


I, Iptroduction

‘It is well-known that alimination of unphysical variab-
les in saugé thaories and quantigatlon do not oommute
(Christ and Lee 1980, Prokhorov 1982, Ashtekar and Horowits
1982, Isham 1986). In other words, & quantum theory desori-
bed by tha Dirao schema (Diras 1965) oan differ from that
one when unphysiosl degrees of freedom are eliminated hefore
quantizatioen. Howaver, the atandard way of path integral
(PI) vonstruotion (Faddeev 1970, Faddeev and Slavmov 1980)
corresponds just to the last method singe in this way une-
physiocal momenta and ocerdinates are eliminated from the
classioal action with the help of cgonstraints ard supple-
mentary oonditions, respectively, and the phase 3pace of
physical degrees of freedom 15 a'priorl considered an even-

-dimensional Euolidean spaoce.

The difference of these quantigzation methods oomes
out from e curvilinear charaoter of physioal varlabdles
(Prokhorov 1562) (it is known that the applioation of ope-
rations of quantization ant intreduotion of ourvilinear
esoordinates in a different order to a olassicel theory gives

different quantum theories), on’the one hand, and from

their phase spaca reduoticn appenring because of & gauge

aynmetry (Prokhorov 1083, Brokhévsy atd Sehantw 1980), o
the other hand., 4 modifiocaticn of PI when a physical phase
space is reduoed was shown in (Prokhorov and Shabanov 1989,
Shabanov 1969), Other examples, of the "quantum dynamical
phase space reduction was given by Dunne, Jackiw and Trugen-
berger (1989).
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The present work is devoted to the consideration of a
PI form corresponding uniquely to the Dirac quantization
scheme, It turns out that there exists a comneotlon bet-
ween 2 PI form in curvilimear coordinates (Sect.2,3) and PI
for gauge theories containing both boson and fermlon de—
grees of freedom. Existence of fermlons in a theory causes
in PI derivatlon on physical superspace, some sﬁeeific
aifficulties, since one cannot decrease the number of anti-
commuting varlables deseribing fermions by gauge transfor-
mations (Sect.4). In Sectlon 5 1t is shown that taking in-
to conslderation a curvilinear character of physical varlab-
les and their phase space reduction, we may explicitly de-—
fine the gauge—invariant xernel of the evolution operator
via PI, A mathematical reascen of this 1s also presented in
Sect.5. In Conclusion we suggest a general recipe of the Pl
construction corresponding to the Dirac quantization achame
for arbitrary picking out physical variables. It should be
remembered that there exist invariant and non—~invariant
ways of plcking out physical degrees of freédom. The flrst
gorresponds to the introduotlon of gauge-invariant varlab—
les. However, a completé set of gauge invariants 1s not
always known, so we are forced to use the second way when
physical varlables are separated by supplementary conditi-
ons from initial varliables, l.e., by gauge fixing, In the
recipe suggested below, we show how one should take into
account a curvilinear’character of physical varlables and
thelr phase space reduction in a non-lnvariant way of sepa-

rating them.



2. PI in curvilinsar coordinates on superspace

Consider a quantum-meshanicel system ocoataining boson de-
groes of freedom as well as Grassman ones. We take the

Hamiltonlan as f_ol;l.ows
Hep+ Vi 47 4). e

ao [0, p1e i by (08582 M)
[\P«,\P] -8 (ﬂ’} 1,2, N') The operator al-

gebra may be realized in & space of functions on super-

space ‘i é(’x,‘l’ =é(Q,) , Q = (2, QJ)( Vs

complex oonjugatad to \IJ ) if
L9 g - 2
Pﬂ>_=-m3—x'a<§ , Vi3 =49, ‘L@ﬁ-@d , @2

Here and below all derivations of Orassman variables are
left. The scalar product under which we define Hermitian
conjugated operators has the form (Berezin 1966)

<§)1\@9> = Sdocdad‘l’ e—¢¢£(Q) @a(a) ' (2.2)

. M
where the integkal is taken over the whole R « In accor-~
. : !
dance with (2.3} the unit operator kernel {@Q|Q'> has
the form —

7 8@3,@):5@d)- sex)e’’, e
E

where @E are eigenfunctions of Hamiltomian (2.1).

In the general case the change of variables is defined ‘

by a function on superspace Q = Q(CP) s Cp = (‘d ) i) .



However, we shall consider special fomms of Q . But 1t will
be enough for the applicatlon of gauge theorles. Introduce
the new varlables

B B P O
where SL € SU(N) ana 9—=Q(%) . Then 4Q@= Ao‘or and
Ysg = AT Yo - e A = DRVog8 b= ().
After some caloulatlons we get from (2.4)

93 ¢ i
) B, (},,o +1Tg ) (2.5)

¢ -1 @ LT ot
mere B8 =C(MagV*) L, Tem 132NN Vg,
'ba = (a/bfi(g . Tsing (2.5), (2.47 and (2.2), we rewrite Ha-

miltonian (2.1) in the new variables

Hziz_ PO- gagPQ + 'vq' (%) + V. (2.6)

Bere Pa = "'.'-‘j\‘- " ((Ba-k L']\"Qo}*% , o= sdet A =
=Jg, §= det g“e'\\“, 3°G=B: E;E and \/% is the

effective quantum addend to a potential
_ A (y g 4 g
'V{a\rp('an-% )9 Vi v WV, @

Te form of a scalar product 1n the space of funcilons

Y= (9q) follows from (2.3 and 2.4

S
SAAE S dydzdse  RPHGI Q). (2.0
K "
whers K  is a Teglon of integration over 4 K =R .
The mapping %X = ’.)C(‘d) 45 one-to—one 1f OCE {RM and Y€ K.
Let the fanotions C(4) be analytical for all Y€ R™ .

M
So, there exlst transformations © acting in R auch as



X, (H) = DCO_(%H) (2.9)

For example, M=2 and Yo = (r' 9) are polar coordinates.
In this case K 1a the atrip ¥ >0 , §¢ (_O 231) , and
transformations S have the form 8 » B8+ 2Fn , ne
and ©>—~r, >0+ , Apparently, trensformations &
form a discrete gZroup S andK=RM\S. 1.8, R 1s made
from ‘RM by identification of polnts in “?M connected
with each other by S-transformations. In the mathematical
language, the mapping 'x‘=I(é] gives the projection in the
principal fibre bundle (Kobayashi and Nomizu 1963), where
the base and fibre bundle coloclide with ]RM and the dis-
crete group S acts along a fibre in the fibre bundle ﬂ-\)M(g)

The group S induces discrete transforma.tions of Orass-—

LY

man variables Ts such as 51(3)5 9-(53)1-33 s 80, lg =
= Q-f(.ga)ﬂ(‘a) . We mark the total group of transforma-
tions & and ﬁ as S* and @*q{ = (gg , _‘5--?“;)_

Bamiltonian (2.6) 1s written in an explicit Hermitlaen
form sin¢ce the operators Pa_ are Hermitian unier scalar
product (2.8). If S)Ez' are eigenfunctions of (2.6), we
may write {since the Hilbert spaces (2.1) with (2.3) and
{2.6) with (2.8) are isomorphic)

(4) = 7, C.g @E (@) (2.10)
[
By definition Q(%*q{) = Q(‘:l,) » and we conclude
9. (8%q) = %1 (9). (2.12)

Using the property of parity (2.11), we Mmay analytically



M
continue ?E to the unphysical region 36@ « Thus, in

zcgardance with (2,8) we have
_ 7 '
; e (‘1) EC (cl") - z_*[j“(‘é)j-(s%')l 8(%5* c-i") (2.12)

where Y€ R™, ‘a'le K . For physioal values of g,\a:
il.e., 'a,g'?.K » one shojld only keep the first term in
sum {2.12) with S*. 4 . Formula (2.12) defines an analy-
tical continuation of the unit operator kernel (1[%’)

to the unphysical region.

Note also that kerael (2;12) can be obtalmed directly
from (2.3a). Since a change of variables in a quantum theo—
ry is egquivalent to a choice of a new basls in the Ellbert
space of states, the left-hand sides of (2.38) and (2.12) -
must colneide, hemce, the right-hand sides colnoide %too.
Indeed, let us change Q@ and @’ 1in (2.32) by expres-
sions (2.4) and assume ae R™ ’ a'& K , then

. _i/a A
-1 A - -—
50.3)- 7. [ptpd) S(4-3y)ep ey,
g (2.12a)
The equallty follows from the rule of changing an argtg\neﬁt
of M-dimensional 8 —function and the definition of Ts =
+ra -~
= N (5‘6') Q(a') (at h) (a- Sa') we may change
+ ~ -
D) v D(8y) mep ¥¥’ .
Let us turn now directly to the PI derivation. The
kernel of the infinitesimal evolution vperator 1s

U, (4.8) = (110, 599)] <19

(2.1



where H 1s givea by (2.6) and E>0 . We rewrite kernel
(2.12) as follows

-—

Y # _‘.5 3' l
S da dsds e 8(‘}:1”) Q (1(", i‘), (2.14)
Cp ")

where M =‘r&(a), J\A”= Ju(ta”) and |
Q(‘L”,‘T,’)= Z § (qr""s\,"ir')- (2.15)
4*

Then, we use the representation of 8 -function S(‘a) -
s (JJI')- MJ.dP exp LP% in (2.14) end substitute (2.14)
into (2.13). For the caloulation of actlon of H oa
g(ﬂ,, a;,') one should take into consideration a NONCOMMU=

tabllity E, and 3 and also use the equallty

. a o aé,
'baog %‘a)’ag 8(‘3'8") =(8 (a') 3:9@‘ 3a3 (‘a )ac>8(‘é'3")'
(2.16)
where ?aa = 3/381 . Thus we find, with an ascuraoy of O(Et),

Ug(%:q;) = |

R
Crp’)

(2.1.8)

AR e g_g,'ex? | By 1 e.0.3)

and the effeoctlive Hamiltonian has the fomm

8
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H (quc{() H(P$$)+V(¢$)+V (PCL )(219)

W, = _{2_ (P."-Jf gra) aae (4%) Cpe + 7). (2.20)

where Grassman variables 5”-.-. 3" stand 1instead of ?E
in ‘:ﬂ'm H v follows from V if we carry all operators
Bg to the right and, then, change them by Grgssman varl-

ables 5” ; and finally the expression

~ . at
Vo= Vo ()~ 33,9 (4 (ppeT)-

3 gae(g”) 5 31514‘(‘3'5 % 0y 5" (2.21)

taites into account the noncommutability of operators in
the kilnetlc energy operator. If we restore the dependence
on , then V "R and other terms in (2.21) ~ .
This shows thelr con.nection with the operator ordering
(see the review ¥y Prokhorov 1962 in Phys.®lem,Part.Atom.
Nucl., and references there) When & tends to zero, we can
replace a a oy \é £ with an accuracy of O(Ez)

To obtaln the eveluttion operator kernel for a finlte
time, we must find the formula for iteré.tions of infinite-
gimal kernels (2.17). By definition (2.8) we write

Uai(%ﬁl):g ug”"lij‘* e U c[, ‘L )U (‘L ,i‘)(z.zz)
K

Trensformations {2.22) are cumberseme enough. However, we
may easily control them 1f we take into aceount that thelr
Fa)

main sense is to carry to the right the operator Q



eit
being between two UE in (2.22) (see (2.17)). In this
way, we would 1ike to represent the final formula. as

(2.17), where E~> 2E and

& R ¥ WS
U,E($.$)=Sda*o\sicls¢e U 4,30V, G, %) .2
If into (2.22) we place expression (2.17) instead of

the first U , the integration is carried out over the
right argument of the Kernsl Q and over the left argu-
ment of the second U entering into (2.22). Let us cal-
culate, at first, the a.ction of Q from the left on the
function @ . Wo have in accorda.nce with (2,15}

Q34 = Ua’o\g'is'e Q(a,,q, )() =
(2.24)

&Aa %S(g 3y 8¢, 5T,

To take the integral over \d y W8 rearra.nge ZS and gK

and change integration variables Z= S'a . In the general
Fal

oasey O is not a llnear trensformation, 1.e.9 S‘d = 5(‘3)

is a oertain fu.nction So,

Q24)= ZBK & j()ge(s 4310 (2.2

HBere (53)/‘3(!3) is Jaocoblan,
v, yeX (2.26)

E9E< (4) = {- 0, y€ K.

Apparently, the measure dnc = o\x(‘a) 13 invariant under
the zroup S hence from the equality a\?ﬂ(s%) dc(y)

10
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1t follows that
JJL (8y4) = (3 (*3)) J’“(H) T (e

Using the property (2. 27) and T T -4 with (2.25) we

¢an take the integrals over 3 —‘é" and %7 in (2.22)
Uza (%"1') =& dg, d%,d's, e‘343¢ QH - )
(}1‘]\41)1/2

’ Z.Miek(g%&) Us(é‘.*q”) qYI) (2.28)
By consstruction,

U (Q*ct, ,@') = U, (qy, @’) (2.29)
Indeed, since the initial Hamiltonian (2 1) (or, which 1is
the same (2.6)) is invariant under S (G( ‘!,) G(‘y)‘)
by definition (2.13) we comclude that (2.29 29) follows from
the equality < g*‘:‘(\qrf> = <<1,[C],I> which must take place in
accordance with definition (2.12) and the parity 2.11). Of
course, we may direectly prove the symmetry property of the
unlt operator kernel under S*making caleulations like
(2.24), (2.25). The result of action of kernel (2.12) from
the left ok the function @ colncldes w:!.th the right-
hand side of (2.25) if the factor (3 (‘a)) is omitted.
Thus, the fumction @(‘L) ZS K(S%)@(S ‘L) is in-
variant under S 17 @ belongs to the Hilbert space
of the theory, t.e., it 1s a linear combination of E?E (OY),

then @C‘S\ *c‘/)= @(q{). So, the equality E—— @, follows

from
7.0 (8y)=1
S (2.30)

11



Now we oan seo from (2.29) and (2.30) that the summation
over S* in (2.28) dlsappears. After substituting (2.17)
into (2,28) we £ind the required expression for Uat
ooinoiding with (2.17) if £~ 2E , and Uza{ is defined
by (2.28).

Now, clearly, all iterations of. Ug reduce to itera-
tions of U E, « On the other hand, iterations of the ker-
nel UE. give the standard finite-dimensional approxima-
tion of PI (Feynman and Fibbs 1965) for the theory with
Hamiltonian (2.19). Thus we get for a finite time iater-

val

U(w)& Mﬂfzds”o‘se” Uy 63006,
where the kernel U.E‘“: has the standard PI form
Ue“( Ol S (A(Pzdfmdso‘ ge e L
tare §= 4 (S5 (4)+ 50)5(c)) taxes tato acoount

the standard initilal conditions in PI contalning Grassman

variables (Faddeev end Slavmov 1980) % (t)='% and g (o)
I/

= 5 . Moreover, y(t)=y and y(o)=y" are initial condi-

ti0n8 for boson varisbles, and

t L .
5= Ve lpgrac(83-3) 1] @

Note that the measure J»L (Jzcobian) 1s not contalned in

(2 3)

the PI measure, but it stays as a factor Doth at inltial
and finite poinis of the transition amplitude. If we omit

the dependence of the theory on Grassman degrees of

12



freedom, the boson PI in curvilinoear coordinates appears
for which the recipe of constructlion was suggested in
(Prokhorov 1984 and see also his review in 1982).

The main difficulty appearing in the PI derivation 1n
curvilinear coordinates is that a physlcal reglon of va-
lues for aew variables 1s reduced IRM"'KC RM. Moreover
eigenvalues of some canonlcal momenta become discreie
(for example, the angular momentum see Secte3)y i.eay 1n-
tegration over them is replaced by summation.

We have got over these difficultles by using the ana-
lytical continuvation of the unit opervator kernel (2.12) in
the PI derivation. Ve have found that the integration in:
PI can be carried out over the total phase space R® RM
however, after calculation of a transition a.mpl:l.tude we
must symmetrize it with respect to the group S* in accor-
dance with (2.31).

3, Example! two-dimensional SUSY¥—-escillatoer

In this short section we give a simple 1llustration
of general formulae of sect.2. Conslder a two-dimensional

SUSY—gsoillator. Its Hamiltonlan 1is

H=‘LL\+% m+q,u+m , a=4,2, (3.1)
Let us study . sta.tes of this oscillator with a fixed total
angular momentum, 1.e., Wwith a tetal angular momentum of
bosons and fermlons. For this we introduc‘e the generalilzed

polar coordinates

) 10
gci—_v‘cose, 5)02=Y“S'm9, d?fe-;%&_ (3.2)
. 4 . -2
In this c?/se M=Y ga = Amg(&,r ),‘ Pi = Pv‘ =
. ip
= =177 aro r is the Hermitian momentum operator

13
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gymmetric matrix. Lagranglan (4,1) is iovariant under

gauge tranaformations

x-Qox, $~ 94’ 3*9%9*’339 (4.2)

Here _9. -‘-._9- (t) € 50(3), and we assume also that Vs

gauge-invarliant,

Let us turn to the mmiltonia.n formalism. Canonleal

momenta are N = rbl'*/'b'a- s = rbl"/'b‘.c 'D *x

ok L

jrq’+=rb¢+ 3 Q_ra‘v

Obvicusly, N=0 and (4.3) gives primary constraints.
Noté, (4.3) are the second-class constraints (Dirac 1965)
which appear always since usuzl Lagrangians for fermions
are linear in velocities. To eliminate the -second—class
constralntsy we replace the Polsson brackets (a definition
of the Polsson brackets for Grassman variables was given
by Martin (1959)) by the Dirac brackets (Dirac 1965). We
take L\’+ and Jf as new canonlcal conjugate varlables

(Martin 1959), and their Dirac brackets are
{,qjﬂ.aq) {\‘J ’¢ =_LS°e: (4.4)

aybaly2;3. The momenta T¢ and 'jrw,, are eliminated from
the theory by using constralnts (4.3). The Hamiltonlan of

the system has the form |

H:%Pj+V(_m:¢t¢) - P%I-L¢+%+
: ‘ C(4.5)

15
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The operators (4.82) are "boson", l.e., they commute and
the uperdtors (4.8b) correspond to physical excitatlions.of
a fermion sector, 1.e.y they anticommute. -

Wow we return to the PI derivation. Christ and Lee
(1980) and Prokhorov (1982) have shown for the model (4.1),
but without fermilons, that the elimination of unphysleal
varighles and subsequent quantization lead to the results
contradicting the Dirac scheme. The main polnt is as follows.
Put, for example, V" "lfxz (fermions are absent), then
the basis .in q{Ph is g Ao> , r=0,1,... (Prokhorov and
Shabenov 1989), i,e., the oscillator spectrum is E 2“*./,
Now we eliminate unphysical variables before guantlzation.
Since the constraints Cl&‘—' ?—a. = Cage P%’I‘cz 0 are project=-
1ons of the angular momentum of a bosen, we conclude that
‘angles of the spherical coordinate system JC —» (r,e,s’)
are unphysicel varlables (thelr canonical moments are FJ-
=%,=0 , PG SL‘V\\?E 005'>°B =0 ). So, the classlcal
physical Hamiltonian depending on physical variables ¥
and Pr = Pa‘x'o’ r 1is '1/2 (Prz + rz) . It coincides with
the Hamiltonlan of a one-dimensional oscillator, the quan- |
tization of which gives the spectrum En LYY

On the other hand, as 1t has been noted in Sect.l, a
standard recipe of the PI construction corresponds to a

quantum theory obtalned from an inltial classical one jusi

by eliminating unphysical degrees of freedom ‘befo’fe“quantli-
zation. From this polnt of view it is interesting to find a
PI form which corresponds to the Dirac quantization schene.

With this purpose we, at first, quantize'thé thléory, then’

.

| %
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Nondifficult calculations with the use of {2.5) show
that the system of equatioms (4.7) in the coordinate re-

presenta.fion is equivalent to
% B =% =0 Ly $p =0 o

The form of the third equation in (4.10) may easily be un-
derstood 1f we note that using gauge transformations we

may always reduce 9 , © to zeros in I=Ug » however, the
vector P has the stationary subgroup 30(2) with the gene-
rator & 4ag * 0eing 2 subgroup of the gauge group 50(3).

These remalning gauge transformations do noi change ? N
but they change X , hence, physical fermion states should
be invmriant underit, i.e., Li Cb?“ ={}, So, the Hamilto-
nizn in g{FL‘ is '

2
. == —i—Br_”“*—-( +L) V(? 5, ‘5) (a.11)
Ph 2y

A gauge symmeiry in a pure fermion system was studied
4n (Shabanov 1989), Using gauge transformations we cannot
decrease the number of Grassman variables., Nevertheless, in
a olassical theory the constralint of the type L-4= 0
leads to that the time evolution of one fermion dggree of
freedom, for example, 52 (*—) is determined by the time
evolution of the other, le., 53 G‘.) . Ina ‘quantum theory
the comstralnt L 1¢?h=0 is equivalent to the requirement
of Z —invariance’ 52 3"’—%2 3 for @?nn(the latter was
ihterpreted as a phase space reduction for a ferml-system
(Bhabanov 1989) . Thus, we find

C@?\,\ (‘h> _’\n%) = ép\w (r) %) ' {4.12)

19
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should be lavarlant under the above-—described discrete
symmetry group for the change of variables {4.9). The de-
pendence of l:?E en Y and ¥ 1s determined by the
spherical funct:l.ons Y (9 ‘?) because V(DC tP d))
V(? 5 ?5) (Vv :Ls ga.uge-invaria.nt), toes, P =

= Z Rthn Yem LY Roo ‘gre invariant under S

but they fom a basls 1n %{ h y S0, any @ is invariant

under S if CE? 6’3{{,\" . Note, (4.12) 15 fulfilled auto=-
matlcally for Roo . Thusy we write the unit operator ker-
nel in '3{ h by a.ua.‘.l.ogy with (2.12)

{919’ D= = [g(r " (e53+ oB5 5‘)

—S(r+v") (e i 55 3) (4.13)

the factor 1/2 in (4. 13) follows from the equality

Saer? Sd%dse <M $@)= ), ey, (4.130)

T'EOR and M>0 in (413) , of course, (4.13) can be obtai-
ned from (2,12) by averagling over B and Y since €
and ¥ are unphysical variables.

The PI derivation fer U coincides with (2.13)-(2.201)
1f we replace H vy HPL. (see (4,11)) and (% > by
(4.13). A final expriesslon has the form {2.21) where Q
13 given by the expression inm brackets of (4 13) 1f the sign
oz S{r+¢') 1s changed, and

TR IR Vir3,%) -
- lrzE("se ‘5) (:"5?-3‘5) 5(5 +& )}‘3} (4.14)

Here V is defined as in (2.19), matrix elements of the
matrix €, are E.p. o omd P 15 o momentum cano-

nically conjugated to ¥ .
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The maln point we v:\ould like to note is that the PI
contains. the operatoxr Q " symmetrizing the transitlon”
amplitude over the group S* . It was shown (Prokhorov
and Shabanov 1989 and Shabanov 1989) that f§ appears
for gauge s-lystam.;z when a physical-phase-space reduction
tekes place. On the other hand, by construction the ker-
nel UP (QY, ‘) (c[,=('(‘,_‘é)) 1s invarient under S*
Then, we state that i and q, in 1t can be reptaced by @
and Q respectively( Q=(x, 4’) ), and the result
does not depend on the unphysical variables [+ and Y ’

l.e.,
(4.15)

U:h(q,,'ci’) -Ue,8).

In other words, there &xists one-to-—one sauge-iﬁvariant
‘ oh
analytioal continuation of the kernel U+_ to the total cone

figuration spaoe of the system. To prove thls, we note

that any polynomial of Cl Anvariant under %. depends
only on degrees of the following quantities

n'&g ?E’ a%c? BGBC? SG% gc.:. e s a%cs %ag (. 16)_

where O -(Y‘ g, 0) We may check this direotly. Since
and £ are invariant tensors of 50(3) (Barut
8&2 age

and Raczka 1977), we oconclude that q_uantities (4 16) are

equal Tegpectively to

wcf ) Eae,c Lo, :‘(.%&c ) xo.a E E ¥ (4.17)

n@C

in accordance with {4.9)., Aoy gauge-invariant polynomial
can be formed from (4.17) (compe_re with (4.3)0. Moreover,
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an analytical functlon of Cl, being imvariant under the
residuzal discrete gauge group. I S* has the unlgue ar{alytical
gauge-invarlant .Qontinuation to the space of Q - because
polynomia‘\.ls‘form‘ a dens? set tn the space of analytical
functilons. So, (4.15) is proved. Note, Q cc;ntains six de-
grees of freedom and a gauge arbltrariness has three p;:.ra.-
meters, never'the]:ess, the system has four physical degrees
of freedom (see (4.8) or (4.17)). This happens beoause two '
first constraints in (4.10) plck ocut already the full '3{’,?;‘ ’
as 1t has been shown above.

Thus, the explieit gauge-invariant form of PI for a
transition amplitude can be obtained if we take into conslde-
ration a curvilinear character of physical varlables and
their phase space reductlon. These both main moments are usl-

ally ignored in the standard PI derivation for gauge theories.

5, The case of an arbitrary group and generallged

Shevalley theorem

Here we attempt to reveal a general mathematical origin
of equality (4.15). It turms out that the statement like the
Shevalley thecrem (Partasarathy, Ranga Rao and Varedarajan
1967) makes a basis of equality (4.15) in the general case.

Consider the model with the Lagranglan

= "%Tr (])t'x)za- LT \W-‘Dt* Ve, ¥, ‘D . (5.1)

Here ’Dt=_'3t+ [kd? ] ; variables X,yY, d‘)*‘, &  are ele-
ments of a Iie algebra X of an arbltrary compact gauge
group G, L.8., X = XA Cenalogously for Y ), q=
:)\L‘kh‘ (analogously for k\J+ Y, xi;‘di. are real, ¢L,¢I are
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complex Grassman variables, where A 1is an orthonormal
H -[-r Ao - ‘e " ’ -
besis 1n X L.)‘J Sl’d » ["AL”AJ]‘-Fi.'K‘AKJ -FLJK
are total antisymmetric struotural oconstants and 1,J,kal,2,...
N=aim X . Lagrangian ’(5.1)‘15 iovarlant under gauge trans-
formations
' -+ 1L a-d - -4
x> Qo b7, 4o QAT . et
_ . (5.2
g—bgan—t 'l",S)_'bt.Q: '
vhere SL=SL(¥) € G, and we assume that \ is inva-
riant under (5.2), ;
Canonical momenta are = '3%3 =0, p’=n.a%.i =:Il’.r,
We desoribe Srassman degress of freedom as in Sect.4, 1l.e.,.
we introduce the Dirao brackets (4.4). So, the Hamiltonian
1s

H= %Tr p?' + V('x‘,q’t‘p) *%kc\i. ' : I(5.J)

. - Ct _

where : GL':‘{:“_L,H} q-?LéK(PJxK*-l‘PJ*K) =0 are

the secondary constraints, As one may oheck, they are the

first-olass oonstrainis. After a quantisation of the theory
Gi. Pick out the physical subspace q‘ﬁ‘,\, ’

GL léfh> = T \<§P“> ='O,_ (5.4)
Our purpose 13 & F1 geastauetaen Lor the evolutiod

operator kernel 'of physical degroes of freedom. In aocordanw
ce with the recipe suggested in Seot.4 it is neoessary to
introduce new ourvilinesr coordinates in which tke constra-
ints (5.4) are dlagonalized, then, to write thehHamiltonia.n

' 7 P -1 -
in '}fPh and to find <1l$ >?h . At la.st,h Ut (%qu)

may be restored by the method of Seot.2.
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Determine new variables as follows (Prokhorov and

Shadanov 1983)

x:ezke-i ’ L\’=E‘.25e“2' (5.5)
where he H 1is a Cartan subalgebra in X (Helgason 1984)
ZEX@H . In accordance with (5.2) Z are unphysical va-
riables. Note that llke (4.9) ’n, has a stationary subgroup
in G\ , the Cartan subgroup, l.e., maximal Abelian sub-—
group in G (Helgason 1984), Ve denote "L = Llu 1:1
(o =1,2y...,1%8im B), E=%y Aq (ami+l,1+2y...,M). The
metric in the new variables has the block-diagonal form

. L
(Prokhorov and Shabanov 1989 and Shabanov 1989), 8 (I

= (801? ) Y_(FT&)TC")F)_&-SQG )! where G-)a.%=\"‘=.¢¥uco.% !
FLCL = Tr (li. ezgae-i), 'B&=’3/'aza_.
The measure is doC= dethc”ndi :—_‘y?"(mj:‘l @) dhdz.

The measure in a physiocal conflgurational space may be cal-

culated explicitly (Helgason 1984) y
if2
ju(k)= N (\'\,00=(0|e‘tw) )

oA 70 , |

where of are positive roots of X R (h)d),—- L\-}d‘?

To £ind the Hamiltonian in -%EF\“ we calculate the con-

(5.6)

gtraints in new variables. Since Z, are translated under
gauge traﬁsfomatious genarated by constralnts, ‘

N-1 constralnts Gl . are linear qmbinations of i.Bn'
(compare with (4.10)). The remaining gauge arbitrariness is
connected yvith the Abeilan 1-dimensional Cartar group which

does not change the physical boson varlables l’Ld_ y but it
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ohangss the fermion variables S . 80, other { comstraints
must represent the squalities to zeroc of generators of dpe..
lian transformations of fermion variables (lixe (4.10)),

Thus, equations (5.4) are equivalent to

. + .
"-'L)a_é?\.=0 ) Lo(®l:|n5£w£ Sa-ssérh.:o' |

o (3.1
where 52= %g& « Note, .Fo\'_?i. =0 , hence, [La , L,‘P]=I0,
i.e,, L‘ot are generators of the Cartan subgroup.

In the quantum Hamiltonian (5.3) rewritten in the form
(2.6) for coordinates (5.5) we carry Ba_ and L.d_ to the
right and use (5.7) in AJEP}, y then we get the quantum Hamil-
tonian in ’éﬂph . To simplify calculations, note that im
new variables diagonalising constraints, waphysical variab-
les become oyolic (Dirac 1965), l.e., H?k does not depend
on them, $9, wg¢ may euly keep an eye on terms containing h
and St S « We have

et £l + V1),

: . +
Hera ’bd_:: 'B/Bl-,_u . Lﬂl,r-*t-?u,i.}si, SJ .
To find S and S* s we introduce the Cartan-Weyl
basts 1a X (Barut and Raozka 1977)

[e., 0. ]-a , [hel-(he,
[ed,e}.’]: Notja eouj! s (5.9)

where o > () are positive roots in y €, are corres-

(s5.8)

ponding root vectors, ‘1,016 H ' Nu_}, are numbers, Mc_‘p#O
if OHP is z root in X . We define also an operator of
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the adjoint representatlon ac{,o(:%: L, %'_\ for all
DC,%EX . dny element |r\C. H can be represented as LL =
= \f\w C), where O  are simple roots ofX , henoe, the
set {CO, eq,e,d'l] gives a basis in X (Cartan-Weyl ba-

sis). However, 1t ig more oconvenlent for us to use the ortho~
gonal dasis in XeH

L .
6 - (om0 a), Cu” (e, v e ) (5.1

{the orthogomallty 1g understood with respect to the scalar

product in : (.’X-J‘j) =Tradx O«d‘d , for compact groups

one may normallze §0 that (x;‘a) =lrXY ina matrix repre-—

sentation {Barut and Raczka 197737,
Tt 1s well-known that there exists a subgroup of & 1n
H called the Weyl group W which 1s a group of reflections

and pearrangements in the root system. The group W is defl-

'ned by combinations of the operators {Zhelobenko 1970)
A <

Cew Tads, , 6
P (o) » Ve

Fal P s
1.8. a0y S EW i1s a combination of 5, oFr 2 sombination
A

A . (3
of 85 (W are simple coota). We may check that S e W =.

- — W s Lletey (5.11) are reflections of all simple

s AT
Se = eXP Qw,w)ih. adC,,, &) .‘]_1)

roots, and they give two equi'valent représen{:ations of w

. in H . In accordance with the definition of ad X end
(5.5) we conclude that actlons ot W in H induce trans-
formations in Xp H , but the left-hand sidesof (5.5) ! are
1nvariant. Henoce, trans formatlions (5.11) are geperators of
a searched discrete groud §, Indeed, the change of boson ‘

variables (5.5) exists if \r\GK+= H\W {Helgason
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1984) where K+ is the Weyl cemera (physiloal configura-
tional ‘space (Prokhorov and Shabanov 1969) )., In other words,
8 cammot oontain generators exoept (5.11), otherwise H\S k"
that 1s wrong. Noée, gi and gf:, coinoide 1a H but their
aotions ara differsnt for Orassman ebments g
' We call the disorete group defined by (5.11) 1a spaoce
H X ® H (Eexa ,\13\‘\) tie generalized Weyl group
w* Sj.noe boson and fermion reprdsentations are ideatieal,
S*:'W'. Cortainly, to get a full symmetry group of the
change of variables wo must add to W transformations
of Z induoing shifts e'z= ez+0. 1ike 2¥n - shifts 0289
in (4.9). Using considerations like above-suggested ones fox

the derivation of (4. 13) (we _denota Nx the number of different
elements of G¥such as s ‘}‘(h BT. ), N.=21n (4. 13)) one may write

<(HQY>\» }‘(L—)J“L{) 2 () 8‘1,'5* ) (5.12)

where $EH3 % EX ®K+ and J\A(SL) (4) Jk('n)
sew P =0 - :Lf S 1s rearrangement of roots without

- N
reflections, P5= 4 for & 1including non-even numbers of _
reflections of roots. Equality (5.12) means that all physiloal
states from gtph ar¢ invariant under the residual discrets

gauge group W"' . Uoreover, the requiretent of tha W™

invariance gilves automatlcally sclutions of o_qnstraints
(5.7). in the Grassman seotor. To prove the latter statement,
note that g:d §3,= {1n W s however, in X these ocpera-
tors must be elements exp od A , A€ H which are egual to 2
in H . On the other hand, one may check by direot caloula-
ticns in basis (5.9) that operatorsl (5.11) are refleotions
wlth rearrangements in the real basis ofX@H (LC“, 5,,_ ),
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ol > (Zhelobenko 1970), Then exp ad A are salso combina-
tions of rearrangements and reflections. Using thls we can
find explicit forms of h . Indeed, exp (Gld?\.) LS, 1s only
¥i5 or % Cy as 1t follows from (5.9) and AeH . so, A
. -1
can take values L'de(d,d) , of runs  over all positive roots,
¥ A . -1

1.e, W contains the operators O = exp u"JT(ol,d) ad .
Further, transformations from the Gartan subgroup expodf (IEH)
generated by L.d in (5-7) in basis (5.10) (5 = Sw w +

—c —

s
+ Ed Cu * “gd S ?_are_rutations of two-dimensional
< 5 d
Grassman vectors { ‘5 - Jsu } through the angle (9(-: _-)
for every A>0 . Invariants of these rotations are \52‘3:
Y A

( o is fixed), Dbut S, Ca=-Cy> Sy Sw =~ Sw » hence,
—c _'S N a -w-.* ) -W'*
Bd Bd are a}so nvariant under , 1e€ey - invarlant
functions give solutlons of $5.,7) in the Grassman sector.

“Using the technlque of Sect.2, we t+estore the form of

4 -I)

.8 N .

Ut (%qy for Hailtonian (5.8) and kernel (5.12). It has
the form (2.31) where

q(33)= 2 é\g‘s (4,873, (5.9

He“= %_- pr 4 v(h,g,g l ‘ii La(w-r‘*’)_:e Le, +va,

ol
: . = —_ -4
d - — ' T
- L&_LLR_O.L;,EE.%A ’ V‘ir— LSi.‘a""f-‘{-ﬂll.\< {'&hK(w w)ae’-
The constructed kernel Ut turns out to be invarlant under
A

W* 1ixe (4.15) ( @ symmetrizes it 1n WY ). If fermions

(5.18)

-+
are a.‘bsent,w =W . In this case the Shevalley theoren
. (Zhlobenko 1970) gives: every analytlcal fynction in \"\

'oeing'imre.riant u.nﬂerw has the unique analytical gauge-

Ph ’ h ¥
imvariant comiinuation ta X . SO’Ut (‘n.\‘\)=U,°P (x,x)_
Exanples of the construction of gauge-invariant wave funct-

jons were glven in (Shabanov 1989) and gauge~invariznt
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forms of PI in total (:I..e., including also unphysical
degraes of freedom) configurational end phase spaces were
presented in (Shabanov 1989, preprints JINR),

For the present system there 1s an analogous gstatement,
we call the generalized Shevalley theorem: every analytical
funotion in H being invariant under W* has the unigue
analytioal ga.uge-invariant continuation to X & X
(e X®X, ir xeX 4‘ G-X%) Consider an oscillatur in
¢ V(h, s 5) =T b2+ Trs's - N2,

Its wave funotions are P (ci') exp ( ih Tr \12), where

PE (qr) are polynomials invarient under W ©. Since Hl’h
is Hermitlan, Pe (ry) form a basis in the space o2 all W™ -
invariant polynomials in Ha « On the other hand, we may sol-
ve the quantut problem in the total Hilbert space, l.e., 1n
the spaoe of funotions in X®X Then, eigenfunctions of
the osc¢illator are P (0-) eKP( l/zTr x ) ’ moreovar,
’}EF,, is formed by geugeslnvariant polynomials from P (Q)
which give g basis in the space of all gauge-invariant
polynomials (the total Hamiltonlan 1s also Hermitian). Beca-
use V(E.s ga.uge—iwaria&t, we mey write in coordinates
G5 P(Q)= ;. PI(4) Y, (@), wmere Y, (&) are
eigenfunctions of the Laplace-Beltrami aperator an a gauge
group orbit formed by values of Z when k is fixed.

cleaz-ly, Pe (_q,) P (4,) (Y wconst). Then, in ?\, P(Q(‘i)) .
P (_c‘{') P (c‘,) P (¢) because of the gauge inverian-

cey lecs, hetween polynomia.ls EE and P there exists a

one-to-one correspondence, hence, 1t exlsts between PE (Q)

€ ’a{v\.\ and PE(CD . Since polynomizls form a
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dense set ln the space of analytical functions, we arrilve
of the statement of the generalized Shevaley theorem. Thus,
formula (4,15) takes place in the gemeral case.

' Note a simple comsequence. Every polynomlal in )(%
belng invariant under ‘Ar* is gauge-lnvariant, l.e., a gauge
symmetry in a pure fermlon sector of a theory is equlvalent
to the dilscrete symmetry with respect to the generallszed -
Weyl group Wﬂr*-.

6. Ccﬁclusion

Thus, we have seen that the wain polnts of PI deriva-
tion corresponding unlgquely to the Dirac quantization scheme
(i.e., to an expliclt gauge- invariant description) are the

curvilinear characterof physical varizbles and reduction of

both physical configuration and phase spaces. The latter, as .

1t has been shown, is comnected with the invariance of FIL
uﬁger residual discrete gauge transformations (the operator
C} in the expression of (jz ), and this guarantees an
explicit gauge-inmvariance of PI (the generalized Shevalley
theorem).

The Tecipe may be generalized to any theory with the
first-class constraints (i.e., to any gauge theory). Let in-
dependent constrailnts be Eﬂl which generate gauge transfor-
mation (Pyatov and Ragumov 1989). The struoture of gauge
groups orblts in the total oonfigurational space ls not al-
ways known, therefore physical variables are picked out with
the help of supplementary conditions ,f& (x)= 0. To get
the correspondence to the Dlrac scheme, one has to do as

follows. Let the gauge transformation law be X -—r wx o,

\.l)-)Tuk“ , where UE Gl ’ Gl is a gauge groun, Tu_ is
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a representation of G « Then after quantization we change

variables in a quantum Bamiltonian (o, ) > (0,%,‘5) ,

where X ='L{(.G)‘4 , ‘\’=_‘L(9)5, and Y satisfles supple-

mentary conditions Ko (‘j) =0 . In this case constralnts
Y, become linesr oombinatlons of derivatives %90,

since @  shift under gauge transformations, i.e., Qg

o
are unphysical variasbles. Further, ome should define a quan-
tun Hamiltonian in the physiosl subspace, l.e., 1in the ‘
spaoe of apalytical fungtions of la y and £ind a unlt ope-
rator kernel in the physical subspace of states, l.e,, de-
termine the measure (Jacoblan) and the group S* (the gToup
9 pay be found from conditions ja. (g‘a) =0, $cG,
where é‘. are all residual discrete gauge transformatlons
keeping conditlons xa =0 ). At last, U:h can be restored
in accordance with the above-suggested recipe. The effective-
-aoction form and S* depend on the .:xn_ form. However, chan-
ging jq_ by ,‘x: i3 equivalent to a passage to other ¢curvi-
linear coordinates in quantum theory unbreaking the diago~
nality of quantum comstraints (X= '\.la-;'u'-a' , Ialc'd')i'o .
and 9, ~ 'b/sea_m W’ag; ), henoe it is a passage to a new
basis in Q}EP,, « S0, the change ot‘ ]o. does not influenge
the form of the funotion 'U:Jh which depends only on gauge-—
-igveriant gquantities (eee (4-15)?. Change of j& is the
ohange in foxm of an entry of gauge-inwmriant quantities
(compare (4.16) with (4.17), in this case J(a= O are
X,=X3=0 ).
Needless to say, quantum theorles determined by the

elimination of unphyslcel variables with subsequent

quantization and in aoccordance with the Dirao scheme axe



free from internal contradlctions whereas they can be different.
Therefore we may consider them as two quantum vérsioné of

one classical theory. However, note that.in the case of a
quantum gsuge field theory we should observe an explicit
Lorentz inmvariance in choosing physical variables. The lat—
ter is known to require the ilntroduction of umphysical vari-
ables to a theory (Dirac 1967). btherwiSe, we cannot impose
supplementa:y conditions on one“ators since cont*aditions
with commuting relatlons appear (Dirae 1963, 1967). Therefore
the Dirac scheme turns out to be more preferable for formula-
tion of a theory in the total Hilbert space as being free
from these contradictions. Thus, FPI should be defined

according to the Dirac quantization scheme.
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