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The reactions 
v + n ~ 1-L- + A

0
(2285)+ (1) 

v + n ~ 1-L- + I:
0
(2455f (2) 

V + p ~ 1-L- + L
0
(2455f+ (3) 

provide an important information on weak form factors (FF) of nucleon 

tran~itions to charmed baryons. Investigation of these processes can 

improve or change usually accepted notions of the structure of baryons 

with a charmed quark. A key issue in planning the experimental 

investigations is the evaluation of cross sections for the considered 

processes. Usually it is pointed out that the discrepancy about one 

order in the predictions of the known models, makes it rather 

difficult to _foresee the experimental statistics . 

To our mind, the discrepancies revealed by formal comparison of 

the predictions of these models are not-so crucial. Now it is clear 

that if SU
4 
-symmetry breaking is taken . into account correctly, then 

the discrepancies disappear. Problems with the predictions of these 

models come from another source. We mean the dipole parametrization of 

Q2
- dependence of the nucleon FF in reactions (1)-(3). The dipole 

parametrization involves the empirical formulae obtained from the 

experimental data on the electromagnetic and weak elastic nucleon FF. 

It has no direct theoretical interpretation. Thus the parameters of 

these formulae, which are the vector and axial masses catmot be a 

priori found from theory. In this situation the predictive abilities 

of the models mentioned essentially weaken. 

The aim of the present paper is to evaluate .the cross sections of 
' /8-10/ 

processes (1)-(3) in the framework of the approach based on the 

QCD version/12 • 13/of Bloom-Gilman (B-G) dualityl111applied to the 

vN-scattering. We consider this approach as an alternative to the 

dipole parametrization. The phenomenological parameters of the 

approach have a clear physical interpretation and can be fixed or 

bound in values rather reliably. As a result we are able to obtain the 

upper bound for the cross section of processes (1)-(3). 

The QCD version of B-G duality connects the smooth nonsinglet 

structure ·functio~ (SF) Fth(x,Q2
) of deep inelastic scattering, 

calculated in the QCD perturbation theory with the observable SF 
h 2 2 . 

pi' (x,Q ) possessing the_ baryon resonance bumps at small Q . These two 

functions coincide with a good precision when averaged both over the 

whole kinematic i~terval· Q::sx::s1 (global duality): 
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J (F"h (x,Qz) - Fth (x,,Qz) )dx 

0 

and over some vicinity 

(local duality): 

xrax 
( F"h(x,Qz) - Fth(x,Qz) )dx 

X min 

0 

of a certain resonance 

0. .J 

X 
min 

(4) 

:5 X :S X max 

(5) 

The nonsinglet SF Fth(~,Q2 ) describes the nucleon transitions to 

hadronic final states with the definite electric charge and 

su -quantum numbers but with non fixed quantum numbers of the 
• 4 
space-time symmetries. In its turn SF Fph (x,Q2) contains only the 

contributions of the resonances with the inte'.rnal quantum numbers of 

these final states. 

At the moderate and low values of Q2 relation ( 5) is strongly 

violated because of kinematic and non-perturbative power corrections 

to Ft h (x,Q2). But if we replace the simple Bjorke"n variable x=Q
2 

/2Mv 

by a more complex one 

~ 

Q2 
~(v,Qz) t;;(v,Q2 ) [1 + 

0 (1 + 
~ 

d+o~}], 
0 

(6) 

which takes into account/8 / a part of the dominating.power corrections 

to Fth (x,Q2), we can essentially improve the precision of relation 

(5). In formula (6) the parameter M is the scale of non-perturbative 

(twist-) power corrections like 
0

(~/Q2 ) 0 ; t;; is the well known 

t;;-scaling variable/12 • 13/ o 

t;;(v,Qz) 
Q

2 I M 
( 7) 

v + / v2+ Q2 

absorbing the kinematic power corrections like -(M
2

/Q
2

)
0 

with the 

nucleon mas~ M as a scale. 

When a zero width approximation'for the resonance contribution to 

Fph(x,Q2 ) is used, then in relation (5} this function should be 

replaced by ·zR Fph(x,Q2
). Here zR are constants different for 

different resonances and not equal to 1 in general case.~ This 

replacement was explained in/101 from the point of ·view of Wilson 

2 

operator product expansions using the results_ and methods of the 
works/11,12/. 

We shall not dwell on substantiation of the approach . These is 

the subject of the papers/8- 101. Here we only derive the final 

formulae for the cross sections in the zero width approximation for 

the resonance contribution. To do this let's substitute SF Fph(x,Q2) 

to relation (5) in the form 

~h(x,Qz) = ¥.<oz)<'i(v- vR) 
(8) 

F~~3(x,Q2)= 2VM W2,3(Q2)<'i(v- VR) , 

using a new variable ( 6) and taking into account the normalization 

factor zR. Then we obtain the resonance functions w in ·terms of 
k • 

smooth function Fth(x,Q2) which is well controlled ·by the QCD 

perturbation theory and the modified QCD parton model. Substituting SF 

Fph (x,Q
2

) in this form to the known formula for· the vN-scattering 
cross section 

d CT 

dv dQ2 
2 2 2 

_G_ [-Q __ F"h + 4E(E - v) + Q Fph _ 
2rr 4ME2 1 4E2 v 2 

2 Q (2E-v) Fph 

4MvE 2 3 

and integrating over the variable v we finally obtain: 

~R= ~ zR DR(Q2) 
d Qz 2rr 

Q2 v 
[1 - _R_ + 

4E2 
+ 

where 

v = 
R 

+ 
Q2 

2ME~R 

DR (Q2) 

M: - ~+ Q2 

2M 

~R(Q2) = E(vR,Q2), 

ER = 
sr 

(MR + m,)2- ~ 

2M 

/v2+ 02 
R 

VR ~R 

~_(Q2j 

E 

e(E- ER>, 
sr 

I t f(t,Q
2
)dt 

~+(Q2) 
[(M ± !:.± )2• _ ~+ Q2] 

R R + v; 
2M 

- 2 - ± 2 
t;;±(Q) = t;;(vR,Q ), 

,. GJ ( 2rr) "' 0. 8x10-38sM2 GeV-2 

(9) 

(10} 

(11} 

(12) 

E is the energy of the initial neutrino; M, m~ are the masses of the 
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nucleon and the ~-meson; ER is the threshold energy of the resonance 
sr · · · 

R = (A• ,I:• ,I: •• ) production; M is the mass of this resonance; !J.± are 
c e c R R 

the mass parameters ·which define the duality interval ~!; [~., ~-], 

where as it follows from relation ( 5) the considered resonance is 

:averaged by the smooth function Fth(x,Q2
). 

The fun.ction f (x,Q2
) is a distribution function (DF) of the 

valence quark in an initial nucleon. An external current induces a 

transition of this quark to the final one forming a considered baryon 

with two other quarks-spectators. This point is explained in fig .1. 

For reactions (1)-(3) f(x,Q 2
) is aD; of the valence d-quark. It obeys 

QeD evolution equations and can be found if the initial condition 

f (x,Q2
) at fixed Q2 = Q2 is introduced. However, for the estimat.ions 

0 0 

that we wish to obtain here it is enough to accept approximately 

f(x,Q 2 )=f(x,Q2
) and don't take into account logarit~ic Q2

- dependence 

of DF f(x,Q2
)

0

that corresponds to the QeD corrections. Let's take this 

function in the form: 

f(x) 
x- 1 / 2 (1 - x)-r 
B(1/2,-r + 1) 

(13) 

We use the -r=4 which is generally accepted now and follows from 

the different experimental data analyses/14- 15/. 

To fix the normalization constant zR we use the predictions of 

SU
4 
-symmetry of strong· interactions violated by a large mass 

difference of charmed and non-charmed quarks. The phenomenological 

form factors F ~Q2 ); F (Q2
) (FF) describing the nucleon transitions 

N ---+ A •, I:•, I:.! 'obey th: following. relations at Q2 =ol161: 
c c c 

- reaction (1) 

F (O) = 1312 FP (0); 
1 1 

F (0) = 1312 ~ FP(O); 
2 . p 2 

F (O) = 1312 [ f (0) + 1/3 d (0)]; 
(14) 

A A A 

reaction (2) 

FP(O) 
F(O) =- - 1

- ; F (O) = - - 1- [ f (0) - d (O) ]; 
1 v"2"' A v"2"' A A 

F (O) = - - 1- [ ·~ FP ( 0) + . 2 ~ Fn ( 0) , 
(15) 

2 v"2"' p 2 • n 2 

For reaction ( 3) the ·right hand side of relations (15) have to be 

multiplied by ../'2'. Here FP • ~ FP • n are the electromagnetic FF of the 
1 2 

proton and the neutron. f (Q 2
), d (Q2

) are the FF of the axial-vector 
. A A 

f,d-coupling of the nucleon. The values of the constants introduced 
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are 

Fp,n(O) = 1; ~ = 1,79; ~ = - 1,91; 
1,2 p n 

fA(O) = 0,3; dA(O) = 0,95. 

Writing down the cross section at Q2 =0 with above-mentioned FF 

and relations (14)-(15) 

G
2 . 2 • .2 

d<T I - s~n e c ( 2ME + M - M!) 
dQ2 Q2=~ 4rr ME [~(0) + F!(O)] 

then comparing it with (10), we obtain: 

zR 
2w 

0 
sin2 e [F2 (0) 

c 1 . 

DR(O)( M2 
-

R 

+ F2 
( 0)] 

A 

w> 

(16) 

.( 17) 

Now we are ready to consider quantitative predictions of the dual 

approach for cross sections of reactions (1)-(3). The approach 
+ 

contains three phenomenological parameters M, !J.-. M is a proper 
. · . o R o 

scale of internal nucleon dynamics which we consider to be equal for 

different processes. It can be fixed from the analysis/9/of the data 

on cross section <r(vn -+ ~p) and electromagnetic FF. The result is: 

M
0 

= 0,08 ± 0,02 GeV. (18) 

+ . + 
The parameters !J.- obey the constraints !J.-s. I (M + - M ) I, where R R R- R + 

MR_ s. MR s. MR+ are the masses of the neighboring resonances R- which 

are the closest to R in masses and possess the same the electric 

charge, SU
4
-quantum numbers as R has. For the considered baryons A:, 

I:•, I:•• we have: 
c c 

A•: 
c 

I:++: 
c 

~-= 1, !J.•s. ~1 - MA; 
0 c 

~-= 1, !J.•s. Me• - MI: 

Here B1 
• 

0 

1 c 

I:+ : ~-= 1' tJ.·s Me• - MI: i c 
, 

1 c 

(19) 

is the 

L=1, orbital momentum 

first excited charmed baryon state with the 

e· +I e··· are the L=O ground-:state charmed 
1 . 1 

baryons with the spin s = 3/2. We estimate their masses following the 

method of .the work/4/, but using modern values ··of the masses of the 
+ + ··/17/ . baryons A , I: , I: . The result ~s: 
C C· C 

MB1 
0 

2,84 GeV; Me• "' 2,64 GeV. 
' 1 

When the scattering channel with. quantum number's of one of the 

baryons A··, I:• or I:++ is considered. there is only one resonance bump 
c c c 

inside. the interval ~. s. ~ sl, corresponding to the contribution of 
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N N 
Fig.l. Quark diagram 

production. 
for charmed baryon 

~ 
neutrino 

this baryon. The reason is that this baryon has the lowest mass in 

this channel . That's why we accept ~=1 in (19) as an upper limit of 
the duality interval. 

With the help of (18),(19), the estimation of the upper bounds 

f?r the cross sections of reactions (1)-(3) can be found. To make this 

we use the following parameter values 

M 
0 

0,1 GeV ; fl~ = 0,56 GeV; 
c 

fli: = 0, 2 GeV. (20) 
c 

The final results of our calculations for the upper bounds of the 

differential and total cross sections are presented in fig.2,3. 

In conclusion we note that the obtained predictions of the dual 

approach are consistent with the results of works/1-:1, but lie 
essentially lower than the results of works/2- 4/. 
B~~~~~~w_~~~~~~~~+ 
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Fig.2. Upper bounds for total 

cross sections of 
charmed baryons neutrino 
production. 
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Fig.3 Upper bounds for differen
tial cross sections 
of charmed baryons neutri
no production. 

I 

I am grateful to Bednyakov V.A., Ivanov Yu,P., Kopeliovich B.Z.· 

for the useful dfscussion, to Buniatov S.A., Vovenko A.S. for the 

information on the experimental situation with the charmed baryons 

neutrino production. 

References: 

1. Finjord J., Ravndal F. Phys.Lett., 1975, 58B, p.61. 

2. Shrock R.E., Lee B.W. Phys.Rev., 1976, D13, p.2539. 

3. Avilez c., Kobayashi T., Korner J.G. Phy~.Lett., 

1977, 66B, p.149; Avilez c.; Kobayashi T. Phys.Rev.,· 

1979, D19, p.3448. 

4. Avilez c., Kobayashi T., Korner.J.G. Phys.Rev., 

1978, D17, p.709; 

5. Amer A. et al. Phys.Lett., 1979, 81B, p.48. 

6. Zhizhin E. D., Nikitin Yu.P., Fanchenko M.S. 

Yad.Fiz., 1983, 37; p.1506. 

7. Berkov A.V.; Zhizhin E. D., Nikitin Yu.P. ,Yad.Fiz., 

.1989, 49, p.1672. 

8. Kovalenko S.G. JINR preprint, P2-80-499, Dubna, 1980. 

9. Belko-v A.A~. Ivanov Yu.P., Kovalenko S.G. Yad.Fiz., 

10. 

11. 

12. 

1984, 40,· p.1301. 

Belkov A.A., Kovalenko S.G .. Sov. Journ. of 

Part. & Nucl., 1987, T.18, p.110. 

Bloom E.D., Gilman F.J. Phys.Rev., 1971, D4, p.2901. 

De Rujula A;, Georgy H., Politzer H .. D. Ann.Phys., 

1977, 103, p.315. 

13. De Rujula A., Geo:tg.y'H., Politzer H.D. Phys.Rev., 

1977, D15, p.2405. 

14. Diemoz M. ,Ferroni F. ,Longo E;., Maiani L .. ·, 

Martinelli G. I.N.F.N. Preprint, 1989, n.934. 

15. 'Bednyakov V.A. Yad.Fiz., 1984, 40, p.221: 

16. Volkov G.G., Liparteliani A.G. JETP Lett., . , .. 

1975, 22, p.474. 

17. Review of Part.Prop.Phys.Lett_., 1988, 204B. 

Received by Publishing Department 

on April 12, 1990. 

7 

-,~ 


