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1, l~troduotio~ 

.It io well-k~ow~ that elimination ot unpbreioal'variab­

loo in gauge thoorioo and quantization do not oommuto 

(Christ and Lao 19801 rrokhorov 1982 1 Aahtekar and Horowito 

19821 Isham 1986), In other wordo 1 a quantum thaory dooori­

bed by the Dirao ooheme (Dirao 1965) oan dittor trom that 

one when unphysical degrees at freedom are el1minated before 

quantization. However, the standard way of path 1ntesral 

(ri) oonatruotion (Faddeav 19701 laddeev and S1avnov 1980) 

corresponds just to the last method since in this way un­

physical momenta and coordinates are eliminated from the 

olass1oal action with the help of constraints and supple­

mentary oon41t1ons, respectively, and the phase space of 

physical degrees of freedom is ~'priori oons1de~ed an even­

-dimensional luol1dean space. 

~~ dittorenoo ot tbooo quantization motboda oomoa 

out from a curvilinear character of physical var1ables 

(lrokhorov 1982) (it is known that tho app11oat1on ot ope­

ratione of quantization and 1ntroduotton of curvilinear 

ooordinatoe in a ditferent order to a o1aoaioa1 tbeorr givu 

dittoront quantum tboorioo), on 'tho ono ban4 1 an4 from 

the1r phase epaae reduat1aD appear1~& beoause ot a gauge 

symmetry (Prokhorov iOA~, P!okhc~cY A!& 9Aa~!!a• 1989), 8! 
tho othsr hand, A moditioatio~ of rl whon a phJaioa1 phaoo 

epaoo io roduoed was shown 1~ (lrokhorov aDd Sbabanov 1989 1 

Bhabanov 1989), Other oxamploo 1 ot tho 0quantum drnamioa1° 

ph~•• space reduotion was given b7 Dunna 1 Jaokiw an4 Trugon­

bergor (1989). 

2 



• 

The present work is devoted to the consideration of a 

PI form corresponding uniquely to the Dirac quantization 

scheme. It turns out that there exists a connection bet­

ween a PI form in curvilinear coordinates (Sect.2 1 J) and PI 

for gauge theories containing both bOson and fermion de­

grees of freedom. Existence of fermions in a theory causes 

in PI derivation on physical superspace 1 some specific 

difficulties, since one cannot decrease the number of anti­

commuting variables describing fermions by gauge transfor­

mations (Sect.4) .• In Se<J:ion 5 it is shown that taking in-

to consideration a curvilinear character of physical variab­

les and their phase space reduction, we may explicitly de­

fine the gauge-invariant kernel of the evolution operator 

via PI. A mathematical reason of this is also pre·sented in 

Sect.5. In Conclusion we suggest a general recipe of the PI 

construction corre spending to the_ Dirac quantization sehame 

for arbitrary picking out physical variables. It should be 

remembered that there exist invariant and non-invaria~t 

ways of picking out physical degrees of freedom. The first 

corresponds to the introduction of gauge-invariant variab­

les. However, a complete set of gauge invariants is not 

always known, so we are forced to use the second way when 

physical variables are separated by supplementary conditi­

ons from initial variables, i.e., by gauge fixing •. In the 

recipe suggested below, we show how one should take into 

account a curvilinear c.llaxacte·r of physical variables and 
I 

their phase space reduction in a non-invariant way of sepa-

rating them. 
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2. PI in curvilinear coordinates on superspace 

Conside·r a quantum-mechanical system oontain..1ng boson de­

grees of freedom as well as Grassman ones. We take the 

Hamiltonian as follows 

H = ~ r: -t v ( x, + +. ~). (2.1) 

whm ['X .. , Po:,1"" is ... ~. (a.,~ :oi,a, .... M) and 

[ ,\, 1- .1. 1 ·- ~ (o1 s = l. • .. 1'1). 'Fbe operator al-'f«, ,.,. +- oo~.1 .~I '""'' ' 
gebra may be realized in a space of functions on super-

space{! =tp(-x:,~h~(Q.), Q = (x, ~)( ~ is 

complex conjugated to ~ ) if 

Here and below all derivations of Grassman variables are 

left. The scalar product under which we define Hermitian 

conjugated operators has the form (Berezin 1966) 

<~J~2)= ~docd~d<i- e-~~~,lQ) ~~(Q), C2,J) 

. ~M 
where the integtal is taken over the whole 1~ • In accor-

dance. with (2.J) the unit operator kernel <G. \Q1
) has · 

the form _ ( 

;r_ ~ ( -r ) H L. '±'t(a)'±'tCo') = S G,Q )= SC-:x:-x' e . c2.Ja) 
E 

where <f, E are .eigenfunctions of Hamiltonian (2.1). 

In the general case the change of variables is defined 

by a function on superspaoe Q = Q. ( 'j..J , q.. • (':I , ~ J. 
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However, we shall consider special forms of ~ • But it will 

be enough for the application of gauge theories. Introduce 

the new variables 

::Ca.= X._(~) , ~"' = _Q"'.J 3,, (2.4) 

where .Q.. Eo SV(IJ) and IL =D (<a) • ~en d Q = Aoi9- and 

'%o. = A-I.T rit. Here A~ = oG ~~'\-J ' '· J = (a.,o<). 

After some calculations we get from (2.4) 

_.:£_ = ~ ~ ('-a, + 1.11eJ' (2.5) 

-ox.,_ " 

where 'Q: = ( ( 'lJX/o~ ri) ~, :Jf€. = ~ ~ dcSl.+SJ.. ro~, 

(I~=~~' . Using (2.5), (2.4) and (2.2), we rewrite He­

miltonian (2.1) in the new variables 

1? · -'12.(" ·-) "12 d t A = 
Here 0... = - \. ~ 00.. + L. J\a.. of ' }'- ;::: s e 

=Vi , s "' clet\\ t~ll-\ t~ = B~ e,~ and v'l- is the 

effective quantum addend to a potential 

The form of a scalar product in the space of· func~ions 

~ = ':f' ( '\-) follows from (2. J) e.nd (2. 4) 

(2.8) 

M 

where K is a region of int·egration over 'a , K c IR. . 

The mapping X = x(\j ) is one-to-one if 0::: € IR'"' and ~€ I<. 

Let the functions X(~) be analytical for all ~Eo IR"" 
" IR"' 

So, the~ e exist transformations s acting in such as 

5 



For example, M=2 and ~a..= ( Y'" 1 9) are polar coordinates. 

In this case K is the strip Y" > 0 , 19 t (o, 2lT) , and 

traneformations s have the form a .... e ~ 2!lf 1'\. • 1'\ c it. 
and r~ -Y"', EJ- Ei+:lr • Apparently, transformations S 
form a discrete group S andl<=fR.M\S', i.e., K is made 

from /RM b;r identification of points in fRM coilD.ected 

with each other b,y S-transformations. In the mathematical 

language, the mapping X= :X:(~) gives the projection in the 

principal fibre bundle (Kobayashi and Nomizu 196J)1 where 

the base and !ibre bundle coincide with i<M and the dis­

crete group $ acts alo'ng a fibre in the fibre bundle at"(~). 
The group S induces discrete transformations of Grass­

man variables T. such as Sl. (~) 3 ~ Sl.(s~}"r. S , so, T5 • 

• SL\sij)Sl('(j) . We mark the total group of transforma-
~ A ct* A (A -A+) 

tions & and T. as ,::::> and S~'j. = S l;j , ~ T s . 

Hamiltonian (2.6) is written in an explicit Hermitian 

form since the operators Po.. are Hermitian UDder scalar 

product (2.8). If ~E'. are eigenfunctions of (2.6), we 

may write (since the Hilbert spaces (2.1) with (2.J) and 

{2.6) with (2.8) are isomorphic) 

'j'e:, ('j,): z Ct:'E <PE (QJ 
E. 

(2, IO) 

By definition Q (s .. <j..): Q (<j..) , and we conclUde 

P E 1 ( S ... 'j.. ) : \f t I ( '}). (2,11) 

Using the property of parity C2.11), we may analytically 
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continue tO 
J" 

.. 
to the unphysical region ~ t. {R • Thus, in 

e.ccordance vtith. (2.8) we have 

- </2. 

L. 'f.,C<t-!':l'. Ct') =I. [rc~).l'(s'<\')1 &('!-,s~f) 
E s~ 

where ~ E 1\l.M, '{Eo K • For physioa.l values of ~.'ij; 

i.e., ~.~'El< , one sho\lld only keep the first term in 

"* sUJil (2.12) with S ~ t . Formula (2.12) defines an analy-

tical continuation of tile unit operator kernel <'I,. I'\.-'> 
to the unphysical region. 

Note also that kernel (2.12) can be obtained directly 

from (2.Ja). Since a change of variables in a quantum theo­

ry is equivalent to a choice of a new basis in the Hilbert 

space of states, the left-hand sides of (2.Ja) and (2.12) 

must coincide, hence, the right-hand sides coincide too. 

Iudeed, let us change Q and Gi 1 
in (2.Ja) by expres­

sions (2. 4) and asswne 6 E. !R M , ~ 1 
E. K , then 

-1/a " 
/l(Q,Q') =I [JUl~lyl5~)J 8 ('(j-S~') ~xp ~ T,!, . 

5 
The equality follows froiD the rule of changing an argu;:"ent 

of M-dimensional S -function and the definition of T~ 

= ~+ ( €-'t,') .D. ( \1') (at S ( ~- S\j1 
) we may change 

nC'<ll w .u_+(s'<l') in exp H' ). 
Let us turn now directly to the PI derivation. The 

kernel of the infinitesimal evolution yperator is 
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where H is given b,y (2.6) and £_,. 0 • We rewrite kernel 

(2.12) as follows 
-II II 

II -It II -~ :s. 
( d~ d ~ d~ e b('\-.r') Q ('\-"·f). (2.14) 

J (y. J<'')'/2 

where r ~J<(~)' J<": }<(~")and 

Q(f,f)= L. SCf.S.·~·). 
~" 

Then, we use the representation of S -function S(~) • 

• ~J!'f "'J dr e<p ·~~ in (2.14) and substitute (2.14) 

into (2.13). For the calculation of action of H on 

S(<j., ~') one should take into consideration a nonconunu-

tability ~ and 0"§. and also use the equality 

'd .. • 3 ·t~)'d~ sc~-~") =(3.~0') -o.~- -o.tc'<l')o,) sc'<l-o'), 
(2.16) 

where Oo. = ~~ .... Thus we find, with an aocuraoy of Q(f.'), 

ue (_ "r,C\:') = 

_ c d~\"df d'b'' -~·~·u•lfc -·)QC •. _,) 
- j • •tz e e. '~-· q. '1- ''1- ' 

<.JAr) 

and the effective Hamiltonian has the form 

8 
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(2.20) 

-.,u " " 
where Gras~an variables .:> = ~ 11 stand instead of o!; 

in <JrQ,. ; V follows from V if we carry all operators 

dj' to the right and, then, change them by Grassman vari-

" ables ,3 ; and finally the expression 

v'\- ~ v'V ((\") .. ~d._ (c~") (~c•Tit)-
. ae ) - + 1 t 3 (~" :; 1._9 (~''na Sl('C") b I (2.21) 

takes into account the noncommutability of operators in 

the kinetic energy operator. If we restore the dependence 

on t. ' then v't ~ \ ~ and other terms in (2. 21) ~ t 

This shows their connection with the operator ordering 

(see the review byProkhorov 1982 in Phys.~lem.Part.Atom. 

Nucl. and references there). When £ tends to zero, we can 

11 • II 0( ) 
replace (j- (\ by '(j e with an accuracy of Ea • 

To obtain the evol~ion operator kernel for a finite 

time, we must find the fprmula for iterations of infinite­

simal kernels (2.17). ~ definition (2.8) we write 

-n 11 

U ( -~) ld UJ-"J" , -~~u ( -")U(. _,, 
l[ lj.~~ = J ~ 3 :!, f e E. ~~'\. E '!-'1,'(.J.C2. 22) 

K 
Transformations (2. 22) are cumbersome enough. However, we 

may easily control them if we take into account that their 

main sense is to carry to the right the operator (i 
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eH 
being between two U e. in (2.22) (see (2.17)), In this 

way, we would like to represent the final formul~ as 

(2.17), where £-+ 'l. E and 

Uel(( _')-IJ J-J e-~.~'Ue\1( -)((H·~, 
~e 1-·'l- - J ~. 5< :!,, e. '\-,'\.., e. ('\..,,'\.;(2.2J) 

If into (2.22) we place expression (2.17) instead of 

the first \JE , the integration is carried out over the 

right argument of the ~ernel (( and over the left argu­

ment of the second \J( entering !nto (2.22). Let us cal­

culate, at first, the action of Cl from the left on the 

function c':p . ~le have in accordance with (2.15) 
_, I 

a <I?C'!-1 = ~ d~~J.~~ J. ~~ e.-...,~ Q c ~ .'n'Pc<rl) = 

1.<. 

== ~J~' L S(~- 5'<!') ~('<!', ~ fs). 
K S 

To take the integral over '<1 
1 

, we rearrange L., ..1 and~!< 
~ I ;> 

and change integraUon variables "I= S ~ • In the general 

A 
A ) 

oase, S. is not a linear trensformation, i.e., .S~-= S('A 

is a certain function. So, 

Q~tt-)~ L eK(~-·~) I\ )<I:cs-·~.~-T.). 
s &\~ 

!!ere J& = 1>(5\j)/'J)l'(l) is Jacobian, 

eK (~) = t ~ : l:\ El< 

~ £K. 

(2. 26) 

Apparently, the measure doc= oi:X:(.<a) is invariant under 

the group S hence from the equalitl .:be: ( $\!) = olr.c('<!) 
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' 

it follows that 

y c s~) = ( :s5 c"'lYl. y(a). c2.21) 

.A 1\. + 

Using the property (2.27) and T5 = T ,;' with (2.25) we 

can take the integrals over ~" ' :s;: and s" in (2.22) 

u C'\.-X)=c d~,J~J'i.~ -~.i~vQ·~~c - )· 
zt. j ( )1/a e e '\-,9-, 

y. .J'l i 

· L .¥1 e1<l £~,) UE (s*'\-J.) ~'). c2.2s) 

$ 
~ construction, 

(2.29) 

Indeed, since the initial Hamiltonian (2.1) (or, which _is 

the same (2.6)) ::.s invariant under S* (Q(s"!,.)= GC'I-l 1
), 

by definition (2.1J) we conclude that (2.29) follows from 

"* I '> I the equality <s '\- '\-- = <'\.-1'!-> which must take place in 

accordance with definition (2.12) and the 'parity (2.11). Of 

course, we may directly prove the symmetry property of the 

unit· operator kernel under ~"*"'making ca.lculations like 

(2.24), (2,25). The result of action of kernel (2.12) from 

the l-eft on the function 'l? coincides with the right-
' -i 

hand side of (2.25)!:! the factor' (35 (\jlJ is omitted. 

Thus, the function q>('\.-}= I, 5~el<(s~)il>(g*'l-) is in­

variant under S, * . If ~ belongs to the Hilbert space 

of the theory, i.e., it is a linear combination of ':I'E(q,.\ 

then ~ (s *'j,) • ~('\-). So, the equality ~ ~ ~ follows 

from 

C2.Jo) 

II 



Now we oan see from (2.29) and (2.JO) that the summation 

over ;;* in (2.26) disappears. After substituting (2.17) 

into (2.28) we find the required expression for U at 

U•H 
ooinoiding with (2.17) if E-+ 2.E , and 2£ is defined 

by (2.26). 

Now, clearly, all iterations of. U £ reduce to itera-

u eH 
tiona of E. • On the other hand, iterations of the ker-

u <>H 
nel a give the standard finite-dimensional approxima-

tion of PI (Feynm~~ and Hibbs 1965) for the theory with 

Hamiltonian (2.19). Thus we get for a finite time inter­

val 
-n 11 

U( -·) fk" d-·d·-blu~~f( _,;., ('-') 
t.CJ.,~=J( ")'k'!> ;;e t ~,~JQ'\-,'1- · 

:fJ' (2. Jl) 

e-lf 
where the ~ernel U t has the standard PI form 

V~{f( -•)J n ( dpd~ d- .l )e'!' e -iS.,H. (2.n) 
t ~.~ )t-6 (2:rr)"' b ~ . 

Here o= v~ (S(t)~lt) ~ ~(oh,(ol) tak•• into account 

the standard initial conditions in PI containing Grassman 

variables (Faddeev and Slavnov 1980) ~(t)=~ and ~(o) • 

:::1 ~''. Moreover, y(t)-y and ;y(o)=y 11 are initial oondi-1 

tloD5 !or bo5on rarlables, and 

( t f • ! (- . ~ \ H"H} 
SeH:.)d:tlp~+ .:tL l,:!,-'b3J- . 

0 

Note that the measure J (Jacobian) is not contained in 

the PI measure, but it stays as a factor bo~h at initial 

and finite points of the transition amplitude. If we omit 

the depende·nce of the theory on Grassman degrees of 
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freedo~, the boson PI in curvilinear coordinates appears 

for which the recipe of construction was suggested in 

(Prokhorov ;t.984 and see also his review in 1982). 

~he main difficulty appearing in the PI derivation in 

curvilinear coordinates is that a physical region of va­

lues for new variables is reduced JRM-Kc lRM. Moreoyer 

eigenvalues of some canonical momenta become discrete 

(for example, the angular momentum see Sect.J), i.e., in­

tegration over them is replaced by SUQffiation. 

We have got over these difficulties by using the ana­

lytical continuation of the unit opel·ator kernel (2.12) in 

the PI derivation. 11e have found that the integration in· 

PI can be carried out over the total phase space IRM® J<M , 

however, after calculation of a transition amplitude we 

must symmetrize it with respect to the group S il" in accor­

dance with (2.Jl). 

J. Example: two-dimensional SUSY-osoillator 

In this short section we give a simple illustration 

of general formulae of sect.2. Consider a two-dimensional 

SUSY-oscillator. Its Hamiltonian is 

H =-i. l:l. + i. x a + f 4 - i 
;1. 2. a. a. ... , . 

O..=l.,2., (J.l) 

Let us study .states of tAis oscill~tor with ~ fixed total 

angular momentum, i.e., with a total angular momentum of 

bosons and fermions. For this we introduce the generalized 

polar coordinates . ~e 

"" ~ y- cos El X = Y" Sci'\ El , t = e ~ 
.,1\.oi. I 2. - 0.. • 

(J.2) 

.e d ( -2) p 
In this case j\A= y- , g = lO.a l., Y" '· ~ = ~,. 

-'h <k 
= - ~ r ()r o I is the Hermitian momentum operator 

• 
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symmetric matrix. Lagrangian (4.1) is invariant under 

gauge. transformations 

Here .Q. = Q. (t) E 50(3) 1 and we assume also that V is 

gauge-invariant, 

Let us turn to the Hamiltonian formalism. Canonical 

momenta are 'J\ = 0L/o~ = 0 , P = 'Ol../ox = 1)~ 'JC. 

and 

(4.J) 

Obviously, 'Jf= 0 and (4. J) gives :pri...il2.l.'Y constraijlts. 

Note, (4.J) are the second-class constraints (Di?ao 1965) 

which appear always ·since usual Lagrangians for fermions 

are linear in velocities. To eliminate the ·second-class 

constraints·; we replace the Poisson brackets (a definition 

of the Poisson brackets for Grassman variables was given 

by Martin (19 59)) by the Dirac brackets (Dirac 1965). lie 

take t\J T and 4> as new canonical conjugate variables 

(Martin 1959), and their Dirac brackets are 

- i. b n 

""' 

a 1 b"l. 1 21 J. The momenta 'J\'1' and 'Jr'\>• are eliminated from 

the theory by using constraints (4.J). The Hamiltonian of 

the system has the form 

(4. 5) 
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·"2.1 : ,\. ~· 
. _,. 

~,' . --·~ .. :-· .. 

ht ~a.ll • ~~ ~~~~ . , EQ·~ •• ~t '!!ilplet~~~ ~~t., 
~,....~~'~lQ ~ •• ,., •• E.J •.• J ~4 ·~·g ~· .. ,. ... ~d I ••• 

~be ~l"oolldau ~~ •• ~.._1nts (Di~•• ~,6,) 11~1 · : ,;:_F: · · '' 
·. .:~s:~ ! • -~·.!;;;>-*\'· ., . . :..::;,:.·~.:r·· >·;,·:-~ . ,;,_·.,-_\~ 1 

L Jr!l!, H r= ~~,•~ c ~,:X,, l ~; 1,l. ~~ .. ~:.·" (~.6, 
'3,'' ~ . ~. ' - *!._i' ''· ' . ·. '}~. .· ' ( ' ' • " ,. .... _: -· .. ' 

Conet~lltl c.:~·i.io ·~~~ f~lt-ola'r. .~~~t:r•~t' [F~. (!.\; 
--: ~.,, G, :1 {(!. •• H1,: E11t~ ~.J~ "(Dt.t••:~!~')! 

·- .. ,, ' • ·> ", ' "~----···"" 

, .~t.~t·., ... ~~~-~QII!,,wh~llll~~· ·~!Paa). varif'~'p '#' 
rePl~!;. "·.~;j~~:r• 'P4 f. h~ -"\.J~l·'' ":~·~! l, ~· a 

DOIIIIIIII,IIt~;> fo, _. •• ~ ~ a:H~t~ODIIIfllt~\!• tOf t~ .. ~~ll"t 
"-.:"o:_ . ..- ... \.,, •. ., ·.· ·., ·-·'J•'.' · ·. : --,.r~:~"·,-· .. "··'--~-~,. ~· 

oonst~1Dtl (4;6) ;~oo1c o11t ... ','ill•~Ml ~~bspaor !#'''"~P• 
'- -· ..• -·., ,.~.,_-:-·~-,'{'':'~: •, _.· ->·:: 'I.-\'':'" -~'' -~--~---:··J":~':iJi 

' · G~· ~~~~ j\P •. ! ~ rh ~,~ ~rh . :-.: ·~~ •. 7 ) 

(The a,~~~,tJ~~r,,~l"- I iph '>! g m ~~~~·. ;~~v!~' ~ we 
shall lilt tv:r11 ~~ f!UID\1oll U. tllelll )tJ•'!)• -. ~·~~·~r.,ct 

.,;• ·:~-. ""':,··~.- ;(''" .,...:,.,-~~-... . '"~~!"·:-'(;'!.-~.' · .. , -~··i-t"':-~--q" 

~pl., Tie ilup~i· aliiliii"•"t~f$•11 of !ti!8:f•·-~·~,~ga''. 
o.,~,ftYe;(~X, ~-~p,)';~ llv ~tl1nmt,.,,~•. •••11Ui.J~: ., 
Q,\o):r.tjllld>•q ·"• ~~114 E411c Pc~r,l'.'"lEa~~•Q.jil,1~ 

a11<1 2lo'>J'{fti,"! p11ln~~!· ~t tlia\ po;stra1~~~~¥~~~~ate 
~0(3):1·t~l1·'"~~f ~~~· ~ .. t'f'. ~~ .~·· J . 11•!!••, ''~+) 
ma;r -. o'btaillifk: •a\~11 ·~ :\.(1)' af,flll. oomb11111.~p.i or 
a+ and '\'+ ~~&., .;~ ~~·t,, Wl41; 1~3)-tr~Jt·~ 
t1ons, ~-· lla,ti!~••• •II••• ~JiiiQ!IiJ,i;f a• all;~·;~~ 
deft~ b;r illi!!i;,.• t•ll••rt\tlf til•' ,,~, sO(') ~- .alld 

f.,&e, ,~._~ .... !I.••• "71?t 1~ ~q '' l.q o'btal,ft iJ; · 
acUQI'ollf21o) i.:i'tlli iiP•:i*·~~> ... ). : " .: :;~:~.~ 

s"" =~'~""',.,£.·,a+ ~::t . .i.t:';I.•Q.+; .• -~, c ·"' 
.. .,~ , ~:<~:·~· ., ~..,ff''_, .• , "'",T' ~ •;o: J~aa 

~t. ~· "'t ,. .. ,. 'E ~t~'t+t. 
'~'t ' & Ta •. 4-&c: C~o·•·~·. 

-2 • ./i·/< ·~·;,. ,i·~;..,·.i':-':·-. 

'·' . ·~-.~· ., . '.. . ·' rl};~:!! . -- '~ ; :~~ ; 



The operators (4.Ba) are 11boson",. i.e., they commute and 

the operators (4.Bb) correspond to physical excitations of 

a fermion sector, i.e., they antiao~ute. 

NoVJ we return to the PI derivation. Christ and Lee 

(1980) and Prokhorov (1982) have shown for the model (4.1), 

but without ferrnions, that the elimination of unphysical 

variables and subsequent quantization lead to the results 

contradic.ting the Dirac scheme. The main point is as follows. 

V { a 
Put, for ""ample, • 2:" X (fermions are absent), then 

the basis .;ln ~ph is .e,; 11
.\0) , n:=:O,l,... \_Prokho.rov and 

Shabanov 1989), i.e., "t.:"IJ.·e oscillator S!Jectrurn is En= 2nt %. 
Now we eliminate unphysical variables before q_uantiz~tion. 

Since the constraints Go..;::: eo.= Eaec ?.e, 'Xc= 0 a~e project­

ions of the angular momentum of a boson, we conclude that 

angles of the spherical coordinate system 

are unphysical variables (their canonical 

~-e~ = o • Pe; 5'"'~' ei- co5!P e2 = o ). 

x~ (r,e,P) 
momenta are '0 ::. 

. ff 
So, the classical 

physical Hamiltonian depending on ~hysical variables r 

and Pr = P~X._/r is % ( Pr2 
T r 2

) • It coincides with 

the Hamiltonian of a one-dimensional 

tization of which gives the spectrum 

oscillator, 

E" = 1'1. • 

the_quan­
{/· 
/2.. 

On the other hand, as it has been noted in Sect.l, a 

standard recipe of, the PI construction correSponds to a 

quantum t~eory obtained from an initial classical one just 

by eliminating ~:Physical degrees of freedom be_fo're ·\uand.- , 
zation. From this point of vie;·1 it is" interesting to find a 

:PI form which corresponds to the Dirac quantizatiop. scheoe. 

',"lith this purpose we, at fi::-St, que.ntize ·the theory, then· 
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f·. 

WI ~~im~t, ~sioal vplables ~4 ~~!'~tr~'! t~~ ~~­
~Ill! l'""':I.J,to11~~ 111 ~p~, At ~&at, lili:l.'!l ~-. ~( ~~~~v~ & l'I 

t~t ,_, ~v•~l!tioD ope~ator llt1f~ll i!'. !r~ , i; ·,~·: ' · 
. ~D\~o ,~,~~imillate -I:I.OIIIl ~~~111 .. :1.11 ! ~UaDtum 

thea,., Ia~ '~4 :I.Dh·•4l!ili ollrvn'!I•P ooo~ci~•••· IDdeed, 
f · ,: · ·_;.:~:'): .. ·;:'}; ___ .. <. :_-j; ·,, ,.,:"-;~:;c~~-., 

if l'!~ 4tf:l.~ "" YafUbh! IO \l!llt !~t,,~t tllil' ~~- ··~tts 
CuaJtJi,o:~.iat yma111t•~ &!If. tit nora 4q 11•• ohan11ti ~fll' '~uge 

': < > 1. , ,_,;;§,. ,:. ": ", • ' 'I-, ·'· '~. ' ', ' , .~fv ;. ;' -

t~~f•J'!II•t+•" ·. (pll~o:Loa1';yanab1 ••~ ~·no ~"~~t• ~~,~~ 
U~~~~AOJ.o t!~Z{ tbe:r are U!l••lf D011f)!~~ioll~ ~f llr'~~1!"" 
··~r;to~~ o!l~f!,p.te~ to ~h;rsica1,yar:La'b1u. t~";~p~ follows 

r·--·-: ' '••-~~, . "'. • .. '- - .)•.\;-·- •, :..--,~' , 

~~~tP'~tr~"' an geDtfators of ""'' bl/.~t·~~~plls, 
""!.~·~~rt~. ~f!"ators arp,-·ll~rat~'~ ot t:r8JI1~-,H~.! !!ow­

..,.,~.~~ .... ~ -~aiiJfO:nDIL\JOns art ~lotopiO rou,j,op.l Y/0 
<~· ~-::,,:~·:'-'~¢.."'~*',:· 1 : •\;_:' '-. (;'If, ..... _~.)·:·' -:>• 

OA!!'O~ ~!-4~~1•• DOllS trl!~llt s w:Ltlj.!l, ··~lltr•4!1~lN ~'ifvi-
'\~~- :';, -.'5-~{ . ""'~; ""1~;· ··,(i' - ;:;;·;~:;:·.;.;·0··.-

lill!l~ ~po''"l•••• · . . "ii" · -~ 
·':1··"o.''h~"~h, we d•n•• pow nt:l.&'lltll .. , ' 

.<. ' -; ) :;-.}":~--~.,.,' ; ' ···fl:·~ .... <.'· ?-_.: " 

~: .. u . ·;: ~·~~e. COZ:!" ,- s<n'f r.~e ~ .: ' 
ii . ,S d~· r.ill&lllilf ~'I' ~e ·~~ ~$~. 
t .. u~.•'J.·.'• ~e 'o ·.J~Il ·,,-,4.9> 

'
,, ·•· .-:~.·····.' ' • ' '"! :.; ., , 
- ~---- ' ,' ff-, '. .:: ::\ i 

•~~tr• !' ~r,t~o >, ~ .. ~l , •~h~!)' ~PP!-!•Ptl;r, e 
B.ll4 !P 1111,~1 Wlr ... tf·f~tfil·Uo~ ~4 r, ~t 

~ \ ,) I , ,'- e < ~ 1 ' > > ,_. 

do,~~t ,~,~~~ tllaDt~.~~l·~~f' ~· t., !.., variables 

~ ~b•}•l! !•~•)" ~~" (~,S,,~) ~·.~r."''l:;~e: L,., 
'JT"1 ~ -.~~teJ.._., ~~e I. 1.·~~. • ~'-·& l 1 .(~ = 
= ~"") ~~~.· f,·' "'"·r' ~:·~.· ··.ii. ~,~:1. 'tLtij~·~.l.:..' a 

• 4,:; ·( ~,1 ,~ . .t· (raL~~if) · '' ··· ·'· · 
·,·.:.:-;.•· ... ·· .. > ... :v-' . ~ _;:,: __ ,' _. ~ :. ' ~; .. -.--- ' ' 

-. ·, '•\':·--- ~ ,;,>,·.' • :·~- ;' 

",:~;-!~ 
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Nondifficult calculations with the use of (2.5) show 

that the system of equations (4. 7) in the coordinate re­

presentation is equivalent to 

(4.!0) 

The form of the third equation in (4.10) may easily be un-

derstood if we note that using gauge transformations we 

may always reduce 'l' ' e to zeros in :X:=Ug , however, the 

vector ,? has the stationary subgroup 50(2) with the gene-

rater cio.t t being a subgroup of the gauge group ~O(J). 

These remaining gauge transformations do not change g 

but they change ~ , hence, physical fermion states should 

be inv:ariant under it, i.e., L1 ci>p'h =0. So, the Hamilto­

nian in ~ph is 

~ =- J... -o> r-+ 2\.(~>L~) + V(~.~ ... ~J. c4.n) 
ph 21'"' 

A gauge symmetry in a pure fermion system was studied 

in (Shabanov· 1989). Using gauge transformations we cannot 

decrease the number of Grassman variables. 'Nevertheless, in 

a classical theory the constraint of the type L = o ., 
leads to that the time evolution of one fermion d'gree of 

freedom, for example, :5
2 

( t.) is determined by t}\J.e time 

evolution of the other, :i.e.,~ (t). In a quantum theory 

the constraint L1. <p~h =0 is e:u1valent to the requirement 

or l'2-invariance• S 2,J--.-~ 2.J for ~~"(th• latter was 

ihterpreted as a phase space reduot1on foT a fermi-system 

(Shabanov 1989) • Thus, ;7e find 
A 

4~h ('1, T~~) = ~r (r, ~) • <4.12) 
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Wblf~ t a;~" ~~Q, (t,-i,-t) E $OtJ.~ 1 llott til•* till . 

'Ill# .,:1.11v#~11!., o:t_!G(2)-aubgroup salll'l'atina l.i and of f,• 
•Cl''•) ~1, ~~:&a. . .· ' , ' 
. J•• ~~~ 41,,11, ~· tbe e•al¥ ,,o4uot ~~~ IIJl rh • ~'IU!~ 
C4.t)' '" the ~~ pf vari.,b1eo1 'tllllc• n Ukt C~oll)t .l!w• 

"'· ~--' -~~~~"- '·"" , ,,.>' · , ,_,._ "'~;.··,•'·n 

evu, II"' e .114 ~ lift ~p!'fi1 .. 1 V'"'1ab1Ut lltl\ild!!~ 
K +• a ""~~~al ··!'figuraH~II tpaoi •fr·' • "'' ·~·•tr ' ' "' ' • 'e:·_ ', . . '·j_ ' • ,, ··;· ••• "->- \ 

group ot !"" Oh!UIIt pf var1ab1eo (4.9) 0111!~110 tile .~f;~f · 
<;:,,•Za ,· $-+ ±. ~. 11•t1ng on ph.J'elo'll v~'"11111i ••• .~':i 
, = Q_ \S ie ,;·u~~~'~i• no • , •"') : 

'l'o u~. tile ~-r group s*·, ·~·~~ 111,, pbysica1 ·~~~!~ 
space, •'!t' a~oliU ti·j·armine all IIOIItr1v1111 t'allsfo1'111.tiqi!~ 
S€. ~QCl{auch as 'b .. :t S' • 1'1\',J '!' &~ •41aaC1,41'!"W' 

52 ~ diag(-1,1~-1)! .~a •41•s(-1,•4•i.). ~~!~' a:·~ ''}~. 
Cno ·;noll r·,·t~.! •.••• :.~·· tllti ''H~''"~. -~~~·,@~"" 
tiona a~ ;~ , If ot''!'PIII4 •• s,: ( oc "\f ~ o U~,..'1>,.' } 
5,: 9-.:,e . ll-~~~. r-. I'" l ~ .. : -~~·'t,'l'1!}t~'r; 
s,: e--e+~ 1,'P:-jlffll, r-.~r ·· ~·H M~ ~~~,..-

group of (4.9) tihlfbtai.Ao4 1>1' 111\fiilc t• ~;..til~ ~r!'i\il(j"t-
tior. e-- • t ~It! ~ ... 'l' -t .mm.. m, ... ~ ¥ ), 's;.~·· ~ 
two diffe~~~~~ tr~;f~\ions •~; .~ .. , oq~fi,p~lld to ,,.ij·: 
~;o~:;;r.:~t~ ~g:~~~:~;;;lD:~f~:~i ura· 

t ,4 ••• ~\,' --. '• ' ; ;· ~~- ·,, ....... _., ;> ~ _ _,--: ·.~ 

and ot flllliOIIf OIW-41• .· · 0 ,"" ;f 

Al.i »,al.·~ ,._, ••• IJIUSt bl 'IIV4Jt .. f11!14tr 5~ -:."" 
•• S" !~:·• a~bgr~;.j·;f th~ ii~.l;,- n~IIP tOCl), w, ~,r~io. 
provo u 1!1 .,.;,~~~~~;a,, Consider a~~ 11.11~~1~~ '•~jr •.' . 
of th~. ,~i: ~Ut~i~ ·(without: .• ~~~•f•l~·~). J/2 p! ~Yf,r.t} 
in tl\1 o~h'111"-toajtol), 111 aCOif4A!IU '~$1j ·(~.tO),"·"':;. 

' ~ 4 it-io ,:,;·\ ·_: ·- 1~ .. ' . ·----~ ·':,.' .. . ~· 



should be invariant ~~der the above-described discrete 

synunetry group for the change of variables (4. 9). The dei­

pendence of ljJ e: on 8 and \P is de.termined by the 

spherical functions Yt (9,l9) because V(x, <\!~<\>) = 

= V(~, '!;+, '!>) ( V :. gauge-invariant), i.e., \j)E = 
E [) .- £1* 

= L_ Rtm Yem . So, l'\ 00 ··are invariant under y 

but they form a basis in ~ph , so, any c"p is invariant 

under S .\f ~ e '(j{rh • Note, (4.12) is fulfilled auto-
E 

matically fo!' R 00 • Thus• we write tbe unit operator ker-

nel in ':Jt 1h by analogy with (2.12) 

<'1-19.-'> h= _!_' lsv-r') (e ~:s' .. ebs,o.') 
r ;.,r- .,.- L 

( ~s.'b' !:5 'b') -£C.- ... r') e ... e. ~ ; (4.13) 

the factor 1/2 in (4.1J) follows from the equality 
oO -:, 

)d.,.-.,.-~~ci~J!,e.-'5 <'!-'1'\..~h <f>(q.)=cp('!.'),cPE.'d!.yh, (4.1~a) 
0 . 

rei<. and r'>O in (4.13) • or course, (4.lJ) can be obtai-

ned from (2.12) by averagl.ng over e and If since e 
and ~ are unphysical variables. 

Urh 
The Pr derivation for t. coincides wit)> (2.D)-(2.Jl) 

if we replace H by H'ph(see (4.11)) and <<~,let) by" 

" (4.lJ). A final exp~ssion !las the form (2.Jl) where (i 

is given by the expression in brackets of (4-.lJ) if the sign 

of 8(r .. r') is changed, and 

He~' = 1- ? ~ + V ( Y" '~ , !. l -

;.,... L (~c:,_'b)\ (~e.~~\ ~(E>E~)b} (4.14) 

~ 

Here V is defined as in (2.19), matrix elements of the 

matrix Eo. are Eo.~c 

nically conjugated to r 
, and ? is a momentum oano-
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~e main point we would like to note is that the PI 

" conta~ns. the operator Q · symmetrizing the transition· 

d."" amplitude over the group ~ • It was shown (Prokhorov 
" 

and Shabanov 1989 and Shabanov 1989) that Q appears 

for gauge systems when a physical-phase-space reduction 

takes place. On the other hand, by constructi.on the 

nal utc'\-.4') (~=(r,~)) isii!'fariant under 

ker-

$*. 
_, 

Then, we state that 'j:. and <j. in it can be replaced by Q 

and Q1 
respectively ( G = (x, ~) ), and the result 

does not depend on the unphysical variables e and ~ 

1. e. , 
(4.15) 

In other words, there exists one-to-one gauge-invariant 

•• analytical continuation of the kernel u~ to the total con-

figuration spaoe of the system. To prove this, we note 

that SJlY polynomial Of 'l- ..i..Dvariant under s• dependR 

only on degrees of the following quantities 

where f •( r 0 Q, 0 ). We may check this directly. Since 

Oan and € ~ are invariant tensors of SO()) (Barut 
~ Qb~ . 

and Raczka 1977), we oonolude that quantities (4.1&) are 

equal re.spectiv.ely to 

(4.I7) 

in accordance with (4.9). Any gauge-invariant polynomial 

can be formed from (4.1?) (compare with (4.6)1). Moreover, 
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an analytical function of '\r being ili'Ia.riant under the 

' *" 
residual discrete gauge group. S has the unique analytical 

gauge-ili'Iar:lant oontinuation to the space of Q because 

polynomials form a dens~ set tn the space of analytical 

functions. So, (4.15) is proved. Note, Q. contains six de­

grees of freedom and a gauge arbitrariness has three para­

meters, never.theless, the system has four physical degrees 

of freedom (see (4.8) or (4,17)), This happens beoause two 

first constraints in (4. IO) pick out already the full dtf1. , 

as it has been shown abave. 

thus, the explicit gauge-invariant form of FI for a 

transition ampl1tude Call be obtained if we ta.ke into oonside-

ration a curvilinear character of phys~al variables and 

their phase space reduction. These both main moments are usu­

ally ignored in the standard PI derivation for gauge theories. 

5. The case of an arbitrary group and generalized 

Shevalley theorem 

Here we attempt to reveal a general mathematical origin 

of equality (4.15). It turns out that the stat~ent like the 

Shevalley theorem (Partasaratby, Ranga Rao and Varadarajan 

1967) makes a basis of equality (4.15) in the general case. 

Consider the model with the Lagrangian 

(5.1) 

Here 1\ = Ot + [ \!, ] ; variables X , \j , ~ +, <\> are ele-

ments of a Lie algebra )( of an arbitrary compact gauge 

group G; , i.e., :x:~Xi.Ai. (analogously for ~ ), ~= 
.1. + . ,\, 1' 

= A~·\f i.. (analogously for q, ), X~}~~ are real, 'f~ 1 ~\. are 
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complex Grassman var'iables, where i\. ~ is an orthonormal 
basis in X : Tr A;.Ai = 8Li, [A;. 'Ad=f .. A f .. " . . 0 0' ' G "A K K J LJ ... are total ant1symmetr1o structural constants and 1,j,k•l,2, •• & 

N=dim X . Lasr&D8ian (5.1) _is invariant under gauge trans­
formations 

where Sl. ~ 5l. (t) E G1 , and we assum~ that V is inva­
riant under (5,2), 

Canonical momenta are 'Jr= 0~~ = 0 , p= ')~:i: =Jt:x:. 
We describe Grassman degrees of freedom as in Seot.4, i.e.,. 
we intr.odu.ce the Dirac brackets (4.4). So, the Hamiltonian 
is 

H"' 1 Trp 2 + V(x,ljl;~) +~<GL • 

where · G;~ ~('Jri.,HJ "'t i.j~ ( pj XI(+ i~j ~~) = 0 are 
the secondary constraints. As one may oheok, they are the 
f1rst-olass constraints. Attar a quantiiation of 

GIL piok out the p~sioal subspace ~f-

Gi. I iir~ > = ":lr'" I <lir• "> = o. 

the theory 

Our iurioso ~' * li i9aUtii~t•~a tgr ~no CTOlutlon 
D»erator kernel 'of phTsioal degrees of freedom. In accordan­
ce with the recipe suggested in Seot.4 it is neoessar;r to 
introduce new curvilinear coordinates in which the constra­
ints (5,4) are diagonalized, then, to write the Hamiltonian 
in '}Cph and to find<'J.I<J.'>~.· At last, ut('l.;~.') ' . may be restored by the method of Seot.2. 
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Determine new vari~bles as follows (Prokhorov and 

Sbabanov 1989) 

i!l -1. 
X=- e 1'\.e 

where h £ ~ is a Cartan subalgebra in X (Helgason 1984) 

l E. X e \-\ . In accordance with (5. 2) ;io are unpb,ysical va­

riables. Note that like (4.9) h.. has a stationary subgroup 

in G\ , the Cartan subgroup, i.e., maximal Abelian sub­

group in G, (He1gason 1984). rle denote h.= k ~ A., 

( o( =1,2, ••• ,1=dim H), z~r.a..Aa.. (a=l+l,1+2, •• .,fl). The 

metric in the new variables has the block-diagonal f?~ 

(Prokhorov and Shabanov 1999 and Shabanov 1989), 3 I..J = 

= ( S.,~, L ( FTwTwF'f't, J, where G)~!&= \.;o<to<a.l& 

F co. = Tr ( l L e l 'do.. e -l) , 'd = Voi! a.. '/ a.. . 

The measure is d::c= detwfdhd< =y2'('n.)F ('?.) dh.d~. 

The measure in a physical configurational space may be cal~ 

culated exp~icitly (Helgason 1984) 
V:t 

f(h.)= n (h,<X)=(~etw), 
<:1>0 

where o/... are positive roots of .X , ( h .I ol} ';:::: h..J d..J> 

To find the Hamiltonian in ~P~' we calculate the con­

straints in new variables. Since 1: a. are translated under 

gauge transformations generated by constraints, 

N-1 constraints G J are linear combinations of ido... 

(compare with (4.IO)). The rem~ining gauge arbitrari~ess is 

connected ~vith the Abelian l-d11llensional Cartar group which 

does not change the physical boson variables kd 1 ~t it 
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changss the fermion variables 'g . So, ether e constraints 
must represent the equalities to zero of generators of Abe­
lian transformations of fermion variables (like (4.I0)), 
~us, equations (5,4) are equivalent to 

where 5 = ~;;; • Note, f~, =0 , hence, [Lo<,LA)='o, ~ ~~ ~L ' " 
i.e., L o(. are generators of the Car tan subgroup. 

In the quantuo Hamiltonian (5.3) rewritten in the form 
(2. 6) for coordioates (5, 5) we carrT do,. and L c<. to the 

right and use (5,7) in ~ph , then we set the quantum Hamil-

tonian in 'd{ ph. • To simplifT calculation~, note that in 
new variables diagonal1z1ng constraints, unphysical variab­

les become OTClic (Dirac 1965), i.e., H rh does not depend 

on them, so, we maJ g~ly keep an eye on terms oonta1n1ng ~ 
and ..,.+, T .:; ~ • We have 

H =-..L o •_rd,. + i L._(c.lw)~,L~ -t V(k.,'~+,!} 
ph 2.f- .. (5,8) 

Here oo( = 'Ohh."' ' Lo..=-i.f._i.~ !,: '!,j 
To find $ and S* , we introduce the Cartan-W'e11 

bas1s in X (Barut and llaozka 1977) 

[e.,., e_J= ll(, [k,Q..l=C«,I.)e .. , 
Le«,e,r1= Ncl.1 e"'•J· 

where <l(,-;, 0 are positive roots in X 
tiC(!' 

(5.9) 

t ece. are corres­

are numbers, !/...y.~O pending root vectors, kJO{ € t4 , 
if r:i. t J> is '· root in X , We define also an operator of 
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the adjoint representation a.d :X:~= [:X:, '31 for all 

X ,'(\1:0 X . Aey element h 1:0 H can be represented as h. 

= \.\.o.~ CU, where W are simple roots of X , hence, the 

set t w) eO(,' e- ot \ gives a basis in X (Cartan-Weyl ba­

sis). However, it is more convenient for us to use the ortho­

gonal oasis in X e 1-l 
(5.IO) 

(the orthogonality is understood with res~ect to the scalar 

product in X : (x,';j)= T..-o.d'lCo.d~ , for compact groups 

one may normalize so that (x,'a) = Tr- X <a in a matrix repre­

sentation (Barut and Raczka 1977)). 

It is well-known that there exists a subgroup of G in 

H called the W·-eyl group W which is a group of reflections 

and rearrangements in the root system. The group \AT is defi­

'ned by combinations of the operators (ZhelobeDko 1970) 

(5.11) 

" :1. e., a.n.r S E: W :is a combl.nation of " s!, or a oombina.tion 

"e 
of S.., ( W are simple roots). We may check 

"<,5 
that 5 w C:.U s" 

•-W , i.e., (5.11) are reflections of all simple 

roots, and they give two equivalent repre·sentations of \J 

in H . In ·ac·cordance with the definition of a.d 'l: and 

(5. 5) we conclu4e that actions of W in f.\ induce trans­

fonnations 1n X)Sf-1 , but the left-hand sides of (5.5) :,ore 

invariant. Hence, transformations (5.11) are generators of 

a searched disor~te group s. Indeed, the change of boson 

variables (5.5) exists if \,.,(; l<~= 1-\\ W (Helgason 
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1984) where ~+ is the Weyl camera (physical configura­

tional ·space (l'rokhorov and Shabanov 1969) ), In other wo~ds, 

S cannot contain generators except (5.11), otherwise H\Sc:.K+ 
that is wrong. Not·e, 5~ and 5:, ooinoide in l-t but. their 

actions ~e different for Grassman ~menta~-

We oall the discrete group defined by (5.11) in spaoe 

H
3 
=X~® H ( ~~Xa , \, e.l-i) tl\e generalized Weyl group 

Wfr• Since boson aD3. fel'ID.ion repr~sentat1ons are identical, 

<' '* "' . ., =W, Certainly, to get a full symmetry group of the 

W .. change of variables we must add to transformations 
:z j!+Cl . 

of i!: inducing shifts e = e 11ke .:IJrn- shifts of&,'!' 

1n (4.9). Using considerations like above-suagested ones for 

the derivation of (4.13) (we d,_enota Nc the number of different 

elements of s•·u~h as S"'j.c(h,Y,T:), N#=~i.n (4.1J)) one may write 

<~l~>p~,= )1-(~iir'"'> L: t-~.{· s(~~ 5*f). (5.12> 

W"=S" 
where 'j..~Hs, 'J..'"X

3
®t<+ and }'(€\,)=C.~)P,..f(h), 

5e: W , Ps·= 0 .. if S .is rearrangement of roots without 

reflections, p
5 

= 1. for S including non-even numbers of 

reflections of roots. E~uality (5,12) means that all physical 

states from ~ph are invariant under the residual discrete 

gauge group "Wii . Moreover, ~he requirelllen~ o£ ~liA IN"-
1nvar1anoe gives automatically solutions of constraints 

(5, 7). in the. Grassman .sector. To prove ths latter statement, 

.. A 1-1 X note that S c S ws = i. in , however, in these opera-
"'· 

tors must be elements exp ad 1\ , ?\ E, H which are equal to 'l. 

in H . On the other. hand, one m&:J: oheok b7. direot oaloula-. 

tiona in baSis (5.9) that operators (5.11) are reflections 

with re~rangement• in the real basis ofXe H c i.e"', s" >, 
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ol >0 (Zhelobenko 1970). Then exp ad A. are also combina­

tions of rearrangements and reflections. Using this we can 

find explicit forms of ]t . Indeed, exp (adA.) L S"' is only 

:!:~S .. or ±co( as it follows from (5.9) and A€\-\ So,J\. 

can take values i..'Jro( (oi:Jol)-~ c1. rUllS over all pos:t.tive roots, 

W* A -l 

i.~.. contains the operators so(~ e~p i.ll(ol,oi) ad ol.. 

Further, transformations from the Cartan subgroup expod] (1€~) 

generated by l"' in (5, 7) 1n basis (5, IO) ( '5 = S.., W + 

-c -
+ '5 Co( + '5 5 5 ) are rotations of two-dime.nsional 

o( ol. o( -c - , 

Grassman vectors ( ~ ~ 5 ) through the angle ( J J ol ) 
.:;. ol ) ~0( 

for every d..> 0 • Invariants of these rotations are ~ c:. ~s 
-"\ A 

oio( 

(d... is fixed), but So~ Co~ =-Col., s~c:;« =- S"" , hence, 

-c -
* ~ 

"'l: 'l: S are also invariant under W i.e., "'W -invariant 

~~ ~~ 
' 

functions give solutions of (5.7) in the Grassman sector. 

Using the technique of Sect.2, we Xestore the form of 

ut'C'\-,'\-') for Hamiltonian (>.e) and kernel (5.12), It has 

the form (2.Jl) where 

Q ( <j.,(j:.') = .L, N;~ 'ii' l <!-, s ... Cj;.'), C5.D) 

-w-·:s~ 

Het> i '1. ~( - ~ 1 L r T ~-t L V. 
= T p"' + V h, !.,'!.J +I" o.I..WWJ o.e t + "r 

' - - -t. 

and J...o.=~Lto.i.j ~c~j 'v,._~-3c'3~tacKtenK~'lw)o.e. 

The constz\ucted kern:l ut turns out to be invar'iant under 

W* like (4.15) ( Q symmetrizes it 1n W* ), If ferm1ons 

are absent, W~ W . In this 

(Zblobenko 197J) gives: every 

being imrariant under W has 

invariant continuation to J( 

case the .Shevalley theorem 

analytical function in t\ 
the unique analytical gauge-

S urh(' \,')=U ph('X oc'' 
• o, t n, t > J. 

E:camples of the construction of gauge-invariant wave funct­

ions we:re given in (Shabz.nov 1989) and gauge-invariant 
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foms of 1/I 1n total (i.e,, inclUding also unph,ysical 

degrQ~s of freedom) oonf1gurat1on4l and phase spaces were 

presented in (Shabanov 1989, preprints JINR), 

For the present system there is an analogous statement, 

we call the generalized Shevalley theorem: every analytical 

function in H 3 being invariant under W* has the unique 

anal:rtioal gauge-inv~1a':! oonunuation to X ® X a 
( QEX®X3 if xeX, <\'E."){~), Consider an oscillator in 

(5,J) V(h., ~~ ~) = i/2.Tr h2 -+Tr'5-t~- /11/;.. 
Its wave functions are 0 ( 'j..) eX p (- ih Tr h 2 J, \Vhere 

IE .,. H pE (<y) are pol:vnoll!ials invariant under W . >ince ph 

is Hermitian, pE (G,.) fom a basis in t~e spaoe of all W*­
invariant pol;vnomials in H 3 , On the other hand, •:to ma;v sol­

ve the quantum problem in the total Hilbert space, i.e., in 

the space of funoti ons' in X® XS . Then, eigent'unotions of 

the oscillator are PE(Q) exp (:-i/2 Tr :x::«) • moreoxer, 

'de r~ is formed by gauge'-im-ariant pol;vnomials from PECQ) 
which give a basis in the space of all gauge-invariant 

polynomials (the total Hamiltonian is also Hermitian). Beca­

use \{ is gauge-invariant, we may write in coordinates 

(5.5) PE(Q)= L P;(Cj..) YJ~). where Y..,. (o,) are 

"' eigenfunctions of the Laplace-Beltrami operator on a gauge 

group orbit formed by values of i: when \, is fixed. 

Cl~rl;r, Pe( '\-)= P: ('I) ( Y0 •const). Then, in ~fh P(Q('j.)),; 
" P E ( '\.-) = p: ( ~) = p E ( 'j.) oegause of the gauge invarian­

oe, i.e., between polynomials P E and pE there exi!ts a 

one-to-one correspondence, hence, 1t exists betweeil P£ (Q) 
E 'df. rh and ~ ( '\.) • 0ince polynomials form a 

.E 
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dense set in the space of analytical functions, we arrive 

of the statement of the generalized Sbevaley theorem. ThUs, 

formula (4.15) takes place in the general case. 

Note a simple consequence. Every polynomial in )C~ 

being 1nvariallt under w~ is gauge-invariant, i.e.' a gauge 

symmetry in a pure fermion sector of a theory is equivalent 

to the discrete symmetry with respect to the generalized 

Weyl group W*" 
6. Conclusion 

Thus, we have seen th2t the main points o! PI deriva­

tion corresponding uniquely to the Dirac quantization scheme 

(i.e., to an explicit gauge- invariant description) are the 

curvi),.inea.r cha:racterof physical variables and reduction of 

both physical configuration and phase spaces. T.he latter, as 

it. has been shown, is connected with the invariance of PI 

under residual discrete gauge transformations (the operator 
A fh 
Q in the ex:pression of U t ), and this guarantees an 

explicit gauge-invariance of PI (the generalized Shevalley 

theorem). 

The recipe may be generali~ed to any theory wi~h the 

first-class constraints (i.e., to any gauge theory). Let in­

dependent constraints be 'J>a.. which generate gauge tra.IJ.sfor­

mation (Pyatov and Razumov 1989). The structure of gauge 

groups orbits in. the total configurational space is not al­

ways known, therefore :physical variables are picked out with 

the hel:p of supplementary conditions Jo.. (x J-; 01 • To get 

the correspondence to the Di~ac scheme, one bas to do as 

follows. Let the gauge transformation law be X....,.. ·'tt X. 

~""""'>Tv..~ , where U f G , G. is a gauge group, Tu... is 
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a representation of ~ • Then after quantization we change 

variables in a quantum lla.miltonian (:x:,<J.) ..... (6,\L'E.) • 
where X= U(9)'<\ , ~ "'Tu.(9):S, and '<\ satisfies supple­

mentary oondi tiona 1a. ( ~) =. 0 • In this case constraints 

'fa.. become' linear combinations of derivatives 'o/leo.. 
s1noe ea. shift w::lder gauge transformations, i.e., Go.. 

are unphysical variables. Further, one should define a quan­

tum Bamiltonian 1n the physical subSpace, i.e., in the 

spaoe of ana~ytical functions of 'd 1 and find a unit ope­

rator kernel in the physical subspace of states, i.e., de­

termine the measure (Jacobian) and the group ~~ (the group 

S may be found from conditions .:J._ (5 'cl) = 0 
1 

S 6 G; , 

" where S are all residual discrete gauge transformations 

keeping oo:od i tio ns 'J.o. = 0 Vph 
). At last, -1: can be restored 

in acoordanoe with the above-suggested recipe. The effect1ve­

....aot1on form and $ * depend on the :J.o.. form. However, chan­

ging jo.. by :f.: is equivalent to a passage to other curvi­

linear coordinates in quantum theory unbreaking the diago­

nality of quantUJD constraints (::X:= 'l.ll:l ='U'-a' ,1;('(!'):0 
and If._"' )ia "' '9149 1 

), henoe it is a passage to a new 
0.. ... . J 

basis in ~P~ , so; the change of o.. does not influence 

u: ph 
the form of the function t whioh depends only on gauge-

-i!I'I'ariant ~uantities (see (4.15)~. Change of .:Jo., is the 

change in form of an entry of gauge-invariant quantities 

(compare (4.16) with (4.17), in this case J._ = 0 are 

.:X:.:~.=:X::3"o). 

Needless to say, quantum theories determined by the 

elimination of unphysical variables With subsequent 

quantization and in accordance vti th the Di::oao scheme a::oe 
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free from internal· contradictions whereas they can be different. 

Therefore we may consider them as two quantum versions of 

one classical theory. However, note that. in the case of a 

quantum gauge field theory we should observe an explici~ 

Lorentz invarianoe in choosing physical variables. The lat-

ter is knovtn to require the introduction o~ unphysical vari­

ables to a theory (Dirac 1967). OtherwiSe, we cannot imp·ose 

suppleme~tary conditions on operators since contraditions 

with commuting relations ap11ear (Dirac 1965, 1967). Therefore 

the Dirac scheme turns out to be more preferable for formula­

tion of a theory in the total Hilbert space as being free 

from these contradictions. Thus, PI should be defined 

according to the Dirac quantization scheme. 
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