

объединенный
 ииститут
 ядерных
 исследований
 дубиа

553

E2-90-25
S.V.Shabanov

QUANTIZATION OF CONSTRAINED SYSTEMS AND PATH INTEGRAL

IN CURVILINEAR SUPERCOORDINATES

Submitted to "Journal of Physics A: Mathematical and General"

I. Introduotion

It is well-known that elimination of unphysioal variab1es in gauge theories and quantization do not oommute (Christ and Lee 1980, Prokhorov 1982, Ashtekar and Horowits 1982, Ishem 1986). In other words, a quantum theory dosoribed by the Dirao soheme (Dirao 2965) oan differ from that one when unphysical degrees of freedom are oliminated before quantization. However, the standard way of path integral (PI) oonstruotion (Faddeev 1970, Faddeev and Slavnov 1980) corresponds just to the last method since in this way unphysioal momenta and ooordinates are eliminated from the classioal action with the help of constraints and supplementary oonditions, respeotively, and the phase space of physical degrees of freedom is a'priori considered an even--dimensional Euolidean spaoe.

The difference of these quantization methods oomes out from a ourvilinear charaoter of physioal variables (Prokhorov 1982) (it is known that the applioation of operations of quantization and introduotion of ourvilinear ooordinates in a different order to a olassioal theory gives. different quantum theoried), on the one hand, and from their phase spaoe reduotion appearing booause of a gauge symmetry (Prokhorov 1989, Byokhoyov ath ghatabsy 1989), of the other hand. A modifioation of gI when a physioal phase apace is roduoed was shown in (Prokhorov and Shabanor 2989, Shabanov 1989). Other exampies, of the "quantum dynamioal" phase space reduotion was given by Dunne, Jaokiw and Trugena berger (1989).

The present work is devoted to the consideration of a PI form corresponding uniquely to the Dirac quantization scheme. It turns out that there exists a conneotion between a PI form in curvilinear coordinates (Sect.2,3) and PI for gauge theories containing both boson and fermion degrees of freedom. Existence of fermions in a theory causes in PI derivation on physical superspace, some specific difficulties, since one cannot decrease the number of anticommuting variables describing fermions by gauge transformations (Sect.4). In Seotion 5 it is shown that taking into consideration a curvilinear character of physical variables and their phase space reduction, we may explicitly define the gauge-invarlant kernel of the evolution operator via PI. A mathematical reason of this is also presented in Sect.5. In Conclusion we suggest a general recipe of the PI construction corresponding to the Dirac quantization scheme for arbitrary picking out physical variables. It should be remembered that there exist invariant and non-invariant ways of picking out physical degrees of freedom. The first corresponds to the introduotion of gauge-invariant variables. However, a complete set of gauge invariants is not always known, so we are forced to use the second way when physical variables are separated by supplementary conditions from initial variables, i.e., by gauge fixing. In the recipe suggested below, we show how one should take into account a curvilinear, character of physical variables and their phase space reduction in a non-invariant way of separating them.
2. PI in curvilinear coordinates on superspece

Consider a quantum-meohanical system containing boson degreen of freedom as well as Grassman ones. We take the Hamiltonian as follows

$$
\begin{equation*}
H=\frac{1}{2} p_{a}^{2}+V\left(x, \psi^{+}, \psi\right) \tag{2.1}
\end{equation*}
$$

where $\left[x_{a}, P_{b}\right]=i \delta_{a b}(a, b=1,2, \ldots, M)$ and $\left[\psi_{\alpha}^{+}, \psi_{\beta}\right]_{+}=\delta_{\alpha \beta}(\alpha, \beta=1,2, \ldots, N)$. The operator algera may be realized in a space of functions on superspace $\Phi=\Phi(x, \bar{\psi}) \equiv \Phi(Q), Q=(x, \bar{\psi})(\bar{\psi}$ is complex conjugated to ψ) if

$$
p_{a} \Phi=-i \frac{\partial}{\partial x_{a}} \Phi, \psi_{\alpha}^{+} \Phi=\bar{\psi}_{\alpha} \Phi, \psi_{\alpha} \Phi=\frac{\partial}{\partial \tilde{\psi}_{\alpha}} \Phi
$$

Here and below all derivations of Gasman variables are left. The scalar product under which we define Hermitian conjugated operators has the form (Berezin 1966)

$$
\left\langle\Phi_{1} \mid \Phi_{2}\right\rangle=\int d x d \bar{\psi} d \psi e^{-\bar{\psi} \psi} \overline{\Phi_{1}}(Q) \Phi_{2}(Q)
$$

where the integral is taken over the whole \mathbb{R}^{M}. In actordance with (2.3) the unit operator kernel $\left\langle Q \mid Q^{\prime}\right\rangle$ has. the form

$$
\sum_{E} \Phi_{E}(Q) \bar{\Phi}_{E}\left(Q^{\prime}\right) \equiv \delta\left(Q, \bar{Q}^{\prime}\right)=\delta\left(x-x^{\prime}\right) e^{\bar{\psi} \psi^{\prime}}, \text { (2.3a) }
$$

where Φ_{E} are eigenfunction of Hamiltonian (2.1).
In the general case the change of variables is defined by a function on superspace $Q=Q(q), q=(y, \bar{\xi})$:

However, we shall consider special forms of Q. But it will be enough for the application of gauge theories. Introduce the new variables

$$
\begin{array}{ll}
\text { nee war danes } \tag{2.4}\\
x_{\alpha}=x_{\alpha}(y), \psi_{\alpha} & =\Omega_{\alpha \beta} \xi_{g},
\end{array}
$$

where $\Omega \in S U(N)$ and $\Omega=\Omega(y)$. Then $d Q=A d q$ and

$$
\begin{aligned}
& \text { where } \Omega \in S U(N) \text { and } \Omega=S^{i}(y) . Q^{i} / \partial q^{j}, i, j=(a, \alpha) \text {. } \\
& \partial / \partial Q=A^{-1 T} \partial / \partial q \text {. Here } A_{j}^{i}=\partial \text {. }
\end{aligned}
$$

After some calculations we get from (2.4)

$$
\begin{align*}
& \frac{\partial}{\partial x_{a}}=B_{a}^{b}\left(\partial_{6}+i \pi_{\ell}\right) \text {. } \tag{2.5}
\end{align*}
$$

where $B_{a}^{b}=\left((\partial x / \partial y)^{-1}\right)_{a}^{b}, \pi_{b}=i \vec{\xi} \partial_{b} \Omega^{+} \Omega \frac{\partial \xi}{\xi}$, $\partial_{b}=\partial / \partial_{6}$. Using (2.5), (2.4) and (2.2), we rewrite Hamiltonian (2.1) in the new variables

$$
\begin{equation*}
H=\frac{1}{2} P_{a} g^{a b} P_{b}+V_{q}(y)+V \tag{2.6}
\end{equation*}
$$

Here $P_{a}=-i \mu^{-1 / 2}\left(\partial_{a}+i \pi_{a}\right)_{0} \mu^{1 / 2}, \mu=\operatorname{sdet} A=$ $=\sqrt{g}, g=\operatorname{det}\left\|g^{a b}\right\|^{-1}, g^{a b}=B_{c}^{a} B_{c}^{b}$ and V_{q} is the effective quantum addend to a potential

$$
\begin{equation*}
V_{q}=\frac{1}{2 \sqrt{\mu}}\left(\partial_{a} g^{a b}\right) \partial_{b} \sqrt{\mu}+\frac{1}{2 \sqrt{\mu}} g^{a b} \partial_{a} \partial_{b} \sqrt{\mu} \tag{2.7}
\end{equation*}
$$

The form of a scalar product in the space of functions $\varphi=\varphi(q)$ follows from (2.3) and (2.4)

$$
\begin{equation*}
\left\langle\varphi_{1} \mid \varphi_{2}\right\rangle=\int_{K} d y d \bar{\xi} d \xi e^{-\bar{\xi} \xi} \mu(y) \bar{\varphi}_{1}(q) \varphi_{2}(q), \tag{2.8}
\end{equation*}
$$

where K is a region of integration over $y, K \in \mathbb{R}^{M}$. The mapping $x=x(y)$ is one-to-one if $x \in \mathbb{R}^{M}$ and $y \in K$. Let the functions $x(y)$ be analytical for all $y \in \mathbb{R}^{M}$. So, there exist transformations \hat{s} acting in \mathbb{R}^{M} such as

$$
\begin{equation*}
x_{a}(y)=x_{a}(\hat{s} y) \tag{2.9}
\end{equation*}
$$

For example, $M=2$ and $y_{a}=(r, \theta)$ are polar coordinates. In this case K is the strip $r>0, \theta \in(0,2 \pi)$, and transformations \hat{G} have the form $\theta \rightarrow \theta+2 \pi n, n \in \mathbb{Z}$ and $r \rightarrow-r, \theta \rightarrow \theta+\pi$. Apparently, transformations \hat{S} form a discrete group S and $K=\mathbb{R}^{M} \backslash S$, ie., $K \quad$ is made from \mathbb{R}^{M} by identification of points in \mathbb{R}^{M} connected with each other by S-transformations. In the mathematical language, the mapping $x=x(y)$ gives the projection in the principal fibre bundle (Kobayashi and Nomizu 1963), where the base and fibre bundle coincide with \mathbb{R}^{M} and the discrete group S acts along a fibre in the fibre bundle $\mathbb{R}^{M}(y)$.

The group S induces discrete transformations of Grassman variables \hat{T}_{s} such as $\Omega(y) \xi=\Omega(\hat{s} y) \hat{T}_{s} \bar{J}$, so, $\hat{T}_{s}=$ $=\Omega^{+}(\hat{s} y) \Omega(y)$. We mark the total group of transformatrons \hat{S} and \hat{T}_{s} as S^{*} and $\hat{S}^{*} q=\left(\hat{S} y, \vec{\zeta} \hat{T}_{s}^{+}\right)$.

Hamiltonian (2.6) is written in an explicit Hermitian form since the operators P_{a} are Hermitian under scalar product (2.8). If φ_{E}, are eigenfunction of (2.6), we may write (since the Hilbert spaces (2.1) with (2.3) and (2.6) with (2.8) are isomorphic)

$$
\begin{equation*}
\varphi_{\xi^{\prime}}(q)=\sum_{\xi} c_{\varepsilon^{\prime} \xi} \Phi_{\varepsilon}(Q) . \tag{2.10}
\end{equation*}
$$

By definition $Q\left(\hat{s}^{*} q\right)=Q(q)$, and we conclude

$$
\begin{equation*}
\varphi_{E^{\prime}}\left(\hat{s}^{*} q\right)=\varphi_{E},(q) \tag{2.11}
\end{equation*}
$$

Using the property of parity (2.11), we may analytically
continue φ_{E} to the unphysical region $y \in \mathbb{R}^{M}$. Thus, in accordance with $(2,8)$ we have

$$
\sum_{E} \varphi_{E}(q) \bar{\varphi}_{E}\left(q^{\prime}\right)=\sum_{S^{*}}\left[\mu \mu(y) \mu\left(\hat{s} y^{\prime}\right)\right]^{-1 / 2} \delta\left(q, \hat{S}^{*} \bar{q}^{\prime}\right) \text { (2.12) }
$$

where $y \in \mathbb{R}^{M}, y^{\prime} \in K$. For physioal values of y, y^{\prime}, i.e., $y, y^{\prime} \in K$, one should only keep the first term in sum (2.12) with $\hat{S}^{*}=1$. Formula (2.12) defines an analtical continuation of the unit operator kernel $\left\langle q \mid q^{\prime}\right\rangle$ to the unphysical region.

Note also that kernel (2.12) can be obtained directly from (2.3a). Since a change of variables in a quantum thery is equivalent to a choice of a new basis in the Hilbert space of states, the left-hand sides of (2.3a) and (2.12). must coincide, hence, the right-hand sides coinoide too. Indeed, let us change Q and Q^{\prime} in (2.3a) by expression (2.4) and assume $y \in \mathbb{R}^{M}, y^{\prime} \in K$, then

$$
\begin{equation*}
\delta\left(Q, \bar{Q}^{\prime}\right)=\sum_{S}[\mu(y) \mu(\hat{s} y)]^{-1 / 2} \delta\left(y-\hat{s} y^{\prime}\right) \exp \bar{\xi} \hat{T}_{s} \xi \tag{2.12a}
\end{equation*}
$$

The equality follows from the rule of changing an argument of M-dimensional δ-function and the definition of $\hat{T}_{S}=$ $=\Omega^{+}\left(\hat{S} y^{\prime}\right) \Omega\left(y^{\prime}\right) \quad$ (at $\delta\left(y-\hat{S} y^{\prime}\right)$ we may change $\Omega^{+}(y)$ by $\Omega^{+}\left(\hat{s} y^{\prime}\right)$ in $\exp \bar{\psi} \psi^{\prime} \quad$.

Let us turn now directly to the PI derivation. The kernel of the infinitesimal evolution operator is

$$
\begin{equation*}
U_{\varepsilon}\left(q, \bar{q}^{\prime}\right)=\left[1-i \varepsilon H\left(y, \bar{\xi}_{,}, \partial_{\bar{\xi}}\right)\right]\left\langle q \mid q^{\prime}\right\rangle \tag{2.13}
\end{equation*}
$$

where H is given by (2.6) and $\varepsilon \rightarrow 0$. We rewrite kernel (2.12) as follows

$$
\begin{equation*}
\int \frac{d y^{\prime \prime} d \bar{\xi}^{\prime \prime} d \xi^{\prime \prime} e^{-\bar{\xi}^{\prime \prime} \xi^{\prime \prime}}}{\left(\mu \mu^{\prime \prime}\right)^{1 / 2}} \delta\left(q, \bar{q}^{\prime \prime}\right) Q\left(q^{\prime \prime}, \bar{q}^{\prime}\right) \tag{2.14}
\end{equation*}
$$

where $\mu \mu=\mu(y), \mu^{\prime \prime}=\mu\left(y^{\prime \prime}\right)$ and

$$
\begin{equation*}
Q\left(q^{\prime \prime}, \bar{q}^{\prime}\right)=\sum_{S^{*}} \delta\left(q^{\prime \prime}, \hat{s}^{*} \underline{q}^{\prime}\right) \tag{2.15}
\end{equation*}
$$

Then, we use the representation of δ-function $\delta(y)=$. $(2 \pi)^{-M} \int d p \exp i p y$ in (2.14) and substitute (2.14) into (2.13). For the calculation of action of H on $\delta\left(q, \bar{q}^{\prime \prime}\right)$ one should take into consideration a noncommulability $\bar{\xi}$ and $\partial_{\bar{\xi}}$ and also use the equality

$$
\begin{equation*}
\partial_{a} \circ g^{a b}(y) \partial_{b} \delta\left(y-y^{\prime \prime}\right)=\left(g^{a b}\left(y^{\prime \prime}\right) \partial_{a} \partial_{b}-\partial_{a} g^{a b}\left(y^{\sigma}\right) \partial_{b}\right) \delta\left(y-y^{a}\right) \tag{2.16}
\end{equation*}
$$

where $\partial_{a}=\partial / \partial y_{a}$. Thus we find, with an accuracy of $O\left(\varepsilon^{2}\right)$,

$$
\begin{align*}
& U_{\varepsilon}\left(q, \bar{q}^{\prime}\right)= \\
= & \int \frac{d y^{\prime \prime} d \bar{\xi}^{\prime \prime} d \xi^{\prime \prime}}{\left(\mu \mu^{\prime \prime}\right)^{1 / 2}} e^{-\bar{\xi}^{\prime \prime} \xi^{\prime \prime}} U_{\varepsilon}^{e f f}\left(q, \bar{q}^{\prime \prime}\right) Q\left(q^{\prime \prime}, \bar{q}^{\prime}\right), \tag{2.17}\\
& U_{\varepsilon}^{e f f}\left(q, \bar{q}^{\prime \prime}\right)= \tag{2.18}\\
= & \int \frac{d p}{(2 \pi)^{m}} e^{\bar{\xi} \xi^{\prime \prime}} \exp i \varepsilon\left[\frac{p}{\varepsilon}\left(y-y^{\prime \prime}\right)-H^{e f f}\left(p, q, \bar{q}^{\prime \prime}\right)\right]
\end{align*}
$$

$$
(2.18)
$$

and the effective Hamiltonian has the form

$$
\begin{align*}
& H^{e f f}\left(p, q, \bar{q}^{\prime \prime}\right)=H_{0}\left(p, q, \bar{q}^{\prime \prime}\right)+\tilde{V}\left(q, \bar{q}^{\prime \prime}\right)+\widetilde{V_{q}}\left(p, q, \bar{q}^{\prime \prime}\right) \text { (2.19) } \\
& H_{0}=\frac{1}{2}\left(p_{a}+\pi_{a}\right) g^{a b}\left(y^{\prime \prime}\right)\left(p_{b}+\pi_{b}\right) . \tag{2.20}
\end{align*}
$$

where $G_{r a s s m a n ~ v a r i a b l e s ~}^{\sim} \xi^{\prime \prime}=\bar{\xi}$ " stand instead of $\partial^{\prime} \bar{\xi}$ in π_{a}; V follows from V if we carry all operators ∂_{ξ} to the right and, then, change them by $G_{r a s s m a n}$ varyabies $\xi^{\prime \prime}$; and finally the expression

$$
\begin{gather*}
\tilde{V}_{q}=V_{q}\left(y^{\prime \prime}\right)+\frac{i}{2} \partial_{a} g^{a b}\left(y^{\prime \prime}\right)\left(p_{b}+\pi_{b}\right)- \\
-\frac{1}{2} g^{a b}\left(y^{\prime \prime}\right) \bar{\xi} \partial_{a} \Omega^{+}\left(y^{\prime \prime}\right) \partial_{b} \Omega\left(y^{\prime \prime}\right) \xi^{\prime \prime} \tag{2.21}
\end{gather*}
$$

takes into account the noncommutability of operators in the kinetic energy operator. If we restore the dependence on \hbar, then $V_{q} \sim \hbar^{2}$ and other terms in (2.21) $\sim \hbar$. This shows their connection with the operator ordering (see the review by Prokhorov 1982 in Phys. Elem. Part. Atom. Nucl. and references there). When ε tends to zero, we can replace $y-y^{\prime \prime}$ by $\dot{y}^{\prime \prime} \varepsilon$ with an accuracy of $O\left(\varepsilon^{2}\right)$.

To obtain the evolution operator kernel for a finite time, we must find the formula for iterations of infinitesimar kernels (2.17). By definition (2.8) we write

$$
U_{2 \varepsilon}\left(q, \bar{q}^{\prime}\right)=\int_{\tau} d y^{\prime \prime} d \vec{\xi}^{\prime \prime} d \xi^{\prime \prime} \mu^{\prime \prime} e^{-\xi^{\prime \prime} \xi^{\prime \prime}} \int_{\varepsilon}\left(q, \bar{q}^{\prime \prime}\right) U_{\varepsilon}\left(q^{\prime \prime}, \bar{q}^{\prime}\right)(2.22)
$$

K
Transformations (2.22) are cumbersome enough. However, we may easily control them if we take into account that their main sense is to carry to the right the operator \widehat{Q}
being between two $\int_{\varepsilon}^{e f f}$ in (2.22) (see (2.17)). In this way, we would like to represent the final formula n as (2.17), where $\varepsilon \rightarrow 2 \varepsilon$ and

$$
\begin{aligned}
& \text { (2.17), where } \varepsilon \rightarrow \text { LE and } \\
& U_{2 \varepsilon}^{e f f}\left(q, \bar{q}^{\prime}\right)=\int d y_{1} d \bar{\xi}_{1} d \xi_{1} e^{-\bar{\xi}_{1} \xi_{i}} U_{\varepsilon}^{e f f}\left(q, \bar{q}_{1}\right) U_{\varepsilon}^{e f f}\left(q_{1}, \bar{q}^{\prime}\right) .(2,23)
\end{aligned}
$$

If into (2.22) we place expression (2.27) instead of the first U_{ε}, the integration is carried out over the right argument of the kernel Q and over the left argusment of the second U_{ε} entering into (2.22). Let us calculate, at first, the action of \hat{Q} from the left on the function Φ. We have in accordance with (2.15)

$$
\hat{Q} \Phi(q)=\int_{K} d y^{\prime} d \xi^{\prime} d \xi^{\prime} e^{-\xi^{\prime} \xi^{\prime}} Q\left(q, \bar{q}^{\prime}\right) \Phi\left(q^{\prime}\right)=
$$

$$
=\int_{K} d y^{\prime} \sum_{S}^{K} \delta\left(y-\hat{s} y^{\prime}\right) \Phi\left(y^{\prime}, \bar{\xi} \hat{T}_{s}\right)
$$

(2.24)

To take the integral over y^{\prime}, we rearrange \sum_{S} and \int_{K} and change integration variables $z=\hat{S} y^{\prime}$. In the general ouse, \hat{S} is not a linear transformation, 1.e., $\hat{S} y=S(y)$ is a certain function. So,

$$
\theta_{K}(y)=\left\{\begin{array}{cc}
1 & y \in K \tag{2.26}\\
0 & y \in K
\end{array}\right.
$$

Apparently, the measure $d x=d x(y)$ is invariant under the group S hence from the equality $d x(\hat{s} y)=d x(y)$
it follows that

$$
\begin{equation*}
\mu(\hat{s} y)=\left(J_{s}(y)\right)^{-1} \mu(y) \tag{2.27}
\end{equation*}
$$

Using the property (2.27) and $\hat{T}_{s}=\hat{T}_{S^{-1}}^{+}$with (2.25) we can take the integrals over $y^{\prime \prime}, \zeta^{\prime \prime}$ and $\xi^{\prime \prime}$ in (2.2.2)

$$
\begin{align*}
& V_{2 \varepsilon}\left(q_{1}, \bar{q}^{\prime}\right)=\int \frac{d y_{1} d \bar{\xi}_{1} d \xi_{1}}{\left(\mu \mu_{1}\right)^{1 / 2}} e^{-\bar{\xi}_{1} \xi_{1}} U_{\varepsilon}^{e f f}\left(q_{,}, \bar{q}_{1}\right) \\
& \left.\cdot \sum_{S} \mu_{1} \theta_{K}\left(\hat{s} y_{1}\right) U_{\varepsilon}\left(\hat{s}^{*} q_{1}\right) \bar{q}^{\prime}\right) \tag{2.28}
\end{align*}
$$

By construction,

$$
\begin{equation*}
U_{\varepsilon}\left(\hat{s}^{*} q, \vec{q}^{\prime}\right)=U_{\varepsilon}\left(q, \vec{q}^{\prime}\right) \tag{2.29}
\end{equation*}
$$

Indeed, since the initial Hamiltonian (2.1) (or, which is the same $(2.6))$ is invariant under $S^{*}\left(Q\left(\hat{S}^{*} q\right)=Q(q)!\right)$, by definition (2.13) we conclude that (2.29) follows ir om the equality $\left\langle\hat{s}^{*} q \mid q^{\prime}\right\rangle=\left\langle q \mid q^{\prime}\right\rangle$ which must take place in accordance with definition (2.12) and the parity (2.11). Of course, we may directly prove the symmetry property of the unit operator kernel under S^{*} making calculations like (2.24), (2.25). The result of action of kernel (2.12) from the left on the function Φ coincides with the righthand side of (2.25) if the factor ${ }^{\circ}\left(J_{S}(y)\right)^{-1}$ is omitted. Thus, the function $\tilde{\Phi}(q)=\sum_{S^{*}} \theta_{K}(\hat{S} y) \Phi\left(\hat{S}^{*} q\right)$ is invariant under S^{*}. If Φ belongs to the Hilbert space of the theory, $1 . e .$, it is a linear combination of $\varphi_{E}(q)$, then $\Phi\left(\hat{S}^{*} q\right)=\Phi(q)$. So, the equality $\tilde{\Phi}=\Phi$ follows from

$$
\begin{equation*}
\sum_{S} \Theta_{K}(\hat{s} y)=1 \tag{2.30}
\end{equation*}
$$

Now we oan see from (2.29) and (2.30) that the summation over S^{*} in (2.28) disappears. After substituting (2.17) into (2.28) we find the required expression for $U_{2 \varepsilon}$ 001 noiding with (2.17) if $\varepsilon \rightarrow 2 \varepsilon$, and $U_{2 \varepsilon}^{\text {eff }}$ is defined by (2.28).

Now, olearly, all iterations of U_{ε} reduce to iterations of $U_{\varepsilon}^{e f f}$. On the other hand, iterations of the ker${ }_{n e l} \int_{\varepsilon}^{e f f}$ give the standard finite-dimensional approximation of PI (Feynman and Hibbs 1965) for the theory with Hamiltonian (2.19). Thus we get for a finite time interval

$$
\begin{equation*}
U_{t}\left(q, \bar{q}^{\prime}\right)=\int \frac{d y^{\prime \prime}}{\left(\mu \mu^{\prime \prime}\right)^{1 / 2}} d \bar{\xi}^{\prime \prime} d \xi^{\prime \prime} e^{-\bar{\xi}^{\prime \prime} \xi^{\prime \prime}} U_{t}^{e f f}\left(q, \bar{q}^{\prime \prime}\right) Q\left(q^{\prime \prime}, \bar{q}^{\prime}\right) \tag{2.31}
\end{equation*}
$$

where the kernel $U_{t}^{\text {eff }}$ has the standard PI form

$$
\begin{equation*}
U_{t}^{e f f}\left(q,-q^{\prime \prime}\right)=\int_{t=0}^{t}\left(\frac{d p d y}{(2 \pi)^{M}} d \bar{\xi} d \xi\right) e^{\gamma} e^{i S_{e f f}}: \tag{2.32}
\end{equation*}
$$

Here $\gamma=1 / 2(\bar{\xi}(t) \xi(t)+\bar{\xi}(0) \xi(0))$ takes into account the standard initial conditions in PI containing Grassmen variables (Faddeev and Slavnov 1980) $\bar{\xi}(t)=\bar{\xi}$ and $\xi(0)=$ $=\zeta^{\prime \prime}$. Moroover, $y(t)=y$ and $y(0)=y "$ are initial condi-1 tions for boson rariables, and

$$
\begin{equation*}
S_{e f f}=\int_{0}^{t} d \tau\left[p \dot{y}+\frac{1}{2 i}(\bar{\xi} \dot{\xi}-\dot{\bar{\xi}} \xi)-H^{e f f}\right] \tag{2.33}
\end{equation*}
$$

Note that the measure μ (Jacobian) is not contained in the PI measure, but it stays as a factor both at initial and finite points of the transition amplitude. If we omit the dependence of the theory on Grassman aegrees of
freedom, the boson PI in curvilinear coordinates appears for which the recipe of construction was suggested in (Prokhorov 1984 and see also his review in 1982).

The main difficulty appearing in the PI derivation in curvilinear coordinates is that a physical region of values for new variables is reduced $\mathbb{R}^{M} \rightarrow K \subset \mathbb{R}^{M}$. Moreover eigenvalues of some canonical momenta become discrete (for example, the angular momentum see Sect.3), ie., integration over them is replaced by summation.

We have got over these difficulties by using the analytical continuation of the unit operator kernel (2.12) in the PI derivation. We have found that the integration in PI can be carried out over the total phase space $\mathbb{R}^{M} \otimes \mathbb{R}^{M}$, however, after calculation of a transition amplitude we must symmetrize it with respect to the group S^{*} in accordance with (2.31).
3. Example: two-dimensional SUSY-oscillator

In this short section we give a simple illustration of general formulae of sect.2. Consider a two-dimensional SUSY-oscillator. Its Hamiltonian is

$$
\begin{equation*}
H=-\frac{1}{2} \Delta+\frac{1}{2} x_{a}^{2}+\psi_{a}^{+} \psi_{a}-1, a=1,2 \tag{3.1}
\end{equation*}
$$

Let us study states of this oscillator with a fixed total angular momentum, 1.e., with a total angular momentum of bosons and fermions. For this we introduce the generalized polar coordinates

$$
\begin{equation*}
x_{1}=r \cos \theta, x_{2}=r \sin \theta, \psi_{a}=e^{i \theta} \Xi_{a} \tag{3.2}
\end{equation*}
$$

In this case $\mu=r, g^{a b}=\operatorname{diag}\left(1, r^{-2}\right), P_{1}=P_{r}=$
$=-i r^{-1 / 2} \partial \circ r^{1 / 2}$, $=-i r^{-1 / 2} \partial_{r} \circ r^{1 / 2}$ is the Hermitian momentum operator

 $r>0$, $\theta \in(0,2 \pi)$ Bob, Thouls only bo galousated.

 takes pihone quat, tha oparator \hat{Q} has the topit

$$
Q\left(q\left(q^{\prime}\right) Q_{1}\left(\theta, \theta^{\prime}\right) \delta\left(r-r^{\prime}\right) \text { exp } \mathbf{S}_{a} \boldsymbol{x}_{\dot{c}}^{\prime}+Q^{2}\right.
$$

$$
\begin{equation*}
C_{1}\left(\theta, \theta^{\prime}+\pi\right) \delta\left(r+r^{\prime}\right) \text { exp }\left(-\bar{z}_{a} 3_{0}^{\prime}\right) \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{1}\left(\theta_{1} \theta^{\prime}\right)=\sum_{n=0}^{\infty}\left(\theta-\theta^{\prime}+2 \pi n\right) \tag{3.4}
\end{equation*}
$$

The PI is obtinges fram (e, git).
4. \& sfitite med witheggayge symetyy

3 $x^{2}+$

 1nvariant deagetption of gusge modelp conatdoy e mooho-
 gian

$$
L=\frac{1}{2}\left(D_{t} x\right)^{2}+i \psi^{+} D_{t} \psi-V\left(x, \psi^{+}, \psi^{\prime}{ }_{(4.1)}\right.
$$

whir: $x \in \mathbb{R}^{3}, \psi$ is onreo-dtmanonoal oompor: orasenen veotor, $D_{t}=\partial_{t}+y, y$ is a rent juz enti-

symmetric matrix. Lagrangian (4.1) is invariant under gauge transformations

$$
x \rightarrow \Omega x, \psi \rightarrow \Omega \psi, \quad y \rightarrow \Omega y \Omega^{\top}+\Omega \partial_{t} \Omega_{:}^{\top} \quad \text { (4.2) }
$$

Here $\Omega=\Omega(t) \in S O(3)$, and we assume also that V is gauge-invariant.

Let us turn to the Hamiltonian formalism. Canonical momenta are $\pi=\partial L / \partial \dot{y}=0, \quad P=\partial L / \partial \dot{x}=D_{t} x$ and

$$
\begin{equation*}
\pi_{\psi^{+}}=\frac{\partial L}{\partial \psi^{+}}=0, \quad \pi_{\psi}=\frac{\partial L}{\partial \psi}=-i \psi^{+} \tag{4.3}
\end{equation*}
$$

Obviously, $\pi=0$ and (4.3) gives primary constraints. Note, (4.3) are the second-class constraints (Dirac 1965) which appear always since usual Lagrangian for fermions are linear in velocities. To eliminate the second-class constraints, we replace the Poisson brackets (a definition of the Poisson brackets for Grassman variables was given by Martin (1959)) by the Dirac brackets (Dirac 1965). We take ψ^{+}and ψ as new canonical conjugate variables (Martin 1959), and their Dirac brackets are

$$
\begin{equation*}
\left\{\psi_{a}^{+}, \psi_{b}\right\}_{D}=\left\{\psi_{b}, \psi_{a}^{+}\right\}_{D}=-i \delta_{a b} \tag{4.4}
\end{equation*}
$$

$a, b=1,2,3$. The momenta π_{ψ} and $\pi_{\psi^{+}}$are eliminated from the theory by using constraints (4.3). The Hamiltonian of the system has the form

$$
\begin{equation*}
H=\frac{1}{2} p_{a}^{2}+V\left(x, \psi^{+}, \psi\right)-p y x-i \psi^{+} y \psi . \tag{4.5}
\end{equation*}
$$

The operators (4.8a) are "boson", 1.e., they commute and the operators (4.8 b) correspond to physical excitations of a fermion sector, i.e., they anticommute.

Now we return to the PI derivation. Christ and Lee (1980) and Prokhorov (1982) have shown for the model (4.1), but without fermions, that the elimination of unphysical variables and subsequent quantization lead to the results contradicting the Dirac scheme. The main point is as follows. Put, for example, $V=\frac{1}{2} X^{2}$ (fermions are absent), then the basis in $\mathrm{H}_{p h}$ is $\ell_{1}^{+n}|0\rangle, n=0,1, \ldots$ (Prokhorov and Shabanor 1989), i.e., the oscillator spectrun is $E_{n}=2 n+3 / 2$, Now we eliminate unphysical variables before quantization. Since the constraints $G_{a}=\ell_{a}=\varepsilon_{a b c} P_{b} x_{c}=0$ are projectlons of the angular momentum of a boson, we conclude that angles of the spherical coordinate system $x \rightarrow(r, \theta, \varphi)$ are unphysical variables (their canonical momenta are $P_{\varphi}=$ $=-l_{3}=0, P_{\theta}=\sin \varphi l_{1}-\cos \varphi l_{2}=0$). So, the classical physical Hamiltonian depending on physical variables. r and $P_{r}=P_{a} x_{a} / r$ is $1 / 2\left(P_{r}^{2}+r^{2}\right)$. It coincides with the $H_{\text {amiltonian }}$ of a one-dimensional oscillator, the quantization of which gives the spectrum $E_{n}=n+1 / 2$. On the other hand, as it has been noted in Sect.1, a standard recipe of the PI construction corresponds to a quantum theory obtained from an initial classical one just by eliminating unphysical degrees of freedom before quantization. From this point of view it is interesting to find a PI form whioh corresponds to the Dirac quantization scheme. :Ith this purpose we, at first, quentize the theory, then

Wa eliminate unphysioal variables and ganatruet the quantum mamiltoatai in $\mathcal{H}_{\text {ph }}$. At last, unas it wormia PI for the ovolution operator kernel in efph.

Notp, te elminate uphyaioal variablen in a quantum
 if we defing vartabla to that aiome of the chenfits (umphysioal variables) and others de not ohange undoy gauge trenformatione (phyoioal) yiriables) oonstyathta boonin

 ongnot dragemilize oonstrajnts withopt introdugife ourvi14menr coordteses.

On thif Trifis, we define now vioteplan

 has the sorg $(2,0)$ is $y=(r, \theta, 4), \pi_{r}=\theta, \pi_{0}=L_{2}$,

 $=$ diac $\left(1, f^{2}(r \sin \theta)^{2}\right)$.

Nondifficult calculations with the use of (2.5) show that the system of equations (4.7) in the coordinate representation is equivalent to

$$
\partial_{\varphi} \Phi_{p h}=\partial_{\theta} \Phi_{p h}=0, \quad L_{1} \Phi_{p h}=0
$$

The form of the third equation in (4.I0) may easily be understood $\pm f$ we note that using gauge transformations we may always reduce φ, θ to zeros in $x=U \rho$, however, the vector ρ has the stationary subgroup $S O$ (2) with the generator $\varepsilon_{1 a \ell}$, being a subgroup of the gauge group $v 0(3)$. These remaining gauge transformations do not change ρ, but they change ζ, hence, physical fermion states should be invariant under it, ie., $L_{1} \oint_{p h}=0$. So, the Hamiltonmien in $\mathscr{H}_{p h}$ is

$$
H_{p h}=-\frac{1}{2 r} \partial_{r}^{2} \circ r+\frac{1}{2 r^{r}}\left(L_{2}^{2}+L_{3}^{2}\right)+V\left(\rho, 5^{+}, \xi\right)
$$

A gauge symmetry in a pure fermion system was studied In (Shabanov 1989). Using gauge transformations we cannot decrease the number of Grassman variables. Nevertheless, in a. classical the orr the constraint of the type $L_{1}=0$ leads to that the time evolution of one fermion degree of freedom, for example, $\xi_{2}(t)$ is determined by the time evolution of the other, ie., $\xi_{3}(t)$. In a quantum theory the constraint $L_{1} \Phi_{p h}=0$ is equivalent to the requirement of \mathbb{Z}_{2}-invariance: $\zeta_{2,3} \rightarrow-\xi_{2,3}$ for ph (the latter was Interpreted as a phase space reduction for a ferminsystem (Shabanov 1989) . Thus, we find

$$
\begin{equation*}
\Phi_{\mathrm{ph}}\left(r, \hat{T}_{1} \overline{\bar{\xi}}\right)=\Phi_{\mathrm{ph}}(r, \overline{\bar{y}}) . \tag{4.12}
\end{equation*}
$$

Whafe $T_{1}=\hat{S}_{1}=\operatorname{dlag}(1,-1,-1) \in S O(3)$, Note that the only invirtant of go(2)-aubgroup ganizating L_{1} and al ${ }^{\prime}$ $-\left(1_{1} \hat{6}_{1}\right)$ is \vec{p}_{3}.

 K is a phyatoal oppriguration mpace of m: The asmetry group of the ohang of variables (4.9) andiatnal the spoip
 $=$ R S is semberis $r>0$.

To figid the futt group S^{*} abting in physical oupgro space, one shaund ditiomine all nontrivial byansformentigie

 (no summation oves ole we spe that thi foiferias trintomar tions of \hat{A}, φ oarperpand to $\hat{S}_{-}\left(x=V_{p}=U \hat{S}_{4} \hat{S}_{4} \hat{g}\right)$ $\hat{s}_{1}: \theta \rightarrow-\theta, \varphi \rightarrow \varphi, \eta, r \rightarrow r ; \quad \hat{s}_{2}: a \rightarrow \theta+\pi, \varphi \rightarrow \mu ; r ;$ $\hat{S}_{3}: \theta \rightarrow-\theta+\pi, \varphi+\varphi+\pi, r \rightarrow-r$ Cth \$4 group of (4.9) it obtalned by addiag to Ea the trandofina

 and of tomimon oofintile.

should be invariant under the above-described discrete symmetry group for the change of variables (4.9). The dependence of φ_{E} on θ and φ is determined by the spherical functions $Y_{l_{m}}(\theta, \varphi)$ because $V\left(x, \psi^{+}, \psi\right)=$ $=V\left(\rho, \zeta^{+}, \zeta\right)\left(\mathrm{V}\right.$ is gauge-invariant), i.e., $\varphi_{E}=$ $=\sum R_{\ell m}^{E} Y_{\ell m}$. So, R_{00}^{E} are invariant under S^{*} but they form a basis in Y_{ph}, so, any Φ is invariant under $S^{*}{ }_{\text {if }} \Phi \in \mathcal{M}_{\text {ph }}$. Note, (4.12) is fulfilled automatically for R_{00}^{E}. Thus, we write the unit operator gerneil in $H_{p h}$ by analogy with (2.12)

$$
\begin{gather*}
\left\langle q \mid q^{\prime}\right\rangle_{p h}=\frac{1}{2 r r^{\prime}}\left[\delta\left(r-r^{\prime}\right)\left(e^{\frac{\bar{\xi}}{} \xi^{\prime}}+e^{\bar{\xi} \hat{S}_{1} \xi^{\prime}}\right)-\right. \\
-\delta\left(r+r^{\prime}\right)\left(e^{\bar{\xi} \hat{S}_{2} \xi^{\prime}}+e^{\bar{\xi} \hat{S}_{3} \xi^{\prime}}\right) \tag{4.13}
\end{gather*}
$$

the factor $1 / 2$ in (4.13) follows from the equality

$$
\int_{0}^{\infty} d r r^{2} \int d \bar{\xi} d \xi e^{-\xi \xi}\left\langle q^{\prime} \mid q\right\rangle_{p h} \Phi(q) \equiv \Phi\left(q^{\prime}\right), \Phi \in \mathcal{H}_{p h},(4.13 a)
$$

$r \in \mathbb{R}$ and $r^{\prime}>0$ in (4.13). Of course, (4.13) can be obtainned from (2.12) by averaging over θ and φ since θ and φ are unphysical variables.

The P_{I} derivation for $U_{t}^{p h}$ coincides with (2.1.3)-(2.31) If we replace H by $H_{p h}^{\prime}($ see $(4.11))$ and $\left\langle q \mid q^{\prime}\right\rangle$ by (4.13). A final expression has the form (2.31) where \hat{Q} is given by the expression in brackets of (4.13) if the sign of $\delta\left(r+r^{\prime}\right)$ is changed, and

$$
\begin{gathered}
H^{e f f}=\frac{1}{2} p^{2}+\tilde{V}(r, \bar{\xi}, \xi)- \\
-\frac{1}{2 r^{2}}\left[\left(\xi \varepsilon_{2} \xi\right)^{2}+\left(\bar{\xi} \varepsilon_{3} \xi\right)^{2}+\bar{\xi}\left(\varepsilon_{2}^{2}+\varepsilon_{3}^{2}\right) \xi\right] . \quad \text { (4.14) }
\end{gathered}
$$

Here \tilde{V} is defined as in (2.19), matrix elements of the matrix ε_{a} are $\varepsilon_{a b c}$, and p is a momentum canonnically conjugated to r.

The main point we would like to note is that the PI contains. the operator \hat{Q} symmetrizing the transition amplitude over the group S^{*}. It was shown (Prokhorov and Shabanov 1989 and Shabanov 1989) that \hat{Q} appears for gauge systems when a physical-phase-space reduction takes place. On the other hand, by construction the serneil $U_{t}^{p h}\left(q, \bar{q}^{\prime}\right)(q=(r, \overline{\bar{y}}))$ is invariant under S^{*}. Then, we state that q and \vec{q}^{\prime} in it can be replaced by Q and \bar{Q}^{\prime} respectively $(Q=(x, \bar{\psi})$, and the result does not depend on the unphysical variables θ and φ, i.e.,

$$
\begin{equation*}
U_{t}^{p h}\left(q, \bar{q}^{\prime}\right)=U_{t}^{p h}\left(Q, \bar{Q}^{\prime}\right) \tag{4.15}
\end{equation*}
$$

In other words, there exists one-to-one gauge-invariant analytical continuation of the kernel $U_{t}^{p h}$ to the total configuration space of the system. To prove this, we note that any polynomial of q invariant under S depends only on degrees of the following quantities

$$
\delta_{a b} \rho_{a} \rho_{b}, \varepsilon_{a b c} \rho_{a} \bar{\xi}_{b} \overline{\bar{y}}_{c}, \delta_{a b} \rho_{a} \overline{\bar{y}}_{c}, \varepsilon_{a b c} \bar{亏}_{a} \bar{\xi}_{b} \bar{亏}_{c},(4.16)
$$

where $\rho=\left(r_{1}, 0,0\right)$. We may check this direotly. Since $\delta_{Q Q}$ and $\varepsilon_{Q Q C}$ are invariant tensors of $S O(3)$ (Brut and Raczica 1977), we conclude that quantities (4.16) are equal respectively to

$$
\begin{equation*}
x_{a}^{2}, \varepsilon_{a b c} x_{a} \bar{\psi}_{b} \bar{\psi}_{c}, x_{a} \bar{\psi}_{a}, \varepsilon_{a b c} \bar{\psi}_{a} \bar{\psi}_{b} \bar{\psi}_{c} \tag{4.I7}
\end{equation*}
$$

in accordance with (4.9). Any gauge-invariant polynomial can be formed from (4.17) (compere with (4.8) 1). Moreover,
an analytical function of q being invariant under the residual discrete gauge group. S^{*} has the unique analytical gauge-invariant continuation to the space of Q. because polynomials form a dense set tin^{2} the space of analytical functions. So, (4.15) is proved. Note, Q contains six degrees of freedom and a gauge arbitrariness has three parameters, nevertheless, the system has four physical degrees of freedom (see (4.8) or (4.17)). This happens beoause two first constraints in (4.10) pick out already the full $\mathcal{Y}_{p h}$, as it has been shown above.

Thus, the explicit gauge-invariant form of PI for a transition amplitude can be obtained if we take into onsideration a curvilinear character of physical variables and their phase space reduction. These both main moments are usually ignored in the standard PI derivation for gauge theories.
5. The case of an arbitrary group and generalized Shevalley theorem

Here we attempt to reveal a general mathematical origin of equality (4.15). It turns out that the statement like the Shevalley theorem (Partasarathy, Raga Fao and Varadarajan 1967) makes a basis of equality (4.15) in the general case. Consider the model with the Lagrangian

$$
\begin{equation*}
L=\frac{1}{2} \operatorname{Tr}\left(D_{t} x\right)^{2}+i \operatorname{Tr} \psi^{+} D_{t} \psi-V\left(x, \psi^{+}, \phi\right) \tag{5.1}
\end{equation*}
$$

Here $D_{t}=\partial_{t}+[y$,$] ; variables x, y, \psi^{+}, \phi$ are lemints of a L_{1} algebra X of an arbitrary compact gauge group G, i.e., $x=x_{i} \lambda_{i}$ (analogously for y), $\psi=$ $=\lambda_{i} \psi_{i}$ (analogously for ψ^{+}), x_{i}, y_{i} are real, ψ_{i}, ψ_{i}^{+}are
complex Gasman variables, where λ_{i} is an orthonormal basis in $X: \operatorname{Tr} \lambda_{i} \lambda_{j}=\delta_{i j},\left[\lambda_{i}, \lambda_{j}\right]=f_{i j k} \lambda_{k}, f_{i j k}$ are total antisymmetric structural constants and $1, j, k=1,2, \ldots$ $N=d 1 m$. Lagrangian (5.1) is invariant under gauge trans. formations.

$$
\begin{gather*}
x \rightarrow \Omega x \Omega^{-1}, \psi \rightarrow \Omega \psi \Omega^{-1}, \psi^{+} \rightarrow \Omega \psi^{+} \Omega^{-1}, \\
y \rightarrow \Omega y \Omega^{-1}+\Omega \partial_{t} \Omega^{-1}, \tag{5.2}
\end{gather*}
$$

where $\Omega=\Omega(t) \in G$, and we assume that V is invariant under (5.2).

$$
\text { Canonical momenta are } \pi=\partial L / \partial \dot{y}=0, p=\partial L / \partial \dot{x}=D_{t} x_{0}
$$ We describe Gasman degrees of freedom as in Seot.4, 1.e.,. we introduce the Dirac brackets (4.4). So, the Hamiltonian 18

$$
\begin{equation*}
H=\frac{1}{2} \operatorname{Tr} p^{2}+V\left(x, \psi^{+}, \psi\right)+y_{i} G_{i} \tag{5.3}
\end{equation*}
$$

where $G_{i}=-\left\{\pi_{i}, H\right\}=f_{i j k}\left(P_{j} x_{k}+i \psi_{j}^{+} \psi_{k}\right)=0$ are the secondary constraints. As one may oheok, they are the first-0lass constraints. After a quantisation of the theory G_{i} pick out the physical subspace $\mathrm{H}_{\text {ph }}$

$$
\begin{equation*}
G_{i}\left|\Phi_{p_{h}}\right\rangle=\pi_{i}\left|\Phi_{p h}\right\rangle=0 \tag{5.4}
\end{equation*}
$$

Our purpose is of PI ponstruotion for the evolution

operator kernel of physical degrees of freedom. In aocordance with the recipe suggested in Sect. 4 it is necessary to introduce new curvilinear coordinates in which the constraAnts (5.4) are diagonalized, then, to write the Hamiltonian in $\mathcal{U}_{p h}$ and to find $\left\langle q \mid q^{\prime}\right\rangle_{p h}$. At last, $U_{t}^{p h}\left(q, \bar{q}^{\prime}\right)$ may be restored by the method of Seot.2.

Determine new variables as follows (Prokhorov and Shabanov 1989)

$$
\begin{equation*}
x=e^{z} h e^{-z}, \quad \phi=e^{z} \xi e^{-z}, \tag{5.5}
\end{equation*}
$$

where $h \in H$ is a Cartan subalgebra in X (Helgason 1984) $z \in X \in H$. In accordance with (5.2) z are unphysical variables. Note that like (4.9) h has a stationary subgroup in G, the Carton subgroup, 1.e., maximal Abelian subgroup in G (Helgason 1984). We denote $h=h_{\alpha} \lambda_{\alpha}$ $(\alpha=1,2, \ldots, 1=\operatorname{din} H), z=z_{a} \lambda_{a}(a=1+1,1+2, \ldots, N)$. The metric in the new variables has the block-diagonal form (Prokhorov and Shabanov 1989 and Shabanov 1989), $g^{i j}=$ $=\left(\delta_{\alpha \beta},\left[\left(F^{\top} \omega^{\top} \omega F\right)^{-1}\right]_{a b}\right)$, where $\omega_{a b}=h_{\alpha} f_{\alpha a b}$, $F_{i a}=\operatorname{Tr}\left(\lambda_{i} e^{z} \partial_{a} e^{-z}\right), \quad \partial_{a}=\partial / \partial z_{a}$.
The measure is $d x=\operatorname{det} \omega F d h d z \equiv \mu^{2}(h) \tilde{\mu}(z) d h d z$. The measure in a physical configurational space may be calculated explicitly (Helgason 1984)

$$
\begin{equation*}
\mu(h)=\prod_{\alpha>0}(h, \alpha)=(\operatorname{det} \omega)^{1 / 2}, \tag{5.6}
\end{equation*}
$$

where α are positive roots of $X,(h, \alpha)=h_{\beta} \alpha_{\beta}$.
To find the Hamiltonian in H_{ph}, we calculate the constraints in new variables. Since Z_{a} are translated under gauge transformations generated by constraints,

N-1 constraints G_{j} are linear combinations of $i \partial_{a}$ (compare with (4.I0)). The remaining gauge arbitrariness is connected with the Abeilan l-dimensional Carter group which does not change the physical boson variables h_{α}, but it
changes the fermion variables ξ. So, other l constraints must represent the equalities to zero of generators of A_{be}. ian transformations of fermion variables (like (4 .IO)). Thus, equations (5.4) are equivalent to

$$
\begin{equation*}
-i \partial_{a} \Phi_{p h}=0, \quad L_{\alpha} \Phi_{p h} \equiv f_{\alpha a b} \Xi_{a}^{t} \Xi_{b} \Phi_{p h}=0 \tag{5.7}
\end{equation*}
$$

where $\xi_{b}=\partial / \partial \bar{\xi}_{b}$. Note, $f_{\alpha \beta i}=0$, hence, $\left[L_{\alpha}, L_{\beta}\right]=0$, 1.e., L_{α} are generators of the $c_{a r t a n}$ subgroup.

In the quantum Hamiltonian (5.3) rewritten in the form (2.6) for coordinates (5.5) we carry ∂_{a} and L_{α} to the right and use (5.7) in $\mathscr{H}_{p h}$, then we get the quantum Hamilionian in $Y_{\text {ph }}$. To simplify calculations, note that in new variables diagonalizing constraints, unphysical variables become oy011c (Dirac 1965), 1.e., $H_{p h}$ does not depend on them, s_{0}, we may only keep an eye on terms containing h and ξ^{+}, ξ. We have

$$
\begin{equation*}
H_{p h}=-\frac{1}{2 \mu} \partial_{\alpha} \circ \mu \partial_{\alpha}+\frac{1}{2} L_{a}\left(\omega^{T} \omega\right)_{a b}^{-1} L_{b}+V\left(h, \xi^{+}, 5\right) \tag{5.8}
\end{equation*}
$$

Here $\partial_{\alpha}=\partial / \partial h_{\alpha}, L_{a}=-i f_{a i j} \xi_{i}^{+} \xi_{j}$.
To find S and S^{*}, we introduce the Carten-Heyl basis in X (Beaut and Raozka 1977)

$$
\begin{align*}
& {\left[e_{\alpha}, e_{-\alpha}\right]=\alpha,\left[h, e_{\alpha}\right]=(\alpha, h) e_{\alpha}} \\
& {\left[e_{\alpha}, e_{\beta}\right]=N_{\alpha \beta} e_{\alpha+\beta}} \tag{5.9}
\end{align*}
$$

where $\alpha>0$ are positive roots in X, e_{α} are corriespending root vectors, $h, \alpha \in H, N_{\alpha \beta}$ are numbers, $N_{\alpha \beta} \neq 0$ if $\alpha+\beta$ is a root in X. We define also an operator of
the adjoint representation ad $x y=[x, y]$ for all $x, y \in X$. Any element $h \in H$ can be represented as $h=$ $=h_{\omega} \omega$, where ω are simple roots of X, hence, the set $\left\{\omega, e_{\alpha}, e_{-\alpha}\right\}$ gives a basis in X (Cartan-Weyl basis). However, it is more convenient for us to use the orthogoral basis in $X \ominus H$

$$
\begin{equation*}
S_{\alpha}=\frac{1}{\sqrt{2}}\left(e_{\alpha}-e_{-\alpha}\right), c_{\alpha}=\frac{1}{\sqrt{2}}\left(e_{\alpha}+e_{-\alpha}\right) \tag{5.10}
\end{equation*}
$$

(the orthogonality is understood with respect to the scalar product in $X:(x, y)=\operatorname{Tr} a d x \operatorname{ady}$, for compact groups one may normalize so that $(x, y)=\operatorname{Tr} x y$ in a matrix reprosentation (Barit and Raczka 1977)).

It is well-known that there exists a subgroup of G in H called the Weyl group W which is a group of reflections and rearrangements in the root system. The group W is deftned by combinations of the operators (Zhelobenko 1970)

$$
\hat{S}_{\omega}^{s}=\exp \frac{\pi}{(\omega, \omega)^{1 / 2}} a d s_{\omega}, \quad \hat{S}_{\omega}^{c}=\exp \frac{i \pi}{(\omega, \omega)^{1 / 2}} a d C_{\omega}, \quad \text { (5.11) }
$$

1.e., any $\hat{S} \in W$ is a combination of \hat{S}_{ω}^{s} or a combination of $\hat{S}_{\omega}^{c}\left(\omega\right.$ are simple roots). We may check that $\hat{S}_{\omega}^{c, S} \omega=$. - - ω, 1.e., (5.11) are reflections of all simple roots, and they give two equivalent representations of W in H. In accordance with the definition of $a d x$ and (5.5) we conclude that actions of W in H induce transformations in $X \rho H$, but the left-hand sides of (5.5) are invariant. Hence, transformations (5.11) are generators of a searched discrete group S. Indeed, the change of boson variables (5.5) exists if $h \in K^{+}=H \backslash W$ (Helgason
1984) where K^{+}is the Weyl camera (physical configuretional space (Prokhorov and Shabenov 1989)). In other words, S cannot oontain generators except (5.11), otherwise $\mathrm{H}_{\text {(}} \mathrm{SCK}^{+}$ that is wrong. Note, \hat{S}_{ω}^{c} and \hat{S}_{ω}^{s} ooinoide in H but their actions are different for Grassman ebments ξ.

- We call the discrete group defined by (5.11) in space $H_{g}=X_{g} \otimes H\left(\bar{\sigma}_{g} \in X_{g}, h \in H\right)$ the generalized Weal group W^{*}. Since boson and fermion representations are identical. $S^{*}=W^{*}$. Certainly, to get a full symmetry group of the ohange of variables we must add to W^{*} transformations of z inducing shifts $e^{z}=e^{z+a}$ like $2 \pi n-\operatorname{shifts}$ of θ, φ in (4.9). Using considerations like above-sughested ones for the derivation of (4.13) (we_denota N_{4} the number of different el aments of S^{*} such as $\hat{S}^{*} q=\left(h, \overline{5} \hat{T}_{s}^{+}\right), N_{*}=2$ in (4.13)) one may write

$$
\begin{equation*}
\left\langle q \mid q^{\prime}\right\rangle_{p h}=\frac{N_{*}^{-1}}{\mu(h) \mu\left(h^{\prime}\right)} \sum_{W^{*}=S^{*}}(-1)^{P_{s}} \delta\left(q, \hat{s}^{*} \bar{q}^{\prime}\right) . \tag{5.12}
\end{equation*}
$$

where $q \in H_{g}, q^{\prime} \in X_{g} \otimes K^{+}$and $\mu(\hat{s} h)=(-1)^{P_{s}} \mu(h)$, $\hat{\mathbf{s}} \in W, P_{S}=0$. if \hat{s} is rearrangement of roots without reflections, $P_{s}=1$ for \hat{s} including non-even numbers of reflections of roots. Equality (5.12) means that all physical states from $\mathcal{O}_{\text {ph }}$ are invariant under the residual discrete gauge group W^{*}. . Moreover, the requirement of the W^{*} invariance gives automatically solutions of constraints (5.7). In the Gasman sector. To prove the latter statement, note that $\hat{S}_{\omega}^{c} \hat{S}_{\omega}^{\mathbf{s}}=1$ in H, however, in X these operators must be elements exp ad $\lambda, \lambda \in H$ which are equal to 1 in H. On the other hand, one may oheok by direot caloulations in basis (5.9) that operators (5.11) are reflections with rearrangements in the real basis of $X \theta H\left(i C_{\alpha}, S_{\alpha}\right)$,
$\alpha>0$ (Zhelobenko 1970). Then exp ad λ are also combinations of rearrangements and reflections. Using this we can find explicit forms of λ. Indeed, $\exp (a d \lambda)$ is S_{α} is only $\pm i S_{\alpha}$ or $\pm C_{\alpha}$ as it follows from (5.9) and $\lambda \in H$. So, λ can take values $i \pi \alpha(\alpha, \alpha)^{-1}, \alpha$ runs over all positive roots, i.e., W^{*} contains the operators $\hat{S}_{\alpha}=\exp i \pi(\alpha, \alpha)^{-1}$ ad α.

Further, transformations from the $C_{a r t a n}$ subgroup expad $\mathcal{f}(X \in H)$ generated by L_{α} in (5.7) in basis (5.I0) ($\bar{\xi}=\bar{\xi}_{\omega} \omega+$ $+\bar{\xi}_{\alpha}^{c} c_{\alpha}+\bar{\zeta}_{\alpha}^{s} S_{\alpha}$) are rotations of two-dimensional Grassman vectors ($\bar{\xi}_{\alpha}^{c}, \bar{\xi}_{\alpha}^{s}$) through the angle (X, α) for every $\alpha>0$. Invariants of these rotations are $\bar{\xi}_{\alpha}^{c} \bar{\xi}_{\alpha}^{s}$ (α is fixed), but $\hat{S}_{\alpha} C_{\alpha}=-C_{\alpha}, \hat{S}_{\alpha} S_{\alpha}=-S_{\alpha}$, hence, $\xi_{\alpha}^{c} \xi_{\alpha}^{S}$ are also invariant under W^{*}, i.e., W^{*} invariant functions give solutions of (5.7) in the Grassman sector. Using the technique of Sect.2, we restore the form of $U_{t}^{p h}\left(q, \bar{q}^{\prime}\right)$ for Hamiltonian (5.8) and kernel (5.12). It has the form (2.31) where

$$
\begin{equation*}
Q\left(q, \vec{q}^{\prime}\right)=\sum_{W^{*}=S^{*}} N_{*}^{-1} \delta\left(q, \hat{s}^{*} \vec{q}^{\prime}\right) \tag{5.13}
\end{equation*}
$$

$H^{e f f}=\frac{1}{2} p_{\alpha}^{2}+\tilde{V}(h, \bar{\xi}, \xi)+\frac{1}{2} L_{a}\left(\omega^{\top} \omega\right)_{a b}^{-1} L_{q}+V_{q}$ and $L_{a}=-i f_{a i j} \bar{\xi}_{i} \xi_{j,}, V_{q}=-\bar{\xi}_{i} \xi_{n} f_{a i k} f_{b n k}\left(\omega \omega^{\top} \omega\right)_{a b}^{-1}$. The constricted kernel $U_{t}^{\text {ph }}$ turns out to be invariant under W^{*} like (4.15) (\hat{Q} symmetrizes it in $\left.W^{*}\right)$. If fermions are absent, $W^{*}=W$. In this case the Shevalley theorem (Zhlobenko 197ن) gives: every analytical function in H being invariant under W has the unique analytical gaugeinveriant continuation to $X \quad . s_{o}, U_{t}^{p h}\left(h, h^{\prime}\right)=U_{t}^{p h}\left(x, x^{\prime}\right)$. Examples of the construction of gauge-invariant wave functions were given in (Shabanov 1989) and gauge-invartant
forms of PI in total (1.e., including also unphysical degrees of freedom) configurational and phase spaces were presented in (Shabenov 1989, preprints JINR).

For the present system there is an analogous statement, we call the generalized Shevalley theorem: every analytical function in $H g$ being invariant under W^{*} has the unique analytical gauge-invariant continuation to $X \otimes X_{g}$ $\left(Q \in X \otimes X_{g}\right.$ if $\left.x \in X, \bar{\psi} \in X_{g}\right)$. Consider an oscillator in (5.3) $V\left(h, \xi^{+}, \xi\right)=1 / 2 \operatorname{Tr} h^{2}+\operatorname{Tr} \xi^{+} \xi-N / 2$. Its wave functions are $P_{E}(q) \exp \left(-1 / 2 \operatorname{Tr} h^{2}\right)$, where $P_{E}(q)$ are polynomials invariant under W^{*}. sInce $H_{p h}$ is Hermitian, $P_{E}(q)$ form a basis in the space of all W^{*} invariant polynomials in H_{g}. On the other hand, we may solre the quantum problem in the total Hilbert space, ide., in the space of functions in $X \otimes X_{g}$. Then, eigenfunotions of the oscillator are $\widetilde{\mathrm{P}}_{E}(Q) \exp \left(-1 / 2 \operatorname{Tr} x^{2}\right)$, moreover, $Y_{p h}$ is formed by gauge-imariant polynomials from $\widetilde{P}_{\varepsilon}(Q)$ which give a basis in the space of all gauge-invariant polynomials (the total Hamiltonian is also Hermitian). Because V is gauge-invariant, we may write in coordinates (5.5) $\widetilde{P}_{E}(Q)=\sum_{n} P_{E}^{n}(q) Y_{n}(z)$, where $Y_{H}(z)$ are algenfunctions of the Laplace-Beltrami operator on a gauge group orbit formed by values of Z when h is fixed. Clearly, $P_{E}(q)=P_{E}^{0}(q)\left(Y_{0}\right.$ econst). Then, in $\mathcal{X}_{p h} \tilde{P}(Q(q))$: - $\widetilde{P}_{E}(q)=P_{E}^{0}(q)=P_{E}(q)$ because of the gauge invariance, 1.e., between polynomials P_{E}^{0} and P_{E} there exists a oneto-one correspondence, hence, it exists between $\widetilde{P}_{E}(Q)$ $\in \mathcal{H} p h$ and $\rho_{E}(q)$. Since polynomials form a
dense set in the space of analytical functions, we arrive of the statement of the generalized Shevaley theorem. Thus, formula (4.15) takes place in the general case.

Note a simple consequence. Every polynomial in X_{g} being invariant under W^{*} is gauge-invariant, 1.e., a gauge symmetry in a pure fermion sector of a theory is equivalent to the discrete symmetry with respect to the generalized Weyl group W^{*}.
6. Conclusion

Thus, we have seen thet the main points of PI derivation corresponding uniquely to the Dirac quantization scheme (i.e., to an explicit gauge- invariant description) are the curvilinear character of physical variables and reduction of . both physical configuration and phase spaces. The latter, as It has been shown, is connected with the invariance of PI under residual discrete gauge transformations (the operator \hat{Q} in the expression of $U_{t}^{p h}$, and this guarantees an explicit gauge-invariance of PI (the generalized Shevalley theorem).

The recipe may be generalized to any theory with the first-class constraints (i.e., to any gauge theory). Let independent constraints be φ_{a} which generate gauge transformation (Pyatov and Reaumov 1989). The struoture of gauge groups orbits in the total configurationel space is not always known, therefore physical variables are plcked out with the help of supplementary conditions $\mathcal{X}_{a}(x)=O_{l}$. To get the corresponience to the D_{1} acac scheme, one has to $d o$ as follows. Let the gauge transformation law be $x \rightarrow u x$, $\psi \rightarrow T_{u} \psi$, where $u \in G$, G is a gauge group, T_{u} is
a representation of G. Then after quantization we change
 where $x=u(\theta) y, \psi=T_{u}(\theta) \xi$, and y satisfies supplementary conditions $X_{a}(y)=0$. In this case constraints φ_{a} become in ear combinations of derivatives $\partial / \partial \theta_{a}$ sine θ_{a} shift under gauge transformations, 1.e., θ_{a} are unphysical variables. Further, one should define a quadtum Hamiltonian in the physical subspace, 1.e., in the space of analytical functions of y, and find a unit operater kernel in the physical subspace of states, 1.e., deterrine the measure (Jacobian) and the group S^{*} (the group S may be found from conditions $X_{a}(\hat{s} y)=0, \hat{s} \in G$, where $\hat{\mathbf{S}}$ are all residual discrete gauge transformations keeping conditions $X_{a}=0$). At last, $U_{t}^{\text {ph }}$ can be restored In accordance with the above-suggested recipe. The effective--action form and S^{*} depend on the X_{a} form. However, chansing X_{a} by X_{a}^{\prime} is equivalent to a passage to other curvilinear coordinates in quantum theory unbreaking the diegomalty of quantum constraints $\left(x=u y=u^{\prime} y^{\prime}, x_{a}^{\prime}\left(y^{\prime}\right) \equiv 0\right.$ and $\varphi_{a} \sim \partial / \partial \theta_{a} \sim \partial / \partial \theta_{a}^{\prime}$), henoe it is a passage to a new basis in $\mathcal{H}_{p h}$. So; the change of X_{a} does not influence the form of the function $U_{t}^{\text {ph }}$ which depends only on gauge--invariant quantities (see (4.15) 1 . Change of X_{a} is the change in form of an entry of gauge-invariant quantities (compare (4.16) with (4.17), in this case $X_{a}=0$ are $x_{2}=x_{3}=0$).

Needles to say, quantum theories determined by the elimination of unphysical variables with subsequent quantization and in accordance with the Dirac scheme are
free from internal contradictions whereas they can be different. Therefore we may consider them as two quantum versions of one classical theory. However, note that. in the case of a quantum gauge field theory we should observe an explicit Lorentz invariance in choosing physical variables. The latter is known to require the introduction of unphysical variables to a theory (Dirac 1967). Otherwise, we cannot impose supplementary conditions on operators since contraditions with commuting relations appear (Dirac 1965, 1967). Therefore the Dirac scheme turns out to be more preferable for formulation of a theory in the total Hilbert space as being free from these contradictions. Thus, PI should be defined according to the Dirac quantization scheme.

References

Ashtekar A and Horowitz G T Phys.Rev, 26D 3342
Barut A 0 and Raczka R 1977 Theory of Group Representations and Applications (PWN, Polish Scientific Publ., Warsaw).
Berezin F 1966 The Method of Second Quantization (Academic, New York).
Christ N H and Lee T D 1980 Phys. Rev. 22D 939.
Dirac PAM 1965 Lectures in Quantum Mechanics (Academic, New York).
Dirac P A M 1967 Lectures on Quantum Field Theory (Yeshiva Univ., New York).
Dunne G V, Jackiw R and Trugenberger C A 1989 Preprint (Massachusetts Inst. of Technology).
Faddeev L D and Slavnov A A 1980 Gauge Fields: Introduction to Quantum theory (Benjamin/Cummings).
Feynman R P and Hubbs A R 1965 Quantum Mechenics and Path Integrals (McGraw-Hill).
Helgason 31984 Group and Geometric Analysis. Integral Geometry, Invariant Differential Ooerators, and Spherioal Functions (Academic Press, New York)
Isham C J 1986 Preprint of Imperial College TP/85-86/39.

Kobayash1 S and Nomizu 11963 Foundations of Differential Geometry V. 1 (John Wiley \& Sons, Inc., New York) Martin J L 1959 Proo. Roy. Soc.A 251 536, 543 Partasarathy K P, Renga Rao V S and Varadarjan 1967 Ann. Math. 85383
Prokhorov L V. 1982 Phys.Elem. Pert.Atom. Nucl. (JSSR) 13 i I094.
Prokhorov L V 1982 Sov.J. Nucl. Phys. 35129.
Prokhorov L V 1984 Yadern. Fiz. (USSR) 39496
Prokhorov I V and Shabanov S V 1989 Phys.Lett. B Bdl6 341
Pyator P A and Razumor \& $\nabla 1989$ Int. J.Mod. Phys. A4 3211
Shabanov S V 1989 Phase Space Structure in Gauge Theories
(JINR, Dubna) (in Russian).
Shabanov S V 1989 Teor.Mat. Fiz. (USSR) 78411.
Shabanov S V 1989 Preprint JINR E2-89-687; Preprint JINR E2-89-688.
Zhelobento D P 1970 Compaot Lee Groups and Their Representations (Nauka, Hoscow), (in Russian).

