in a
system, and now we can work within this space not worse than in the
case of usual statistics, We can also get rid of the factor |al making
the renormalization of operators:a‘ - a,lal'lza, b: » bjlal"’z. Then
we have merely p=r. ’

There are no futher restrictions within the present quantizatien
scheme in contrast with the Green one. Therefore there is no addition-
al disappearance of multiparticle states characteristic of the Green
paraquantization. For illustration of this situation we consider a
system 'of three particles obeying para-Fermi statistics of order two.
A common vector of this system has the form ’

1¥> = ¥ w111213)a;1a;aa;3|0>, (34)
ll.lz.l:'
where the sum on each of 11,12 ,1:l ig taken over all one-particle
states. No symmetry properties of function W(Illzla) are implied be-
forehand. Due to Egs.(1lla) and (28) (set lal=1) we have the projection

of this vector on certain one-particle states r,s,t
<01a=asarIW>=8W(rst)-4W(rts)—4¢(srt)+2¢(str)-4W(tsr)+2w(trs). (35)

Onlr sxmmetric combination vanishes in consequence of this relation.
1

Other five combinations form an antisymmetric representation and tve
irreducible representations of a mixed symmetry. These later are
written in the explicit form

(1) -
¥ . (rat) N-,/(12J3) <0l2a,a a - a & a+2aa8a4a-a4aaa,

t
- aaa,- a.ara'|w> = N.,/(2¢3)[2%(rst)-i(rts)+2w(srt)-
-y {stry~¢(tsr)y=-v(trs)], (I6a)

{21 - - - =
(rst) = N_,/lz <0!-a a,a - aaa+ aaa+ a.aratlw>

¥
=N_./2 [-¥(rts)-¥{str)+¥(tsr)+¥(crs)], (36b)
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and

1)
Tm” (rsty = Nm”/lz <0|—asa

tar+ aratas+ aaa- asarat|¢> =
= Mm”/z [-¥(rts)+¥(str)+E(tsr)=¥(trs)] (i?a)
t2)

Wm" (rst) = Nm”/(12V3) <UI2a¢asar+ a a,a - 2aaa_- a a a+

+aaa-~aaa,ll-= Nn"/(2V3)[2W(rst)+W(rts)-2¢(srt}-
-¥(str)+¥(tsr)-¥{trs)], (37b)
_ _ _ -1/s2 _ -1/,2
where Nm,—(1+6rs ﬁrt/Z ast/Z) and Nm”—(1+6rt/2+59t/2) .

We emphasize that these combinations form irreducible representa-
tions under place permutations of operators but not under permutations
of one-particle states (r,s,t). For instance any two states of partic-
les could ke even equal. Thus, for example, the ?m - transposition
means the exchange of any two operators standing on (from right to
left) first and second positions that is a.aa=aaa ,aaas>
= aaa, etc.; accordingly, in functions - two arguments standing on
(from left to right) first and second positions: ¥(rst) = ¥{srt}
I({rts) » ¥(trs) , etc.

For the two equivalent representations (36) and (37) the operator
.(or argument) place transpesitions have the usual matrix form

{1 0 -1s2 Varz ' -172 -Varsz
P = P = P PLa= © (38)

’

Yare 1/2 ~Vase ts2

Any other permutations could be composed of traspositions,
The probability of three particles described by anyone of these
two mixed representations m=m' or m” to be found in states r,s,t is

(rst-)lz + |\Ivl‘.2’(rst)|2. (39)

. _ gt
Wn(rst) = I\Ilnl

Evidently, this expression is invariant under place permutations of
operators (or arguments) such as (38). But this is just ocur goal for
the theory of identical particles. Thus, our second-quantized theory
based on the relations (lla) with the subsequent symmetrization of
many particle states according to Young-diagrams is really consistent
with first quantized parastatistics of identical particles. For the
later the many pérticle states are described by, the so-called,
"generelized rays" in the many particle Hilbert space consisting of
the set of bhasic vectors of jirreducible representations/gf. In dis-
tinction to the Green paraquantization, the new one does not imply any
supplementary restrictions on irreducible representations such as va-

nishing of one of mixed representations of three parafermions of order
1/
two’ /.
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The absence of the interference term in Edq.(39) indicates the
possible interpretation of this expression as a result of averaging
over some hidden internal degrees of freedom like isospin in the
framework of ordinary Fermi statistics for complete functions. How-
ever, the consideration of this possibility is beyond the scope of
this paper.

4. The infinite statistics

Now we examine consequences of theorem 1 when p » . In this case
there are no restrictions on the number of particles {or antipart-
jcles) in the symmetric or antisymmetric state in accordance with in-—
equalitles {27). Thus, we can speak about infinite statistics in this
case (see, for example,/4/). However,it is necessary to accomplish a
renormalization of operators

a, +a, /vp, (40)

otherwise, -according to Eq.(26), norms of symmetric or antlsymmetric
vectors tend to infinity. Under renermalization (40) Eq.(25) takes a
simple form

* + » *
aa; ...a; [0>= §,, & ...a, 10>, . (41)
1 n 1 2 n

which means that an annihilation operator "killg" the nearest (from
the right) creation operator and the result of its action is merely &.
Since the relation {(41) holds for all particle vectors, this inmplies
the existence of tha algebraic equality
a'a: =& .. (42)

This 18 just the equation which Greenberg (as he noted, by the sugges-
tion of R.Hegstrom)/s/ has directly assumed for his description of in-
finite statistics.

Note, in the limit p » o Eq.(1la) turns into an identity because

its ih+8, vanishes identically due to Egq.(42) and r.h.s. goes to zero

as o/p.

However, in this 1limit we cannot define the Hamiltonian and
charge operator (in their particle parts) in their previous bilinear
forms (16) and (17) owing to their becoming infinite as p/a when
p + = under the renormalization (40). assuming Eq.(42) as origin
Greenhe:gfs/ supposed ancther expression for the particle number ope-
rator {conseguently, the Hamiltonian, the charge operator, and so on)
in the form of the infinite sequence
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= a*a + a*a*a a + z a’ a" a'aa a +...+
B, = a4 z DA ) 3 1%k _“k -
X X M 1 2 2 1

) 1772

' + + _+
... e +
. Z a, ...a, a,aa ..a “+.. (43)
1 - &8 1
k ,k_,...,k :
1 2 5

It is easy to verify that these operators satisfy the necessary pro-
perties

[nl,aj]_ = = 51) a,. {44)

Greenberg/s/ has shown also that the partition function of par-
ticles obeying infinite statistics correspends to the Boltzmann sta-
tistics without the famous Gibbs 1/N! factor. It is well known that
the introduction of this factor is necessary for avoiding the Gibbs
paradox which consists in the increase of the entropy when two volumes
of the identical molecule gas at the same temperature and density are
mixed. One can suggest the following interpretation of infinite sta-
tistics. Any parastatistics can be interpreted as the usual (Bose or
Fermi) statistics when there is the exact degeneracy of particles with
respect to an additional internmal coordinate, and the number of inter-
nal states of this additional degree of freedom is equal to the order
of parastatistics/4/. In the case of infinite statistiecs this number
is infinite. Then we can consider infinite statistics as statistics of
non-identical particles since they are (mentally) distiguishable in
their internal states. Then the entropy of the non-identical molecule
gas in a larger volume must increase, and the éibbs.paradox does not
appear. In my opinion, it is vemarkable that the Boltzmann statistics
of classical {ron-identical) particles can be described by infinite
sta;iétics of (i&entical)paraparticles, called by Greenberg the "guan-
tum Boltzmann statistics", with the help of his operator rela-
‘tion (42)783/, '

Now we turn to examihation of the behaviour ©f antiparticles in
the limit p #+ =. The vacuum relation (31) does not contain this'para-
meter at all, and the renormalization of antiparticle operators of the
type (40) is not reguired. For this reason Egs.(1ld,h} are not affec-
ted by this limit. However, the r.h.s. of Egs.{(lle) vanishes as o/p:

la b, 4,1, = (bfal,a,1_ = 0. (45)

€
Thus, though the product a b, contains a_, it commutes with a: in this
limit p = o ! :
Therefore all -our conclusions about the behaviour of antiparti-
cles in this limit hold valid, which represent the rule limiting the
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number of antiparticles by the number of particles plus unity and cor-
respondence between_the.sign of o and the field spin:az0 corresponﬂs
to spinor fields; and «s0, to scalar ones. However, in both cases
there are no restrictions on numbers of particles and antiparticles in
the symmetric or antisymmetric state.

As in the previous consideration, particles and antiparticles ap-
pear in pair states (33) (with an exception for one isolated antipar-
ticles in the state (23b)). So, we can introduce pair cperators
+

— * =. * * . -
4 - arb;' A-r brar' (Alr)

rs

=4, (48)

-
Due to Egs.(l11d),(43), and (1llc,d) we have Bose-like relations for
these operators

[Ar."l'r']- = |¢|5rr,5'.,, [Ar"lr’.']-‘= 0. (47)
The pair number operators
= =14 )
er,rs el ‘urﬂr- ) {48)

satisfy the required relations
[P

VA ] = =-686.8 4 , *
ar,rs PT - aq rp pq

(P 1 =6 & A'q.‘(49)

lr,}-'qu - “rq spP

Moreover, in consequence of Ed.(45) these operators commute with atand
a, and, therefore, with particle number operators (43). Thus, we can
consider a heap of non-pairing particles and the addition of particle--
antiparticle pairs as independent subsystens,

Gerkainly, in ehe limit p + » the theory becomes non-local, and
we cannot employ bilinear expressions llke (12) or (14) for Hamiltoni-
ans and other observables. From the beginning positive- and negative-
frequency field solutions are separated. Particle operators connected
with poeitive solutions satisfy The Greenberg relations (42) vwhereas
antiparticle operators connécted with negative solutions satisfy the
relations (11) with the alteration (45) and substitution za=lal, Ghich
we put equal to unity. For fields (8) and (9) with these alterations '

instead of the initial relatiens (10) we have
W) B(r) . etz) ) = -is' " (z-p) o), : (S0a)

WOy, _ = A8 (x-zVE(Y) (50b)

(for scalar fields one should change s . A"’). Negatlve~-frequency

singular functions standing in r.h.s. do not vanish outside of the
light-cone, and so the theory becomes really non-local in this limit.
It is necessary to emphasize the difference between our approach
and the Greenberg one’ &/ concerning to the description of antiparti-
¢les. Greenberg has immediately suggested the same relation (42} for
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antiparticle operators too, and analogous mutual ralations between
particle and antiparticle operators with r.h.s.equal to zero. He has
shown also that his theory remains CPT-invariant though it is non-
local. The non-locality of the present theory of infinite statistics
as well as the Greenberq one corresponds to the non-existence of infi-
nite statistics within the axiomatic local algebra of obaervablesllu/.

In our approach the theory of infinite statistics is CPT-invari-
ant too. For free-field expansions (8) or (9) via Egs.(23),(31), and
(42) we arrive at '

<0lg(x)¢* (¥)10> = <0l¢” (-y)¢(-x) 10> = 18"’ (x-y) (51)

(for simplicity we present the two-point vacuum expectation for the
scalar field). Then, by the direct calculation, we can be convinced
that just as for a free Bosze-field an arbitrary vacuum matrix element
of a product of free fields is a sum of products of two-point func-
tions. In consequence of this property and Eg.(51) we can prove the
requirement of the week locality for any vacuum matrix element, and
thus, CPT-invariance of our theory for free parafields, although they

are not local in the limit p = w.

5., Conclusion

We are convinced that there exists, side by side with the Green
paraguantization, a new generelized quantization without any additiqn-
al restrictions which are characteristic of Green paraguantization. As
well as the later the new theory turns out to be local. However, in
distinetion to the Green paraquantization, this one appears to be
charge-asymmetric: the number of particles in any state can be arbit-
rary but the number of antiparticles is limited by the number of par-
ticles plus unity.

In tﬁe limit p = w the new guantization coincides with the quan-
tization recently proposed by Greenherg/a/‘for description of infinite
statistics, he has called the "quantum Boltzmann statisties®. It is
plausible that this later can be interpreted as the Boltzmann statis-
tics of classical (non-identical) particles which are distinguishable
in their (hidden) internal states. In this limiting case the theory
becomes nhon-local, in accordance with the impossibility of the exis-
tence of infinite statistics in the framework of the local algebra of
observables/lo/. ) .

Since infinite statistics has occurred within the present theory
as a limiting case, and antiparticles are not affected by this limit,
our description of antiparticles is different from the Greenbery
one/a/. In our case an antipartiéﬁg can be included only in a pair



with a particle {except for the only antiparticle isolated from the
outset). These pairs form Bose-like cbjects which are independent of
heaps of nonpairing particles. _

Thus we have a complate claseification of all permitted statistics
of jdentical particles and corresponding schemes of field guantiza-
tions. Put now we have twe different quantization schemes which are
convenient for the description of the same parastatistics: the Green
paragquantizaticn and the present one. Then a question arises whether
can we discriminate between these two possibilities by any additional
requirements when we consider a few interacting parafields. Maybe,
there is a possibility for the employment of both of the schemes for
the description of different interactions of the same system of para-
fields (paraparticles). 1 propose to consider these questions in the
future.

Acknowledgements: I am indebted to Professor 6.W.Greenberg for
informing me avbout his results expounded in paperfa/. 1 am also grate-
ful to Professor v.A.Meshcheryakov and prg.S.B.Gerasimov and M.I.Shi-
rokov for valuable and helpful discussions.

Appendix A

for simpliclty we consider only the case a0, Let one has an

n-paricle vector with the symmetrization over r+1 particles i‘,lz,...
TET T distributed in any order among other n-r-1 particles. Now we
prove that the action of an annihilation operator a6 on this wvector
results in a sum of vectors vhich are symmetric in r+l particles too.

Let the flrst (from left) creation operator participates in sym-—
netrization. According to Eq.(25) under p=rial we have

+* +* * + +
a, Z ap, z...a?‘ cerdyp, ...an|0> =
2 rel

PesS .
r+l
* L] - » -
aue res . > -
* |a| Z [I' 0,0,8,'%, % o b
PeS 2 & r+l
rel
r+1 i
- z 6.?‘ z,...80, colipy e 8p, ".an|0> -
k 2 r+l
ko1
* L] - L4 > »
- s_aaplaa...ap, seslp, eoslp, ...an|0> n.q
2 k r+1

{instead of states 11,...,1“ we write merely their nunbers l,....n).
Terms with the lndex s coincident with the one of symmetrized indlces
are collected in thé second sum, and in all these terms the operator
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a;l replaces a;‘ . The number of these terms is r and due to symmetri-
k

zation over indices 1,.1'2,...,._i”1 these terms are cancelled out with

the first term. Certainly, the remaining terms are symmetric in initi-

al r+l1 indices.

Now let the first creation operator does not participate in the
initial symmetrization. Then we have '

+ 4+ - + * +
. “ea . > =
a, Z a d,...ap, ag, ag, ..anlo
Pes 1 k r+1
r+1
+* + + * +
= - lal Z [rsslazn.a?‘ -l ”.a?I ”.an]0>
Pes 1 k r+1
r+l1
+ _+ * - * +
- sszalaau.a?‘ c8p, --8p, ”.an|0> -
red 1 k r+l
* * - -+ +*
- aaw “es .o s >1a
z 65?: 4, apy 2 ap, EHIO‘]
_ 13 1 r+l

k=1
Terms with the index s coincident with the one of symmetrized indices
are collected in the last sum, and in all those terms the operator a’

1
replaces a, - Then this sum can be written as
k .

r+1
+ + + * *
- - >
2_ ss:k E az ap, . afP: ap, an|0
k=1

r+1
?sS(Jl.... ] )

) L1, 8 e
k-1 kvl r+l
Thus we have the sum of terms which are again symmetric in r+l1 indices

11,...,1k_1,1,1k*1,...,ir+r

Repeating the action of annihilation operators on the initial
vector many times we arrive at the sum of vectors which are symmetric
in all their r+l1 states. Under the action of one more annihilatien
operator on these vectors they vanish according to theorem 1 (at n=r+l
and p=rla«l).
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