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1. Introduction 

The three-quark structure of baryons seems to be most available in the 
unitary classification of hadrons [1]. However, the three-body problem 
is very difficult and can be solved only under some simplifications (for 
example, in nonrelativistic quark models with the simplest potential [2] 
and bags [3]). But, there is a possibility to reduce the three-body problem 
to the two-body one. It is sufficient to suggest that one of the con.stituent 
particles of a baryon can be regarded as a quark and the other as a tightly 
bound state of two quarks, a diquark. 

In the original work [1] on the quark model of mesons and baryons 
Gell- Mann discussed the possibility of existence of free diquarks. Later, 
the quark-diquark model of baryons was suggested by Ida. and Kobayashi 
[4] and independently by Lichtenberg and Tassie [5]. The supersymmet­
ric generalization of the quark-diquark model has been performed by 
Catto and Gursey in [6]. It founded on a suggestion that the chromo­
magnetic fields between the quarks and diquarks were the same in the 
excited mesons and baryons. In the papers [7,8], the diquark approach 
was applied to describe exotic and charm me•ons. Chan and Hogassen 
[9] treated dibaryon and multibaryon states using diquarks and larger 
quark clusters. Cahill and collaborators [10] have suggested the QCD­
hadronization which ..:lows appearance of diquark variables. The concept 
of diquarks was also useful in treating deep inelastic scattering [11]. 

Thus, the qua.rk-diquark model is a quite suitable approximation of 
the three- quark structure of baryons. Despite this fact, little has been 
done along the line of actual quantitative calculations of baryon char­
acteristics in a dynamical quark-diquark model. Mainly, all calculations 
were directed for getting the static characteristics of baryons: masses, 
magnetic moments, etc. [12,13]. 

More sophisticated characteristics of baryons are form factors and 
phase scattering which are defined by their inner structure. One should 
know the hadronization mechanism and quark behaviour at large dis­
tances for the description of these values. 

We have developed [14]-[17] the quark confinement model (QCM) 
based on the definite represent&tions about the hadronization and quark 
confinement. First, ha.drons are treated as collective colourless excita­
tions of quark-gluon interactions, Second, the quark confinement i• re-
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alized as averaging over the vacuum gluon backgrounds. Strong, weak and electromagnetic hadron interactions can be described in the QCM from a unique point of view. The preliminary calculations [14]-[17] of the meson and baryon processes have shown that the model reproduces the quark structure of hadrons quite accurately. The hadron inner structure in the QCM is defined by the quark behaviour at large distances. We have considered [15] a nucleon and a d-isobar composed of three quarks and calculated the electromagnetic and strong meson-baryon form factors. The results were in agreement with experiment and other ap­proaches. 
At the same time, the consideration of baryons as three-quark systems encounters some difficulties caused by the nature of two-loop diagrams defining the baryon form factors. These diagrams are the convolution of the entire functions [14]-[16] which leads to the growth of physical matrix elements at high energies. The special assumptions were used to avoid this problem. It has been remarked that the S-matrix can be constructed without the above-mentioned difficulties when there are only three lines at the vertex of the interaction Lagrangian (for example, meson+quark+ a.ntiquark). Therefore, the hypothesis arised to describing a baryon as a quark-diquark system. In this ca.se, we have only three lines of the vertex of the interaction Lagrangian (baryon+quark+antiquark). 
In this paper, we consider the possibility of quark-diquark approxi­mation of the three-quark structure of baryons in the framework of the QCM. The idea of such an approximation is ba.sed on the following physi­cal picture. We start with the three-quark structure of octet and decuplet of baryons. The SU (3 )-quark currents with baryon quantum numbers are symmetric with respect to the permutation of quark fields. Here, only one quark effectively takes part in an interaction of baryons with other fields a.s mesons, leptons, photons. Therefore, the other two quarks can be considered a.s a hard cluster, a diquark. Thus, a baryon ca.n be rep­resented a.s a composition of two particles, quark and diquark. Further, this representation will be called the quark-diquark approximation of the three-quark structure of baryons. 
In this paper, we will use this approximation for description of the main low-energy characteristics of baryons a.s magnetic moments, elec­tromagnetic radii and form factors, ratios of axial and vector costa.nts in semi!eptonic baryon decays, strong form factors and decay widths. 
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Earlier [17], the NN-scattering phase shifts were calculated using the 
strong meson-nucleon form factors obtained in this approach. 

Our results a.re in agreement with experimental data and other ap­
proaches. Thus, a quark-diqua.rk approximation of the three-quark struc­
ture of baryons is available for taking into account an inner structure of 
baryons at low energies. 

The paper is organized in the following way. Jn Sec.2 the main notions 
of the QCM are given. In Sec.3 a set of hadron quark currents, used in the 
calculations of physical matrix elements is deduced. The connection of 
the QCM with other approaches is illustrated. In Sec.4 a qua.rk-diquark 
approximation of the three-quark structure of baryons is given in detail. 
In Sec.5 the numerical results for the main baryon properties are deduced 
and the comparison with the experimental data and other approaches 
are performed. The further investigations are discussed. In Appendix 
the technique of calculating one-loop quark and quark-diquark diagr~s 
in the QCM is given. 

2. The Basic Notions of the QCM 

The first assumption of the QCM is related with some notion about 
hadronization. It is assumed that hadron fields arise after integro.tion 
over gluon and quark variables in the QCD generating functional [18,19]. 
Let us demonstrate this transition. The generating functional can be 
written in the form 

Zqcv = j 5q j 8q j 8B5[8B]I'..L[B]ezp{iS[B]} (1) 

where t.L(B] is the Faddeev-Popov determinant fixing the Lorentz 
gauge, 

S[B] = j dzLqcv(z ), 1 2 - -Lqcv = - 2 tr F~v + q( i8 + B)q, 8g 
F~ = 8~Bv- 8vB~ + [Bv, B~J, B~ = B;t• tr(t"t~) = 2o"b. 

(2) 

Here, t•(a = 1, ... , N;- 1) are the SU(N)-generators, B: and q Bie the 
gluon and quark fields, respectively. The Lagrangian (2) is invariant 
under transformations 
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B~---> B~ = wB~w-1 + 8~ww- 1 , q---> qw = wq . 
We suggest that nontrivial gluon vacuum backgrounds should provide the confinement of all colour objects. According to this representation we divide the gluonic fields into vacuum backgrounds B~.~(z,u,..c) char· acterized by a set of parameters { O",..c} and quantum :f!uctations b~( z ). A similar decomposition was performed in the work [20]. The gluonic field B~( z) is represented in the form 

B~(z) = (B~voc(z,u,..c) + b~(z))w(•). 
The field b~ is chosen to be in the Lorentz gauge in the background field 

D~(B,..c)b~ = 0 , 
where D~(B) is the covariant derivative. The unity is inserted into the generating functional in the standard manner: 

1 = ()[B] j 6b j ow j du,..co[B- (B,..c + bt]o[D~(B._c)b~J 
Here, the gauge invariant functional ()[B] = ()[Bw] is defined by the given equality. 

Performing simple transformations one can obtain 

Zqcv = j 6q j 6ij j du •• cW[J]ezp{i j dzq(iB + B,...)q}, (3) 

W[J] = f 6b6[D~(B,..c)b~]<)[B._c + b] * (4) 

• ezp{ 8~2 j d;z:trF,!,[B_ + b] + i j dzb:J;} , 

where J~ = fj"y~t•q is colour quark current. Recalling the definition of the full gluon Green function in the background field 

a······· ( IB ) - 6"/nW[J] l-It···~ ZlJ ... , Zn vac - CJo> ( ) <J••( ) o J.'t Zt ... u /J.ft. Zn 
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we have 

W[J] 
(5) 

Inserting (5) into (3) one ca.n obta.in 

Ln = ~! J dz, ... J dznY,.::(z,) ... J;;:(zn)G~:::::':.(zt, ... ,zn!B..,,), 
It is to be remarked that the representation (6) is completely equiv­alent to the initial one (1 ). For further advancement, the vacuum back­grounds B.,, and the full connected gluon Green functions G~~(z!B •• ,) should be specified. 
Let us consider the term L2 in (6) from which the mesonic fields can be extracted. Emergence of mesons is defined by the behaviour of tne two-point gluon Green function G~~~~(zt, z21Bvac)· We suggest that 

G~~:~(zt, z,IB •• ,) = ig~,~,6(z 1 - z 2)G0 d0
'a•. (7) 

This suggestion underlies both the Nambu and Jona-Lasiuio model [18] and similar approaches [19,21]. Using (7) in L2 , we have 

L, =~Go L J dz(J;(z)) 2
• 

• 
(8) 

Perfoming the Firtz tra.nsformations in (8) a.nd keeping only the lead­ing 1/ N,-term, one can obta.in 

Here, 

r J ~··~· J = , ' , 1f J "'{ "'Y 
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J = S, V,P,A.. 



cp = cs =Go, tip =lis= -liv = -liA = 1, 

>.1 a.re the Gell-Ma.nn matrices of the flavour SU(3)-group. Further, 
let us use .the represention 

ezp{±~ j dzJ'} = j liMezp{'f~ j dzM' + i j dzJM}. 

Inserting this one into (6) and taking into account only the term L 2 we 
have 

where 

Z~bv = j liq j liq j dcr••c j fi liMJt 
Jf 

•ezp{ -~I:; OJ j dzMJ1 + i j dzq(iB + B_ + M)q}, 
2 Jf 

M(z) = I:;JCJMJt(z)rJ>.1 . 
Jf 

(10) 

After integrating over the quark fields one can obtain 

Here 

Z~bv = /IloMJt/d<r .. cezp{-~ I:;jdzliJMJAz)- (11) 
Jf 2 Jf 

~ :< j dz, ... j dzntr[M(z1)S(z, z2IB-) ... 

. ... M(zn)S(zn, z,IB-)]}. 

S(z,, z,IB •• c) = i(iB + iJ •• ct'li(z,- z,). 

Our next assumption consists in that expression (11) can be written 
in the form 
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Z (2) 
QGD JIJ6MJtezp{-.!_ L/dz6JMJ1(z)- (12) 

Jf 2 Jf 

~ :' j dz1 ••. j dzn j du •• ,tr[M(z1)S(z,z>IB •• ,) ... 

* M(zn)S(zn, z,IB .. ,)]}. 

It is denoted that a.l1 the quark loops at low energies can be connected 
by the hadron fields but not the gluon vacuum ones. 

Further, let use give off the terms diagonalized over meson variables 
MJ from the expression in the sum in (12) (here the flavour indices are 
omitted): 

~ j j dz,dz2 ~.5JMJ(z 1 )[.5(z 1 - z 2 ) + 

+ ~~~~IIJ(z1 - z 2 )]MJ(:z:2 ) = 

~ ~ 6J j dpMj(p)[1 + ~~ffrJ(P2 )]MJ(P), (13) 

where 

frJ(P2
) = j du'""'ITJ( z) . (14) 

Further, we represent the operator frJ(p2
) in the form 

and require the performance of the condition 

(15) 
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In fact, equation (15) gives the connection of the meson mass spectra 
with the parameters characterizing the behaviour of the full gluon Green 
function at large distances (7) and confinement properties. 

Taking into account (15) we pass to the following normalization in 
(14) 

We have 

where 

M M [- N,CJ IT' ( 2 )]-1/2 J ___, J (2,.)2 J mJ . 

zg);D = In 6MJezp{ ~I dz L 6JMJ,(D - m~ )MJt- (16) 
J 2 Jl 

-I;~ i~ J dz1 ... J dzn J du,.,N,tr[M(zl)S(zbz2[B,..,) ... 

... M( Zn)S( Zm z1[B."')]}' 

M(z) = L;MJt(z)fJ.\'[-(N,)2 fi~1(m~1)t112 . 
Jf 211' 

The prime in the sum (16) implies the use of II"n in the quadratic term 
over MJ. The representation (16) does not contain the value G0 which 
defines the behaviour of the gluon Green function near the point p2 = 
0. The generating functional (16) defining the meson-meson interaction 
by means of the quark loops underlies our model. However, it is more 
convenient for calculations to use another functional which is completely 
equivalent to (16). Let us show that the functional (16) can be written 
in the form 

zgtv = /fi 6MJezp{~ L;6JfdzMJ(z)(D -m~)MJ(z)} (17) 
J 2 J 

* J du,., J 6q J 6qezp{i J dzq(z)(iiJ + B_)q(z) + 

+iL;goJ J dzMJ(z)q(z)fJq(z)} 
J 

8 



if the wave function renormalization constant of meson MJ is equal to 
zero. 

Indeed, let us integrate over the quark fields in ( 17) using the same 
assumptions about the measure duvac: 

Here 

M(") = L9oJMJ(:r)rJ. 
J 

One can give off the quadratic term over MJ in an analogous way 

'j - 2 2 - 2 -2 dpMj(p)[p - moJ- hoJITJ(P )]MJ(P) = 

~ j dpiMJ(P)I 2{(p2
- m~)Z.i1 - hoJIT~""(p2 )}, 

where 

Z.i1 
= 1- hoJITj(m~). 

Performing in (18) the replacement MJ -t zY' MJ and introducing the 
renormalized constant hJ = ZJhoJ, we get the functional (16) if 

hoJ 
hJ = ZJhoJ = -

. 1-hoJIIJ(m}) 
1 

[-fi:,(m})] 
This equality can be true if hoJ-+ oo, that is 

(19) 
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It is the so-called compositeness condition in quantum field theory [22]. 
Thus, the representation (17) with the condition (19) is completely 

equivalent to (16) and will underlie our model. 
The hadrons can be constructed in the same manner. These states 

should arise from the terms Ln for n > 2 in (6). As in the case L 2 , the 
gluon Green function ai:~(:z:IB-,) is supposed to be analytical at point 
p = 0. The product of colourless n-quark states, which can be identified 
with the corresponding hadrons, is given off the Ln by using the Firtz 
transformations. But, this way is very difficult. Therefore, we will use 
equivalence of the representations (16) and (17) with auxiliary condition 
(19). We will start from the hadron spectrum with the given masses 
and quantum numbers. Then, the hadron-quark interaction Lagranqian 
LH(:z:) will be constructed by using the quar:. composition of hadrons: 

LH(:z:) = 9HH(:z:)JH(z), (20) 

where J H( z) is the quark current with the quantum numbers of H. 
It is more convenient in practice to use the S-matrix instead of the 

generating functional (17): 

(21) 

The time-order product in (21) is the Wick standard T-product for the 
hadron and quark fields. The quark propagator has the following form: 

All hadron interactions will be described by the quark diagrams in­
duced by S-matrix (21) averaged over vacuum backgrounds. The coupling 
constant 9H is determined from the compositeness condition (19). 

The following basic assumptions of the QCM are about quark con­
finement. It is proposed that the averaging over vacuum background 
fields B_ of the quark diagrams generated by the S-matrix (21) should 
provide the quark confinement and make the ultraviolet finite theory. 

The confinement ansatz in the case of one-loop diagrams describing 
the meson-meson interactions consists in the following: 
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j do-,.,,tr[ M( :z:,)S( "''"'21Bv.,) ... M( z.)S( "'•"'t!Bv.,)] -+ 
-+ J duvtr[M(:r,)Sv(Zt- :z:2) ... M(:rn)Sv(Zn- :r,)]. (23) 

Here 

S ( _ ) _ J ~ -ip(z,-z,) 1 v "'' "'2 - (2 )'. e A , 1rl Vq-p The parameter A. characterizes the confinement range. The measure duv is defined as 

J do-v = G(z) =a( -z2
) + zb( -z2

) • v-z (24) 
The function G(z) called the confinement function is an entire analyti­cal function which decreases faster than any degree of z in an Euclidean direction z2 -+ -oo. G(z) is a universal function, i.e., is dependent on colour and flavour. In other words, the function G(z) is unique for all quark diagrams defining the hadron interaction at low energies. The choice of G(z) is one of the model assumptions. However, as calcula­tions have showed, only integral characteristics of the function G( z) are important for the description of low-energy physics [14,16]. The simplest sha;>es of a(u) and b(u) were used: 

a(u) = a0 exp( -u2
- 2a1u) b( u) = b0 e:z:p( -u 2 + 2b1u) . {25) 

The parameters {a;, b;} and the dimensional one Aq were defined by fit­ting over well-established experimental data [23]. It was found that the best description of the experimental data was achieved for a 0 = bo = 2, a1 = 0.5, b1 = 0.2 and A• = 460 Mev. 

3. The Quark Structure of Hadrons in the QCM 
Let us adduce the interaction Lagrangians for the mesons as two' quark systems and the baryons as three-quark ones. 1. Mesons: 
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Here M; is the Euclidean fields connected with the physical ones in 
a standard manner [23]; >., (i=1, ... ,8) are the Gell-Mann matrices (>.o = 
.,fij3I); rM are the Dirac matrices: 

i""Y" for pseudoscalar mesons P( 7r, K, 11,11'); 
-r'"' for vector mesons V(p,K*,w,tj>); 
""'!~""'!• for axial mesons A(a1,K1 ,/,); 

I- iHsB / A• for scalar mesons S( a0 , Ko, / 0 , e). The necessity of intro­
ducing the auxiliary term with a derivative to the scalar quark current 
was established in detail in [16]. 

Mixing octet-singlet angles are defined as 

uu+ dd . 
(•/',w,e)-+ cos or( Y'I ) - (os)smor 

. uu+dd (17,.,.,/0)-+ -smor( "V2 ) - (ss)cosor 

6"r = 9r - 9rr; 91r = 35' is the ideal mixing angle. The mixing angles of 
pseudoscalar and vector mesons are chosen to be equal to op = 46' and 
ov = 0', respectively. The scalar meson parameters os, Hs and m, are 
supposed to be free. 

2. Baryons: 
The three-quark currents with baryon quantum numbers must be 

symmetrical with respect to permutation of all quarks. There exist two 
independent three-quark currents for a baryon octet ~ +. Therefore, the 
interaction Lagrangians can be written in the form: 

LB = LBT + LBv, (27) 
Lsi= 9BiiJJBI + h.c. = igBifJjR~j;j1 ,h,j,qj11 q'J:qj;e0102"3 + h.c. 

Here, I = T, V; j = (a, m ); ai, ai, mi are the colour, spin, flavour indices, 
respectively. 

is the octet baryon matrix. 

qj=(~) is a set of quark fields. 
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k . ... 
The matrices R/;"'' 33 can be written in the following forms: 

elrm2n { 69a01t5"'mt ( C··l)a2013 fi"'ml + 
+ B( -l)OIOit ommt COI'JOilsnml _ 

!( ,.~v ·lta' O"'m' (C u"")a'a' 8"m' + 3 
+ ( aPv ---/)01011 A~-m1 ( Cu~-Wyx2a3 A 7m3}, 

(28) 

_nkJ·itJ'J,jl = Elcm'Jn{2g0101ttFmt(G·~/)0120ilsnml _ (29) 
2( /6 y:a:Oit smmt c;a'JOil snml -

("Y~ta' O"'m' ( cl'~l''t'a' onm, -
!(1'~1'5ta'O"'m'(C1'~r'a'8"m' + 3 

+ ( ip."'Y5t01t .\~mt ( c,JJ.yw:'JOil .\~ml }. 

There is the only interaction Lagrangian for the baryon decuplet: 

where 

D 113 = -
1
-E•+ 

v'3 ' 

D 133 - _1_';;'•0 - ,13~ ' ns33 = n-. 

(30) 

The field D~( z) satisfies the Ranta-Schwinger equation with the auxiliary 
conditions: 
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One has to note that these baryon quark currents coincide with those 
that have been used in the QCD sum rule calculations [25] if they are 
written in the isotopic components. 

The electroweak interactions are introduced in a standard manner: 

L A Q ~ L - GFz - J ~( •) em = e #Jqe& I qa, weak - J2 JJqa 1 1 - / qa (31) 

where A~ is an electromagnetic field and I~ is a lepton current. 
Q = diag{2/3, -1/3, -1/3} is the charge quark matrix; 

1= ·( co~Oc ~ ~) 
sin8c 0 0 

is the Cabbibo matrix. 

The coupling constants 9H(H = M, B, D) are determined from the 
compositeness condition ZH = 1 + 3gJ./(411'2)fi;,.(mH) = 0, where fi;,. 
is the derivative of the hadron mass operator defined by the diagrams, 
Fig.1a, for mesons ar.d, Fig.1b, for baryons. 

k.p 
p r1 p 

H H 

k 

a) 
k 

k 
p 

~ p r,c / p 
w : 

B r· r' B B B 
I k' l p-k 

b) c ) 

1. Mass operators: 
a) two-quark diagram, 
b) three-quark diagram, 
c) quark-diquark diagram. 
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The interaction Lagrangians (26), (27), (30) and (31) allow one to 
describe hadron interactions from the unique point of view. One has to 
emphasize that both the static hadron characteristics as decay widths, 
magnetic moments etc., and the momentum dependences of physical ma­
trix elements as form factors, phase shifts etc., can be obtained in the 
QCM. 

As has been mentioned above, the confinement function G(z) and di­
mensional parameter A (see, (25)) are free model parameters which have 
been defined by fitting the well-established experimental data (see, Table 
1). One can see there is good agreement with experimental data. It is 
interesting to consider the limits of zero masses the limits for the values 
shown in Table 1. One can see that in this case the well-known low-energy 
relations as the Goldberger-Treima.n relation, the p-universality hypothe­
sis, the relations between g"'f..,.., and f'lt:, 9r-r..., and g,.nr; are reproduced with 
an accuracy of 4-5 Yo. 

Table 1 
The main low-energy values 

Process Observable QCM 
value F't Zero masses Expt. [23] 

7r --+ J.lV f~, 3.53A./(4,.) = 
Mev 132 129 132 

p --+I g,., 1.07 /(211") = 
0.18 0.17 0.20 

.,.o --+ "Y"f g1f"Y"'f1 o.96v2/( 4,.' 1. J = 
I Gev- 1 0.260 0.266 0.276 
I w ..... ""'Y 9r..nr-.,, 2.8211"g~n = 

Gev- 1 2.10 2.36 2.54 
p --+ 1r'f!'" g,.~ 6.0 1/ 9n = 5.9 6.1 

The auxiliary free parameters H8 , 88 and <-meson mass m, charac­
terizing scalar mesons in our approach were defined by fitting the experi­
mental data on the 11"11"- and 1r-y-scattering and scalar meson decay widths 
[16]. It was found that Hs = 0.55, 88 = 17° and m, = 600 Mev. 
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In this paper, we will use the same parameters for describing baryon 
physics. 

4. Quark-Diquark Approximation of the Three-Quark 
Structure of the Octet and Decuplet of Baryons 

The idea of the quark-diquark approximation of the three-quark struc­
ture of baryons is based on the symmetry of the SU(3)-baryon quark 
currents with respect to the permutation of all quark fields. Effectively, 
only one quark interacts with other fields due to this symmetry and the 
other two quarks can be considered .as a hard core, a diquark. 

This picture is realized in the following way by using the Feynman 
diagram langauge. The subdiagram corresponding to the independent 
quark loop 

(32) 

is given off the diagrams Fig.lb and Fig.2a describing mass operators and 
baryon vertices, respectively, due to such symmetry. Our main assump­
tion consists in that the diagrams in Fig.lb and Fig.2a can be changed to 

111 .t.e tM .t, t 
:q:p-p' 
I 

k-q ~r k p' r, r2 p' r,CP-:::S~ p p 

B ; B B B • k' 

a\ bl 

2. Baryon vertex: 
a) three-quark diagram, 
b) quark-diquark diagram. 
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the one-loop quark-diquark diagrams in Fig.lc and Fig.2b, respectively, 
according to the rule 

j ~'~ j du.r1 S.(k)r,II~'r'(p- k) ~ (33) 

~ j ~:~ j du.r1 S.(k)r,D~'r'(p- k), 

where v;•r'(p) is considered to be a propagator of a diquark in the 
vacuum background fields: 

arlr2 vr· r, (k) - -::-:-.....---::-;; 
" - 2A2 k2 V D-

(34) 

Here the additional parameter An characterizes the diquark confinement 
region. The parameters dr1 r2 a.:re chosen in the forms convenient' for 
calculations: 

dAA - c nJ'V 
- AA~ ' 

aVT = -r = CvT(ikagl'il- ik{Jgf'a) , 

where Cr,r, are numerical coefficients. One has to remark, this quark­
diquark approximation can be used for the description of both octet 
and decuplet of baryons. The general requirement to this approximation 
consists in that it should not break the Ward identity between the baryon 
electromagnetic vertex A..,BB and mass operator ~B(p): 
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This requirement with taking into account the compositeness condition 
. ZB = 0 gives us the following identity in the case of baryon octet: 

9~TFTT(P) + 9BV9BTFvT(P) + 9~vFvv(P) = 0 (35) 
for any momentum p. This means that the following conditions should 
be performed simultaneously: 

f d
4
k f FvT ,.•; du,[24S,(k)D!'P(p- k)- 24·f' S,(k)J' D;5 (p- k) 

+ BS.(kh~ n~:(P- k)- s1• s.(k)D~~(P- k) + 
+ 3u"~-r'S.(k)J"-r'D~~~ .• (p--k)-

3-r~-r• S.(k)u"~-r' D~~.a~(p- k)] = 0, 

Fvv j !:~ j du.[4S,(k )D!'P(p- k) + 4-r' S.(k)J' n;5 (p- k) + 
+ 2S,(k h" D~~(p- k)- 2-r~ S,(k)D~~(p- k)­

-r"S.(k)J"D~!,(p- k) + 
+ 3-r"-r' s.(kh"-r' n~;:,(p- k)] = o. 

It turns out that there are no solutions for arbitrary 9BT and 9BV 
because the identity FvT = 0 cannot be satisfied by any choice of Cr,r,. 
In particular cases, when either 9BT # 0 and 9Bv = 0 or 9BT = 0 and 
9BV # 0, the parameters Cr,r, are defined uuiquely 

\ 

1, 
1/3, 

Cr,r, = 2, 

o, 

r, = r, = S,P,A, 
r, = r, = v, 
r, = r, = T, 
r, = A,r, = P. 

18 



In other words, the quark-diquark approximation of the three-quark 
structure of baryon octet can be performed for tensor and vector three­
quark currents, independently. The preliminary consideration of a nu­
cleon physics in the framework of this approach [17] has shown that the 
tensor current is more preferable from the point of view of the best de­
scription of experimental data. Therefore, we will use only the tensor 
current in this work. 

The Ward identity does not impose any restrictions on Cr,r, in the 
case of the baryon octet. Thus, we have only two free parameters An 
and CvT· Their numerical values were defined by fitting experimental 
data and turned out to be equal to 

An= 827.7Mev, 
3 

CvT=-
4 

5. Basic Properties of Baryons in the QCM 

Let us discuss the numerical results obtained in our approach for the 
basic baryon characteristics. We have calculated magnetic moments of 
the bary~n octet and of D-> B +1-transition, electromagnetic radii and 
form factors of a nucleon, the ratio of the axial and vector constants in 
the nonleptonic decays of a baryon octet, strong meson-nucleon constants 
and decay widths of a baryon decuplet. 

Electromagnetic baryon characteristics a& magnetic moments, radii 
and form factors are defined by the triangle diagram, Fig.2b, and reso­
nance one, Fig.3, taking into account intermediate vector mesons V = 
p,w. 

The matrix element corresponding to the process B -> B + 1 on the 
baryon mass shell is written in the form 

M(B--> B +1) eA"[Fo(mB, q')tr{ B1"[Q, B]}­

-'-F,(mB, q')tr{ Ba""qv[Q, B]}-2mB 

-'-F,(mB,q')tr{Ba""qv{Q,B}]}, 2mB 
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p' 

B B 

3. Electromagnetic vertex with p and w resonances. 

0 0.5 1 

4. Nucleon electomagnetic form factors. 
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where u"" = HY'1" -7"7~], [Q, BJ = QB- BQ, {Q,B} = QB + BQ. Here, F0 ( mB, q2) is electic form factor of the baryon octet normalized to unity Fo(mB,O) = 1. F1(mB,q2
) and F,(mB,q2

) are magnetic form factors. In the QCM the form factors F;(mB, q'), i=1,2 at the point i = 0 are represented as 

where 
1 

f a(1- a)a(wB) ~o(mB)= 
0 

da1+a((An/A
9

) 2 -1)' 

1 
~ ( )=jd (1-a)(2/3-a)a(wB) 1 mB 

0 
° 1 + a((An/A

9 ) 2 -1) ' 

1 + a((An/A9 ) 2 -1) 
The magnetic moments of a baryon octet are expressed through F1 and F2 in a standard manner: 

Jlj = 

1 + F1(mi, 0) + ~F,(mi, 0), 
-~F2(m;,O), 
--1 - F1(mi, 0) + ~F2(mi, 0), 
~F2 (mi,O), 
-~F2(m;,O), 

j =p,E+ 
j = n, =.o 
j = E-, ::;­
j = E" 
j =A" 

The magnetic moment of the transition E0 ~ A 0 + 1 is written as 

where 
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a(1- a)(,Bm~, + (1- ,B)m~,) 
WE'A' =- 1 + a((AvfAq)'- 1) . 

One has to remark that the magnetic moments of a baryon octet satisfy 
the SU(6)-relations when the baryon masses are equal to one another: 

2 
J.Ln = JLEo = -3/Lp, 

1 
/LE- = JLs- = JLA' = -3 JLp, 

The nucleon electromagnetic form factors are parameterized as 

G~(Q') = FJ,(Q') + Fi.(Q'), Q' = -q', N=p)n 1 

where 

F}r(Q') = Fo(mN, Q'), 

The experimental data are described quite accurately by the empirical 
dipole formula 

GE(Q') ~ G~(Q') ~ 4m~ G~(Q') ~ D(Q') 
p - - Q' - , JLN JLn 

where 

D(Q')- 1 -
- [1 + (Q2 /0.71Gev 2)]' 

The electromagnetic radii are defined as 

< 1'2 >E 
p 

(GpE(O))' 
-6 GEio) , < r! >E= -6(G~(O))' 

p\ 

_ 6 (G~(O))' 
G~(O) 
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The magnetic moment !L• of the D-B-transition is defined by non­
diagonal matrix element of the operator of the electromagnetic current 
between the baryon octet B and decuplet D states. The matrix element 
of this transition is writen in the form 

M(D-+ B+1) e v'3 -k( ') '( " ( ) , ( )) = --B, p 1 1 Vi mB, mv + p)l2 mB, mv 
mP 2 

( ~;Q)" ~lt D~mt(p )F IW( q)<kmn, 

where F ,.,( q) = q~A"( q) - q"A~( q), V1 a.nd V,. are the vertex functions 
defined by a very cumbersome formula so that they are not shown here. 
The magnetic moment of the D-B transition is defined by the following 
formulae:· 

- -{-Vi(mB,mv)(3+-)+ l~v mB 
3 mB mv 

ffiB + 2V,.(mB,mv)(l- -)} 
mv . 

It is convenient to represent the quantity llnB in the form 

2Vz 
llnB = CvB-

3
-!lp , 

where ILp is the proton magnetic moment. 
The obtained results are shown in Table 2. One can see, there is only 

a qualitative agreement of our results with experimental data. It has to 
be remarked that the numerical values of magnetic moments are closed 
to the SU(6)-model predictions. 

The dependence of the electromagnetic nucleon form factors on the 
square of space-like momentum Q2 = -q2 in the interval 0 S Q2 s 1Gev2 

is shown in Fig.4. One can see, there is only a qualitative agreement with 
the dipole formula. 

The semileptonic weak decays of the baryon octet B' -> B + e + v 
are described by the triangle diagram in Fig.2b. The matrix element is 
written as 
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Table 2 
Electomagnetic characteristics of baryons 

Process Observable Expt. su. QCM Other 
value [23,27] approaches 

[27]-[29] 

/lp 2.793 3 3.660 2.79 
p -+ PI r:, fm 0.862±0.012 0.682 0.810 

r:r, fm 0.858±0.056 0.560 0.810 

Jl.n -1.913 -2 -2.440 -1.86 
n ----t nr < r! >E, -0.117 ±0 .002 -0.162 -0.130 

fm2 

rM fm 
n ' 

0.876±0.070 0.560 0.810 
1;+ -+ 1;+")' Jl.>:+ 2.42±0.05 3 3.727 2.68 
1;0 -+ 1:0")' Jl.:£0 1 1.242 
1;- -+ 1: ")' Jl.>:- -1.157±0.025 -1 -1.243 -1.05 
Ao-+ Ao")' Jl.A• -0.613±0.004 -1 -1.230 -0.58 
1;0 -+ Ao")' J.LJ:.OAO 1.61±0.08 v'3 2.217 
~ -+3")' Jl.'e.- -0.69±0.04 -1 -1.271 -0.47 
;::a ----t go1 Jlgo -1.25±0.014 -2 -2.539 -1.40 
A+ -+PI c"+p 1.25±0.2 1 1.17 
4.0 -+ n")' c"'P 1.25±0.2 1 1.17 
1;•+ -+ 1;+")' Cr.•+ I:+ -(~.25±0.2) -1 -0.94 
1;•0 -+ 1:0")' Cr.•OI;O 0.63±0.1 0.5 0.47 
1;•0-+ Ao")' Cr.•oAo -(1.08±0.17) -"!-2 -0.87 
:=:•0 --+ su/ Gg•o:;:o -(1.25±0.2) -1 -0.89 
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where 

where 

M(B'---> B + e + v) = ~l~(q)B'(p')A!:,. •• (p,p')B(p) = 

= ~~~F-•• (mB,mB•,q'){F: + ,8((1- a)F: +aD:]}= 

GF ..2 - • = ,j2F~·•(mB, mB•, 'I )l~V>B{r~Gv- '1'~'1' G A]V.B 

1 1 
1 I I a(1- a)a(wBB') ~.(mB,mB) = o da o d,81 + a((An/A.)' -1)' 

a(1- a)(,Bm~. + (1- ,B)m~) WBB'= 
1 + a((An/A.)' -1) 

The obtained results are shown in Table 3. It has to be remarked that 
the numerical values of the ratios GA/Gv and parameters a and ,8 coin­
cide with the SU(6)-model predictions. Thus, there is ouly a qualitative 
agreement of our results with experimental data. 

The strong meson-baryon interactions are described by the diagram 
in Fig.1b. The vertex functions can be written in the following way on 
the baryon mass shell. 

1. The Meson-nucleon form factors. 
a) Pseudoscalar mesons P( -.r, 71, 71'): 

25 
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Table 3 
Weak coupling constant ratious 

Process Observable Expt. su. QCM 
value [23) 

n-+ pev GA/Gv -1.259±0.004 -5/3 -5/3 
A0 --> pev GA/Gv -0.696±0.025 -1 -1 
E -+ nev [GA/Gvf 0.36±0.05 1/3 1/3 
~ -+ A 0ev Gv/GA -0.25±0.05 -1/3 ~1/3 "l E -+ nev GA/Gv 0.01±0.10 0 :=:- -+ 1;0eo GA/Gv -5/3 -5/3 
2.0 --+ E•ei/ GA/Gv -5/3 -5/3 

f3 -1.259±0.004 -5/3 -5/3 r-
0.66±0.07 3/5 3/5 a 

'----

Table 4 
Strong meson-nucleon constants 

L Gimr;(0)/(411") Vertex 1 Q~c=M~-~=~O~t+h'-'er-"-'-'ap:.cp.Lr_oa-c~h-es~[3"""'0~)----1 
,. N N 12.32 14.08; 14.28 ± O.Dl8 
11N N 11.21 3.67; 5.0 
r/NN 

wNN 

7.99 
0.98 
13.93 
0.42 

(F/G=5.1) 
3.78 

(F/G=0.22) 

3.77; 4.23 
1.62; 1.16 
4.56; 8.85 --

0.41; 0.55 ± 0.06 
(F/G=6.1) (F/G=6.1 ±0.6) 

10.6; 5.7 ± 2.0 
(F/G=O) (F/G=O) 
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b) Scalar mesons S(a0 ,e): 

Ta.o = T, T, =I. 
c) Vector mesons V(p,w): 

T., =I . 
2. Decay D --> B + .-

The numerical values of the GimN(0)/4.- a.nd FvNN(O)/GvNN(O) are shown in Table 4. It also shows the results of phenomenological ap­proches [27,30]. One ca.n see, the results for the,. NN-, pN N-, wN N-and a_N N-form factors obtained in the QCM coincide with the phenomenolog­ical ones. The vector meson-nucleon constants a.re connected by SU(3)­relatiovs and are immediately defined by the coupling constant of vector mesons with quarks gv and nucleon magnetic moments: 

It is interesting to consider the case when all hadron masses are equal to zero. We have 

where 

GpNN = Gpqq = G,.~ = lfgn = .-. 
(Here, we accept a standard notation for the effective coupling constants instead of ones used in our model: a,..= g,j,fi and G,.w = g,.w/2.) 
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Table 5 
Decay D ---> B + 1r widths 

Processes Expt.[23], QCM, 
r(Mev) r(Mev) 

,:l++ -> p + 7r+ 111.5±0.67 111.6 
,:l+-> p+:>ro 76.1±0.46 74.4 
,:l+...., n + ,.+ 36.8±0.22 37.2 
Llo->p+1r 38.3±0.23 37.2 
Ll0 -> n+1r0 76.7±0.46 74.4 
Ll-->n+:>r 116±0.69 111.6 s·o --. ::;o + 7ro 3.26±0.2 4.66 

'2*0 -+ :::: + 7r+ 5.54±0.25 8.05 
:::·- -+ 3 + 11"0 3.09±0.2 4.32 
2* -+;:::a+ 1r 6.56±0.4 9.94 
~·+-> Ao + ,.+ 30.8±0.61 35.67 
~·+ -> ~+ + 11"0 2.3±0.046 2.69 
~·+ -> ~· + 7r+ 1.9±0.04 2.43 
~·o-> ~ + 7r+ 1.86±0.037 2.14 
~·O-> ~+ + 7r 2.3±0.046 2.77 
Ij*D-+ AD+ 11"0 30.8±0.61 36.15 
~· ->Ao+:>r 35.2±0.71 37.61 
~· -> ~· +,. 2.4±0.048 2.75 

This result is in complete coincidence with the p- universality hypothesis and the prediction of an effective gauge field theory [31]. 
The decay D -> B + 1r width is calculated according to the formula: 

where 

, _ y(m1- (mB + m,)2)(m1- (mB- m,)2) p - 2 , mv 
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are the baryon moment urn energy in the c.m. system. The results are 
shown in Table 5. One can see, our results are in a quite good agreement 
with experimental data [23]. 

Thus, the quark-diquark approximation of the three-quark structure 
of a baryon, in which a diquark is considered to be a hard core, correctly 
reproduces the baryon inner structure at low energies and allows one to 
describe most of the baryon properties from a unique point of view. 

In future, we plan to use this picture for the description of more 
interesting processes of baryon physics as the baryon nonleptonic decays, 
photoproduction of ,. and 7J mesons on nucleons, NN-scattering phase 
shifts, etc. 
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Appendix 

To demonstrate the calculational technique in the QCM, we calculate the meson mass operator and the baryon vertex. 
The meson mass operator is written as 

r,r,( ) I d'k I 1 1 II p = 42' du.tr[r, , ,r2 ,] • ,. • vA9 - k - p vA9 - k 
By using the Feynman a -parametrization one can obtain 

Here 

1 00 

II"'"'(p) = ldalduld<T• R(u,a,p) 
0 0 [v2 + u- a(1- a)p2/A!J' 

R(u,a,p) = ~tr[v2A2r,r 2 - a(1- a)r,j)r2p- ~A!rnar',al + 
+vA.(l- a)r1pr2 - ar,r,p]. 
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Recalling the definitions of the confinement function G( z), we have 

~ 2 ~ J duu J do-"[v' +u:il(a))' =- J du(u+Ll(a))b(u+Ll(a)), 0 
0 

where 

~ 
~ J duu J do-. [v' + u: il(a)]' = J dub(u + Ll(a)), 0 

0 
~ 

~ I duu
2 J do-. [v' + u: il(a))' = 2 j dub(u + il(a)), 0 

0 

Ll(a) = 
a(l - a)p2 

A' q 

Using these formulas one can obtain 

Here 

p' •=-4A2 q 

~ 1 

B 1(s) = J duub(u)- s 2 I duub(-us)~, 
0 0 

~ 1 

Bo(s) = j dub(u) + s J dub(-us)~(l + ~), 
0 0 

~ 1 

A0 (s) =I dua(u) + s J dua( -us)~. 
0 0 
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The baryon vertex is written as 

Ar(p,p') = dr,r,r,Tr(p,p')r,, 

' f d4
k f 1 1 1 Tr(p,p) = ,. du. , ,r , 'A' ( '-)' · ,. t vA9 - k + q vA9 - k v D - P - "' 

Making use of the Feynman a-parametrization, one can obtain 

1 ~ 

( ') j jd jd F(u,a,p,p') Trp,p = dp,a uu u"[v'+u+A(a)]"' 
0 0 

dp,a = 2d"a6(1- a, -a,- <>a)· 
where 

r, = P(1- <>a)- pa,, 

1 ( ,, 2 2 ) A( a)= 1 + a(((AD/A,))2 _ 1) p a 1a 2 + p a 1a 3 + q a 2a 3 • 

Recalling the definition of the confinement function we have 

~ v' A(a) 
j duu j du. [v' + u + A(a)Ja = --2-b(A(a)), 
0 

~ 1 1 . J duu J du"[v'+u+A(a)]• = 2b(A(a)) 
0 
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~ 

J duu J du. [v• + u: Ll.(a)]• = ~a(LI.(a)) 
0 

So, the final results is written as 
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