


I. Introduction

It 1s well-known that a gauge symmetry in a dynamical systen
leads to the azppearance of first.class constraints [13 for cano—
nical variables. The latter means that a system of that sort
does neot meve in the total phase space (PS), but only on a sub-
manifold in it. 5o, these systems have "superfluous" o unphysi-
cal degrees of fresedom.

To describe systems with a gauge group unlguely, one should
in a way choose physical variables. This can be done by gauge
fixing or passing to gauge-invariant varizbles. In this way, ve
pass from the description of dynamices in the total P25 to its
description in the physical PS. It is usually assumed that in
gauge theoriles the .physical FS is an even—dimensional Zuclidean
space defining an integration region in EFI [2] for systems with
gonstraints. However, it has been shown in [3] for simple models
with a gauge group that the physical PS5 may differ from an ordi-
nary plane and can be a cone. This PS5 reduction leads to the HFI

‘modificaticn | 4,5] . The gemeral cause, for the reduction of the
"rolume" of the physical PS, is that after the elimination of

all unphysical variables in a theory there remainsthe discrete
gauge group. This residual discrete gauge group (BRDGG) acts in
both configuration and phase spaces of physical vaiiables iden-
tifying some points of them [4]. To remain inte the framework of
the Dirac quantization methed for systems with constraints, 1t is
necessary to take into consideration the PS reduction for the HPI
construction since in this case there éxists a one-valued analy-
tic continuation of the operator evolution kernel to the totzl
6onfiguratiqn space (including also unphysical variables) which
iz explicitly gauge-invariant [5,6]. Note also that the PS re-
duction takes place for the Higes field [3] and Yangills

fields [7] .



The present paper 1s devoted to the above problems. In par-

ticular, the question about a correct form of HPI for the Yang -~

- Mills quantum mechanics [8,9] will be solved. The Yang-Mills

field theory becomes the Yang—Mills mechanics if fields ave requlred
to be homogenecus in space. This model 1s remarkable since it
centains many qualitative peculiarities of dynamics of a non-

abelian gauge field theory. That is why 1t has been used for
studying girferent aspects of the YangHills f1eld dynemics:
stochastic behaviour [10], statistical properties [8], elassical
solutlons [ll] 3. qualitative consideration of a glueball spectrum
f12], Grivov's problem [13], etc. 50, the Yangills quantum
mechanles is a quite suitable system for a gualitative gonsi_
deration of an influence of the FS reduction to the quantum
description of the Yeng-Mills fields :n terms of HPI,

The paper 4s organized as follows. In sect.2y, the abelian

matrix model with-the group SU(2) is considered for the expla-—
nation of main difficulties arising at the HPI derivation in

the reduced PS, Section 3 1is devoted to the Yang-Mills quantum

mecharics, And in sect.4, for a simple model, the gquestion is
studied about the connection of EPI 4in gauge invariant variables
with the descriptien using an arbitrary gauge condltion. In
Conclusion_we summtarize our results. In Appendix,.the récipe of
the HPI construction in curvelinear coordinates is suggested

which 1s used for the analysis in sections 2—4. This predlem was
already discussed in literature, In particular, in {14] the EPI

form was found in another way in spherical and topologlcally
equivalent coorﬁi:1ates_

2. Abelian matrix model

Consider the system .with the Lagrangian

L= T (s g Toc] (o 970) = V (o),
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(2.1)



Here the 2x2 real matrix ¢ and scalar Ej are dynamical
o -i
i O) is a generator of rotations

in a two-dimensional plane {a generator of the group S0(2)), V

variables of the theory, T =

1s a potential. The Lagrangiar (2.1) does nct change under gauge

transformations

> Y-, x> | Oexp T
g> g ReexpTe

where GJ = C&)(‘t) 1s an arbltrary function of time, The gauge
transformations are rotations of the two-dimensionsl vectors

telng the matrix X columns.

Let us turn now to the Hamiltonisn formzlism. The canonical

momenta are P = KBL/B'I = (’JC + gT'x)T , U= aL/bEl =0,

S0, the Hamiltonisn of the system has the following form

H=2Tepp + VixTx) - glrp T, o e

Secondary' censtraints follow from self—consistency conditions of
dynamics [1]

T= T H) = Trp T = G=o. (2.4)

Here { s } are the Poisson brackets. It is easy to check that
Eq.C2.4) exhausts all secondary consiraints. Indees, {G,HjFO-
Let us discuss the question about the physicsl PS structure
in the present model, By the gauge transformation (2.2), the
matrix CX: can always be reformed to a trisngular form, for eXampw
le, IM:O Since the transfermations (2.2) are rotations of

the columns QCJ'i and x(]'z' + Eowever, gauge arbitrariness is

not yet exhausted, Transformations changing the sign of .’,I)“
remaln, and they do not break the equality xa{: 0 {the rota-—
tions through the angle I in the plane (OCM ' L00) )i Mrereso
re, the points A4y and -, are. gauge—equival ent (RDGGFZE)-



Note that these [ —transformations can be made at any moment

of time (they are gauge transformations!). Since laws of gauge
transformations for coordinates C end momenta P coincide,

PJM changes 1ts sign simultaneously with X,, + The latter
means that PO (OCM , P“) is @& cone un.foldable into a half-plane
oon(sT) (3,7} (1f 1n the plane (%, P,, ) we identify the

points ( 'X)M_}' PM ) ana (=% ,~ P,y ) which are gauge-equi-
valent, the phase plane becomes a cone: con (W) J. Tais
exhausts the gauge arbltrariness. Thus, there are dnly three
2 2
Physical degrees of freedom with PS = gon (31') X ‘R ®\R

in the present model.,

As is ghown inD,ﬂ, the distance between energy levels

of a quantum oscillator with PS5 = con (TJT) is doubled. 5o, it

would be expected that the physical (observed) frequencies

_ T
wlil be 2, 1, 1 if “'ETY XL and what's more, 2-corresponds

to the degree of freedom with 5 = gon (T1) . However, 1t is-

ndt the case. It turns ocut that degrees of freedom with the redu-

ced P8 :Lnfluence the spectrum of the full system.
To make more clear this questlon, consider a gquantum theory.
Eal
After guantisation P - PI_J OC-LJ-‘* i et Lé,PKn-l:LSLKth( ‘i)
the constraint operator {2.4) plcks out a physlcal subspace of

states S{P\q
G \-d(Fh> =0 ‘ (2.5

A
(the constraint \‘&’P;\> = 0 1s solved immediately), Equation
(2.5)

can easily De solved in the second quantization represen-

taicn, In this representation, Eg. (2.5) has the following form
A g - A \Ll -
Q&L_Iéu O’KL \ Pl—.> -

A A LA
where/\ CLKj = (’JCK;) + L PK‘Q/\[E + Apparently, the ‘vtacuum \0>€'3{P‘h
( a“’\j o> = 0 ), therefore any physical state can be

(2.6)
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A
obtained by applying a functiom of o commuting with G

to '10> » Since the gauge transformations are rotations of
A

columns of the matrix O'L‘j y all zauge-invariznt quentities

A+ AR Ap At
k.epnnu on scalar sroducts of Q’{,' columns Eli‘]: ‘% = O,- O~L1.
Ay f\+

% O’L’ZG’ 2, % Q’Li ip+ However, thore exists o e '"o & operator

: -detQ e
COT‘]”‘Lhtlng with I has the fomn % =deg Gy O?_z G Gy
and % 8 g %fﬁ 3 l.e.y 1t does not corres pord to an inde-

ra
- +
pendent degree of Treedom. wevertheless E‘ﬁe state %o \0>‘:\%°>
+

satisfies (2.6) amd it is orthogonal to @ai0> (a=1,2,3).
full Aﬁ’,?k spl ts into the ortheogzgoral sum of two subsnaces
EEP]" ﬁ{?n@’}{ Lin which bases are formed by following states

AR A+n n ]
%i 1% : %+ > \O> S %‘E% , (2.72)

AR /\{H’I W
g, ° l’% TR € an' (2.70)

where VLa_= 0,152,... . How one can see from (2,7) tha: the physi-

cal sstectrum of the system Tor V: 4/2TVOCT3C is

Eo= R+ ingran, s 2 (2.70)

l.e., it contains levels of three indenendent osclllators with
freguencies 2. However, the degeneration VZE 2T a level E is
different Trom one of the case of thwrce oscillators and it,

apparently, is
AU BV ACEIOR C2.7a)

where ?(h) is a number of solutions of Disphantine
equation (2.7¢) ( a=n +n,+ng ) at fired . Two addemdun in
(2.7d) correspond to subspaces ’E{PL‘ and %{Fl" C 9{n) fo-
0 . i
%‘E?h and ?mui_) for %{'P\" )
The existence of two orthogomal subspaces in %F}L is gon—-

nzeted with the difference of the groups 0(2) and 50(2). Consider



the varity ifransformation P= (% EJ « A4pparently, Pe O(Q') ;
but P e SO@:} . Nevertheless, Lagrangian of the theory {2.1)
does nct change under irensformations fromO(?.) , L= UpC
Y> -4+ @, Up=Pu, u= exp i) ang  det Up= =4

The transformatien P changes the sign of the lower line of tkre

mx?:"tiiii mf’é (therafore momenta Pgi change their sign too).So,
O.,:L— change also the sign under the E —~transformation. Accor—
ding to (2.72,b) the svace 'E}Ei is Pinvariant and states from
/:Hfh are P-odd since E l\%a> :—ng « Although the transfor-
mation E belongs to the gauge group of the Lagrangian, it does
net lead to an additional cutting down of %Ph « The main point
1s that operators of constraints in 2 gauge theory realize always
a representation of @ Lie algebra for a considered gauge group,
hence, taking constraints as generators of gauge fransformationa,we
may only restore s connected component of the identity element of a
gauge group. The information about the global group structure is
absent 1in constraints. In this sense, transfermations which de nat
belong to a connected component of a group identity eleinent ‘cannot
call gauge (bbviously, they form a discrete subgroup), Forlexamp—
le, the above-considered tramsformation U,= O consists of

botk "ungauge" E and gauge UE 50(’2\) transformations for the
guantum theory {f course, we may supplementary require the "P—
inva,ris.nce“for Physical states, i.e., we do 1t"by hand". However,
1t changes nothing in the dynaémical desoription of the system
since transitions between q{f’h and %EP}\ are absent fora P~
inveriant potential v &( V  does not depend on det N ), i.e.,
subspaces %Pi and Acﬂ?\., are dynamical unconnected and have

the identical structure exept of the vacuum energies of lO> .
and l@,} + S0y gquantum dynamics in %Fi and %E;\., coincilde.
Moreover, if V is not P-iuvariant, then there exist transi—

0 4 .
tlons between %P\“ and %{Ph s but in this case P is not the gau-
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ge transformation \(V(E:;Q\) # T\/ C’JC) l} + Thus, w2z may conclude
that gaugze grouns shouli always be, ir thnis sense, connected
components of a group identity element,

Note .that doubling of these levels 1s not connected with the
global 50(2)-symmetry with respect to index of oolumns of CC% .
Indeed, the Lagrangian (2.1) can be rewritten as sum of two
Lagrangians,and besides, each of them corresponds to one éolumn
of X (to one pdrticle oﬂ a plane), Then we may introduce diffe—
rent constants of the kinetic terms; i.e., particles CCL& andOCLz
will have different masses. S0, the global 50(2) symiletry will be
broken, but the gauge 30(2) symmetry will not. However, by-this
Procedure we shall only take off the degeneracy between levels
of three oscillators but the distance doubling between the levels
will conserve; since the basis of gauge invariants, as before,
has the form A K, i.e., is formed out of scalar products of

OCL& and OCLZ . The latter entails the level doubling for all
physical degrees of freedom. Attention is to be paid to that the
system spectrum would contain levels of three osecillators. with
unit frequencles 1f one eliminates a nonghysical variable
before the guantizatlon, for example, through the gauge condition

Lo =0,

To reveal the origin of such peculiar kinematie coupling

of the degrees of freedom with FS = con (jj and P8 = Bz, consider

the quantun problem in the coordinate representation, i.e.,

A 2
//53: +» In'so dolng, we pass to new variables to

Solve bu.(2 5) M

X = exp (TE&) y=up: (2.8)

where kP is a triangular matrix ( 9 =0). Using rules of deri-
“ ?
vatlve transformations one checks easily that (;’V —1-,/56

in coordinates (2.8). Thus, g{p% consists of functions indepen—

-1



dent of 9 s d.e., \I)P\n('x) k})(?) . To czlculate the Hamilto-
nian in g’tpk > we determine the Laplace-Belirami operator in
coordinates (2,8) (see (A 23)) and omit in it the terms contain-
ing the derivatives with respect to @ . From (2.8) we can

find the new metric tensor:

Trdoxdx= Ir (0195[3’ +d GEPTS’ * (‘s" dS’TT““T"\S’ ﬁ)d@) . o
where the matrix dS) consists of the differentials d\?

which we may represent in the form of a 4x4 symmetric matnx
A B 1 »
= T = u To ) ' )
8&5, ([5'1) y Trep (2.10)

where & =1 is the 3x3 matrix (from the first term in (2.8) ).

Using antisymmetry of T one transforms the last term in {2.8) to

+
the form QHE,J9KC‘§LK(7{9 to find the colusn B , So, Do =

= ( O ,—?5 ; ga ) 1f we write the independent componentsof

S as follows 3) (944;.?4'2 )?ﬂ) Thenj\& \/_ Ve etaﬂp_

.S)*l and the tensor 5 ? inverse to 8"‘]5 1s

o g%+g;aBaB¥: —Bu's)zz
= - _ {2.11)
J 8.9 2] :

El

The 3x3 matrix a8 _ 1N -EB Bp contributes to the physi
* don = Cagt §, Babg _ paysi-
cal part of the laplace-Beltrami operator.

Therefore

A al -

HL‘:_I_'L_ Bwogphyb%+v(99)" (2.12)
P 2

where ? /a? . Now one can see_how the kinematic coupling

of physical degrees of freedom arises, Bven 1f V:O y the

varlables do not separate in the Schroedinger equaticn, i.e.,

8



independent excitations of the degrees of freedom 53 and 93:

are Impossible. The curvilinearity of physical variableg

Plays a central role in this phenomencn [16] " There exists no
kinematlo coupling 1f the quantization is made after the eliming-
tion of nonphysical variables through the gauge condition oczg
Let us turn now directly to the HPI construction. The problem
is to find the representation of the evolution operator kerne]
corresponding to the quantum Hamiltonian (2.12) in terms of gz path

integral, Since (2.12) contains the part of the total Hamiltonian

in curvilinear ceordinates (2.8), We may use the method suggested
in Appendix for deriving the HPI,

From (2.8) 1t follows that there exist two t;}pes of the
symoetry for the new variables!

1) @‘—3 9+2J_|YL, n=‘--,“4;0 SEEE

{2.13)
2 PP, B~ 0+T. :

4

s

So, the fundamental Tegion K is B € ‘__0, er)) ?,3? 0,
\?2 3 < P « However, the variadle

2}
fore, the transformations of 9

" the unit operator kernel 4n g{p\n

is unphysical, there-
éo not influence the form of

The physical variables
change under Z —gTOoUp, ?-%v ‘9 » Which should be taken into
consideration for the analytic

kernel <‘?19/>F"‘ . Thus
<5igtpe T 9 (92 (57 -

gl #8055 + (—&m% (g8,

where SZ)E [D3 , _?/E K ( 9:> 0) and present g basis in
[éff;" sy hence, L:F'E K?) \-9 (‘P) The latter allows us to

write eguality {2.14) for the analytic continuation of <§i? >5«

in unphysical region 91< 0 . Ve may also

- continuation of the unit operator

(2.14)

get (2.14) by the



gauge group averaging of the unii operator kernel in the total

Hilbert snace

20 a ,
<m9l>i"": SO d v %h(ocﬁexP(\?ﬂac ) =

- (Fay §(s - =)

{2.15)

where (= Q)CP QQT) 53 and x{:‘ eXP (QJT)EI . Calcoulating
the integral ir (2.15), we find (2.14) (compare with deriving

(a.8) and (4.7)). Hote thot the Petransformation changes the

kernel (2.14), however this kernel is B0(2)—gauge—invariant in
accordance with (2.15). Tris result corresponds to our conside—
ration of the model in the second quantization representation.
There exists the main dlffervence between the E;—transformation as
RDGG and P-transformation. RDGG O = £, corresponds to the tranmsfor-
mation of the unphysical variables § = &+T , while under the £ -
transformation O does not change (*’.I:-%- P ; %J? P%E‘%

in (2.1)).

The obtained group 2?2 reduces the physical PE; « Indeed,
using the gauge transformations we get the equality ff:?(%f@.
But there exists a residual discrete gauge transformation from
Z ’ 33 - X g’ which does not break the condition ‘?gi =0,
Therefore, physical values of ‘9 lle in E{ « Of ocourse, the
physical states (2.15) should te invariant under this BDGG since
it is a subgroup of the gauge group 1n the present system., The
RDGY has a transparent geometrical meaning. The condition pleking

-cut the physical variables determines a "Line" in the total
cohfiguration space, This line can intersect a gauge group orbit
-several times. The gauge transformaetions connzoting these ¢cros-
sing polnts on one orbit form RDGF reducing the physieal PS5, The
exlstence of the RDGG is due to impossibility of choosing the glo-

bal gauge condition pilcking out physical variables without an

10



amblguity, i.e., the gauge condition "line" zlways' intersects
each orbit more than once. In the present model this follows from
compactness of the geauge orbits. In the general case of Tang -
— Mills fields this results from Singer's theorem t171.

To get the HPI, now it will be sufficlent to use formuleae
from Adppendix (&.8)-—(11 247 where the operator {2.12) shouid be

taken istead of H Then, we conclude

k d ! " i
U (5,8 = é (9§>%U (39906 9), oo

QCp", P./) = 8(9”—5)') + 8(53”+ 5}’). (2

etf
The kernel Ut is determined by EPI (4,24) in which the
. effective action has the form

. t :
Se;c = Sodt (Tr PT§ - He% (g)‘g)) , (2.18)

where P is an upper triangular matrix of momenta and, at least,
in accordance with (A.15)

e :
Hewr = iz, Ra ‘ng Pf:, - ?(Pifaﬂz_’w%) N
“E 8+ V(). (2-29)

Here P& = (PM) Pn) Pa’D Mean nonzero components of the
matrix P

Note that the vart of {2.19) quadratic in momenta contains
the metric g W Therefore, after integration over p in

HPI & determ:.nzmt arlses in the measure on the configuration
space, and the effectlve Lagrangian will contazin the nontrivial
metric ( 3 ) ag 1B the term quadratic in velocities ?a, .

Moreover, the curvature tensor calculated with (gy‘n)a% does not
vanish (unlike the case of curvilinear coordinates considered in

Appendix). Thus, the physical configuration space turns cut to be

11



curved; i.e., it cannot be transformed to the plane one by a

global smooth change of variagbleas.

We may use another way for eliminating unphysical variables,
for example, OC= Q= S)T L13] . In this case RDGG coincides
with Zg again {the only nontrivial gauge transformation non-.
breaking the equality 0C= 20 is L—++X ). So, the physicai
configuration space can be picked out as 96 K if T‘r‘9 >0
Assuming 5) to be gymmetri¢ matrix in (2.8) we May . calcoulate
the metric temsor like (2.9). It has the same form as in (2.I0)
with A=1, D=T\" ‘?2 and column B consists.of three independent
elements of the metrix i/,g. [T) 5>__] . Further, with the help of (4,15)
(4.23) end (A.24) we can construct HPL in this case.

Note that HPI for the physical varlables SD: 9T differs

from (2.156) since the measure and effective action are different
Fal
in both cases. Nevertheless, the operator Q coineides with
Pl

(2.17), One asks: does Q depend on the choice of physical
varlables? in sect.4 1% will be shown that the answer is positive,
In conclusion we study the question about a physical meaning
of the operator é + 45 shown above, é symmetrizes the evo-
lution operator kernel over the RDGG. Partisularly, @(3’,?/) =
= I?d. | <? ! ?I>F}‘ in our model. On the other hand,by construction,
kernel (2.14) is explicit pauge-invariant (see (2.15)) and we nay

replace S)/ by DC/ y the result does not depend on the unphysi-
cal variable Q' i.e.,

CQlp™y = <l = <plaly, = <xips, . (2.20)

One may also £ind the expliclt form of the gauge~invariant ker-

nel <DC '\DC/>P\h in the total configuration space of the system

<9:\OC{>P}\: | det o det’l'\% §(ocTox - o) (1 Gl e

detx’/

12



Here 8 ~function is the Product of thres l-Cimensional 8 -

functions for every independent element of the symmetric matrix
(:IITI)LA (teeey 13 =11, 22, 12 ). One mey check that (2.21)
coineides with (2,14), The second term inm sum (2.21) 1sg P-odq,
l.e., it corresponds to the contribution 0}‘ states from QH?&;,.

i
Taking inte account both the connection Q with <§ i? >?5,, and

.

i
equality (2,20), we may replace P by ' in (2,16) and the
/
result is independent of the unphysical variable @ . ,lﬁloﬁreover,

Ue{? ~
by construction of kerne]l (2.16) (seeAderiving (3.22)),Q 3 Q =

eff 4 2 ek ph
=U£ G ( &=>0 ), hence QUE: UE . This leads to that
S) tan be changed by ¢ in (2.16). Thus, the following
equality takes place

] |
U5 - AREIED) e

t

The right-hand side of (2,22) is the explicit fauge-invariant
h
evelution operater kernel of opur system, 1l.e., the function UtP

a3 a function of two variables depends only on gauge—invariant
Fren £,
combinations (:XZTDC)LJ. s kx, 'JC/)L- and detnC

y detoc’ , We conclude
~
that taking into consideration of the cnerator Q_

in the evolu-—

tlon eperator kernel (t.e., taking into consideration of the phy =

slcal phase space reduction) allows to get unique explicit gauge-— .

-lnvariant continuation of the evolution operator kernel in the

total configuration Space and, by the way, it fuarantees us g

gauge-invariant gquantum description.

3. HPFI for the YangMills quantun mechanics

The Yang-Mills mechanics with the group Su(2)~s0(3)

.eorresponds to the Yang Millg Tield theory if a13 Potentials

o o
AJ-‘ = AJ\JL (t) (a=1‘,2,3 are isotonic 1ndices) depend only on tine,

The Lagrangian has the form (2.1) where ¢ 14 4 3x3 resl matrix

o
{ Xgt = 'AL (t) y 1=1,2,3) andgT—)gis 2 3x3 real antisymmet—

13



ric matrix { \j g Eae,cA (h) ), g is a voupling cons-—
tant. Then /= % [(TY' xT’x> - |V‘QX 'x,) } » however in
what follews the potential form is inessential. We may write the

law of gauge transformaticns as .follows

x— O, y=-yQ+ 0307 Qe 0@

The Hamiltontan formalism for the present system is analo—
geus to the one in gect. 2. 4gain H turns out to be unphysical
(its momentum vanishes, forming the primary constraint). The
éecondary constraints are, as it should be, generators of three—

~dimensional rotating columns of the matrix K Se, any gauge-
~invariant function of X is a function of the~matrix il '
i1.e., the system contalns six physical degrees of Treedom.

0f course, det & is alse gauge—invariant, but it does not
represent new ilndependent physical degree of freedom as it was
shown in seot.2.

To construct the quantum theory for this medel in terms of
HPI,following the logic of sect.2, one should pick cut physical
variables, find an RDGG reduecing a physical PS5, and finally
take account of the curvilinearity of physical variables,

_restore the HPI form with the help of Appendix. Upon this proce—
dure we get one-to-one correspendence with a gauge invariani
description (coinciding spectra eté;). Ignoring each of these
conditions leads to a wrong result, i.e., tourejection of the
Dirac guantization scheme for a system with constraints, as it

has been shown in sect. 2.

Let us realize this programme. Put ff7=ftT. This condition
bploks out six physical degrees of freedom. For determining RDGG

we must solve the equation

(u/sgc)T = U, Ug€ SO(3) (3.2)

14



Kote that Lagrangian of the present theory is invariant under
transformation (3.1) with Q S O@) . However, as shown in sect.?2,
transformations of the parity frem O(B) are not connected with
changing unphysical variables and, so they cannot include in ZDGE
determined by (3.2).

Putting oC= &)\’1 e’ where k is a diagonal matrix, WE 500G),
we get from (3,2) g ho=h COI R wsz("‘f Us & SCG).
Then LL = OO;— h (;O; and h = W h We  since h =\\n,T . Using

two latter equalities one finds easily
2 1 ( .
[ \“L , OJS =0, 3.3)

Since LL is arbitrary, we conclude tnat CJ¢ is a diagonal
orthogonal matrix, i.e., C‘Os = Il =diaeg{l,~151), 12 = diag

(«1,1,-12, Iy = dilag(-151,1), I, =1} . Thus, the transforma-
tions COS form the group kza ® Ez and the group S reducing
the physical PS5 contains alse four elements é,,f)C = UL:I
M; = Q)('I)vaqr(x) ’ v - 1,243,4. S is isemorphic
to Z2® Z? in the nelghbourhood of a nondégenerated matrix

Apparently, degene%ated m.a‘t:r:ll.casG 2C  velong to the boundary
BK,where K= R \S ('DCE“? ) [13] . Note that the dependen—
ce S en a point OC 1is smooth, i.e., S (’I) o~ Z2®Za

at all nondegenerated X .

To take into consideration the curvilinearity of

physical varlables 1t is neecessary to make after qﬁantiz-ation a
change of variables which diagonalizes constraints, l.e., in the
new variables constraints must express the equalities to zero of
some generalized momentum ceperators on functions of the physical

Hilbert subspace {;{{Pk . A momentum cperator is always a transla-

tion generator of the corresponding canonical coordinate. Thus,

choosing new c¢oordinates so that a part of them acquires a
displacemnent under a gauge transformation, one can diagonalipe

constraints. Based on these notes we introduce the new varizbles

15



by analogy with (2.8) where UE 50(3) and 5)3551— - The Tellow—
ing step for the HPI Qeterminationm is to perform analytic
continuation of the unit operator kernel in f:)U(“’,P'h . For this
purpose we galculate the metric tenszor. It has the form (2,10}

- 2
where 4 1s a 6x6 unit mat»ix corresponding to TY“C(_?
— - ,
in e doc™dx , D 18 a 3x3 symmetry matrix, D =l/4(g QTFP -
ag a
‘Pac 9c% ) which are multipliers of Cleg_de,g if we put (L,{Tc{u)ae:'
=1/2 EQ%C d@c s {}ol@c is the invariant measure on-SU(Q)'. '
At last, independent elements of the tensor Bag,c = Béq,c
which glves multipliers of C{S)q% CIBC in rdx'dx

the 6x3 matrix B. By direct calculation we £ing Bog,e "L/4{E,
?

determine

de fag*
+ E%dc S)dc-. J. B0, the measure in the scalar product of A‘HFL‘
is

ju(_?) = \]bgﬂ = det (Tr‘?ﬂ‘?)

(3.4)

acscurate to a numerical factor, where (TFP ;"9)“@ = gaeTrSD - SJQQ .

Thus, we can write for the analytic continuation of the unit

operator kernel in A&‘Eph y
4 A — 4 .
Gled -2 [ropEs)] Blp-8). o

Now 1t only remains to cal culate the physical part 3?“
of the metric tenscr inverse to {2.10) which defines the physical
addend in_ the Laplace - Beltrami operator thal does not depend on
,a/’é@& + Apparently, 1t colncides with the 6x6 matrix 1in the

upper left-hand angle of the matrix inverse to (2.10), i.e.,

“thU =1 + Bi—l_iBT , "'cc':%[(TrP“S’)z]cc' (3.8

Fow we may derive HPI for the Yang-Mills gquantum mechanies with

“the help of the recipe suggested in Appengdix,
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4s 1in the previous model, the symmetrization over RDGG s'“
~ EiL@)izallows us to continue the evoluticn overator kernal
by explicit gauge-invariant way in the total configuration space.
Bquaticns (2.20) ana (5.22) remain to ve valid. One may also

the analog of (2.21) for the present modol.

write
In conclusion it is

necessary to emphaze that the yresent model does not include

a condition that piks out physical variables without an amblguity

[13], t.e., ADGE is always nontrivial. e have above suggested the

method of solutlon for this problem according to the Dirac gquanti-

zaticn scheme.

4, Gauge fixingiand invariant description

Solutions of constraint equations in gauge theories are
easily found 1f we know the basis of gauge group invariants. Howe
every for reallstiec field theories this probler has no satisfag-
tory solufion‘so far.

That 1s why for Picking out physical degrees of freedom one

-uses a condition imposed on theory variables, i.e., one fixes g
gauge, The elimination of unphysical varlables and a subsequent
quantization, as shown above, do not always glve a correct result
corresponding to the Dirac scheme [1], in other words, a quantum
theory thus obtained does not always correspond to an initial
Lagrangian since it ean contain unphysical states {}9,7]. 8o, it
1s interesting tc elucldate the question about the correct HPI
form in anygauge which is in a one—to-one correspondence with a

gauge-infariant description.

We have seen that it 1s necessary to take 1nto account two
central points for this! the ~curvilinearity of physical
variables (the metric in an effective action) and a physical
PS reduction (the operator fi in HPI), Here for the simple mo-

del the question about the correct HPI eriry 1in an arbltrary

gauge will be sclved.
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The Laéraﬁgian has the form [20,3]
. 2
S+ leOC) - V{x?), (4.1

where a two-dimensional veotor C and a scalar lj are dynamical

va.riables. The Lagrangien is invariant under gauge transformations

from $0(2) like (2.2), where ome should understand OC  as a two-

—compenent colummn. Apparently, Ld is arn unphysical variable since

i
the corresponding mementum is equal to zero. The c*rcles S in

the configuratien space ’-X:C[R form gauge group orbits, therefore,

for the gauge-invariant description it 1s enough to introduce the

polar coordinates. Then the angular varlable becomes unphysical,

while the gauge invariant v = (’IQ) # O describes the only
physical degree of freedom. The HPI form in invarinant variables
for the present model was given in. (4,5] . It coincides with
(2 16) if we put ruﬁ P P1 and consider cther variables
as zeroes {for detzils see [5]) Nete that the physical PS(Y' )
=oon (1) [ 3].
4 gauge condition means a definition of time evolution of
unphyslical ¥ariables, Let ﬂ:i descrite a physical degree of
freedem, Then A, is an unphysical variable. Define 1ts time

evolution by the equality ()C2 = ‘F (:)Ci) where .g: 1s ‘an arbitrary
function. For the correct ‘dynamic description the gauge condi-
tion line '.)C ¥(’.)Ci must cross each gauge group orbit

L, at least, once. So, -F(O) =0 and «g- is defined for all
gcieR « If the latter property does not take place, l.e.,

the region of definiticn of differs from [R , the domain of

values of {- should coincide with P (Iae R) » otherwise
there will exist orbits S which do not ocross the 1ine:rgﬁ-“¥®cﬂ.

- Therefore, we can always choose g physical variable as changing

along the reml axis R .

.
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Following the ideology developed above, after quantization

P: _— 'E/'b’JC we introduce new curvilinegr coordinates
: §
X = EXF Te <_§(9] (4.2)

It is easy to cheer that the secon-
~ -
dary constraint operator ]/D\TI generating 80(2) gauge transfo
tions (217 coincides wity -—‘.;,'B/BB . So, ’3{

ions independent of @

rma-
PLL containg funct-

Using the standard deriving rules of derivation of the

Laplace-Beltrami operator in curvilinear ceordinates. We fing

the Hamiltonian in QLEPh
A 2 2
LN 9]
Hen T % ot UCEIDP (4.3

where Ju = 5) + -pi-F 1s the measure (Jacobian) in the new
varlables. The scalar product in ,}EF!" has the form

<olgn, = Skolgycyw*@w(g) ‘ (.

Here Kz IR\ S 1s a physical cenfiguratlion space ang the group
S can be determined as above, i.e., it is necessary to solve

the equation

Us (Jr‘(fe)) - f;(ci;») , Us€S0(@)

_ A A
a0d besides S50 = §(9), Se S
of (4.5) can be found from the eguation

+ In fact, al1 solutions

S%(p) + {7 (st = g2+ £y 46

deflring all the points of crossing of the line chz-g(’lci)

2 2
with the g¢irgle OC'L +I2 = const > O |, It is clear that the
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number of crossing points deperds on S) . S0, RDGG g = S[S’]
has a different number of elements at different . Thus, the
region K splits into subregions Ku , and besides, S[S}1=S“
for SJ = ch and has a fixed number of elements, i.e., each
subgroup SO{ acts smeothly on KN .

Let us establish the connection of the derived quantum

-4
theory with the gauge-invarient description. Note that ju. B =
=t her 2 2)1/2 $ Eamiltoni { )
= e where 'r“:(g) +¥ « 30y the niltonian (4.3
turns sutomatically intc the radlal part of the Hamilicnian in
polar cocrdinates. Morecver, it is easily seen that the equality
w .
S (JS)jLL = S dY v in {4.4) follows from the change of
K [+]

variables, This proves that the physical Hilbert space of the

theory (4.4), (4.3) should be iscmorphic to the geuge-invarlant
Hilbert space of states

by (9) = 4% £ = 40 - ¥ (=D, W

That all physical states depend on Y-Z ahalytically follows from

the potential analytilcity and parity U/(r)=de(‘\") of the wave

function with the zero angular momentum —1%/38 dH[Y', 8) =0 (22].
Since physical functlons (4.7) are invariant under transformao-

ticns (4.5), we find for the analytic continuation of the unit
operator kernel in '\}E P‘n

VA
<slgn, = 2 [pomesel 8(p-egen).  @o
Syl '
where 96@) 9’6 K ( S[?']:Sd if ?'IE Ko (ot 1s
fixed). Now we may derive HEI with the help of formulae presented
4n Appendix. However, one needs take into conslderation that the
integral over physical region \< in (4.21) should be caleulated

in accordances with a note glven at the end of Appendix.
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5. Comclusion

A ghort summary of our results 1s as follows! to define a
correct HPL form for gauge syséems, one should tgke account of
the curvilinearity of physical variables and posaible
bbysical PY reduction, Moreover, it is not necessary %c descride
explicltly the physical PS8 structure, i.e.; to find the region
‘< « It is enough %o know all crossing points of a gauge condi-
tien line with gauge group orblts in the total configuraticn
space, i.e., the RDGG, ﬁe may integrate over the physical PS in
HPI as over an Euclidean space of an even dimensiocn and then
symmetrize the result in the RDGG, The latter procedure guarantees
the manifest gauge imvariance of the evolution operater kernel,
l.e., the physical evolufion cperator kernel depends only on
gauge-invariant combinations of inltial varisbles in a theoxry.
Besldes, the symmetrization over RDGG cancels singularities in
the evolution operator kernel which arise at mero points of the
measure J[.{:O [QZ‘].

Let CCA be dynamical variables of a theory and Fg be
corresponding momenta. Let also a theory have first class
constraints EP (OC P) {primary and secondary) In quantum theory
the unitary operator U= exPLCda}f Qt P) is the operateor of

gauge transformation and ¢ = 4’ () « We also have

~N
the law of gauge transfc*mations for canonical variables gc >

+Ugc U L{,A(w)l‘ P*UPU Note, that these U -transformations
can be larger than initial gauge transformatlons in a theory)

(for example, in model (2.1) T  ana Cﬁ are iﬁdependent Bene -
rators!}. To derive the BPI, we must introduce in ;uantum theery
rew variables o, = QC- (6 ‘é) (6) ‘é where jc_ (‘;j): Q0 are-
exira conditions picking out phy51cal varlables. Then g’Cx P) 9&%
80, @a, are nonphysical variables. The BFI for physical variab—

gj can be found by using the above suzgested recipe. The
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A A
RDGG is determined by eguations ‘;(ﬁ_(séj) =0 |, where(Sg]L:ui-kjj.
It is clearly that this methog can be used for the HPI censtrus—
tion in any gauge theory [25] .

APPLNDIX
(HPI in an arbifrary curvilinear coordinate system)

AN
Let 4)5 (x}, xeR tea basis in the Hilbert space for

some gquantum system where. E is a spectral parameter set

enumerating a basis, Then
*
24, 6 4 () = <afoer> = § (o) 1)
E

Consider new varimbles 2C = 2C C‘é‘lj ’ % eKKekR N where
the region K is determined from requiring s one-to-one
correspondence betwsen the variabl‘es -TI) and new variables :j ,
i.e., the equation 9C=I(‘a) should have only cne solution if

o
xeR” ona ij K . dssume new that there exists an analytic

continuation of the function '.XZ(‘j) to the total Euclidean space

N o N
[R » in other words, OC(_‘:]) is a mapping R onto R .

Then the equation CXZ:DC(S-) Tay have many solutions st fixed

For each ye K and fixed OC  one may compare %5

so that
A ~
= DC((j)—_- QC(SQ) + Apparently, the transformations © € 9
N N
form a grour acting on ﬂ? , and K:[R \S
2
QCER ' ((j=(r,@> (the rolar coerdinates). The group S
contains the following transformations @‘*‘9"'2:}1—"’*: hEZ} rs-Y
and simultansously O — 6+

» For example,

+ If on the plane (r;@) € ERE the

points connected by -the transformations from S are identified,

then we get the stirip K :IRQ \ S oy (Y‘)G)Q K, 6 €[O)2ﬂ>,
r>0. :

Let the guantum Hamiltonien of a system have the standard

form
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% A V( I
=-4 + V(x =2 2
H 2 A(u) , ) , A(N) oc, P, (4.2)
{1=1, 2s.vss M), Rewriting 14 4p the nev variablss we fing
~ .

4
H:‘z‘\%g 3;’8_\/'3_53 + V. : (4,3
Here "at',z ’b/‘agt , g: o!e'tgld , ddeIL = gigc{yioﬁﬂj

N + ] .y -
and g ng: SJ . Let in the new variables BOE (W)= kLE(x(j))
be eigenfunciions of the operator (A.3) [26]. Tnese funetions

have the symmetiry property - .
@E(ég) = 9. (9), ie & (4,4

After rassing to the new variables the scalar product is

changed to %
SNG[DC (i)E(T) 4)E’ (x) = SEE’ = gcltuufkj) @E(g)(aoz(tj) (a.5)
R K

/i
Here \Ju(ij): g*l(ﬂ) = ®(x)/b(3) « The form of the yni:

operatoxr kernel follows from (4.5) ana (A.4)

_1/2

PACACH AL EPIN =) Tpepey] 864-3) e
E
\ g

if %’EK s ge RN » Obviously, for L(j,%IGK one should
limit oneself only to one term in (4.6) with § = A . Formula
(4.6) determines the analytic continuation of the unit operatoxr
kernel to the full IQ « For example, we have in the case of
polar coordinstes Uﬂ

§ (ac-oc) = r?% 8(r-vq (6,80 +

+ e Bl 36,649,

9.(8,87) = Zoi 5(6-6'+2wn),

Ni=—rovo

a7
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where (G,r) € [R 2 , r'>0 5 @’EY_OJ'Z'JT) Note that equality
{A. 6) can be cbtained from the rule of changing an argument
of a many-dimensional 8 —functiont £ o P ‘
= S(K(g)*x(a()) if we assume that 86 ‘QM_, %'GK .

The main difficulty of the HPI construotion in curvilinear

coordinatesis to take intc consideration the reduction of a

configuration space. Even a finite-dimensional Gzussian intezral
N

cannot be calculated explicitly over K =R \g Horeover, the

spectrum of some momentun operators becones discrete, l.e.,

the integration over it turns inte summation., For example, the

angular momentun operator pﬂ:—i rb/’a@ has a discrete spectrum.

The latter brings an additional difficulty in the HPI deofinition

over PS5 of a considered system [14].

Consider the kernfl 0of the infinliesimal evolution operaztor
- -ie H A
U (gg)=<gle 1> =Ta- eHE)yly> 106D, o

where the kernel <gl*a'> 1s determined by &.6) . To take into

account the operator ordering in (A.3) [__19], we rewrite Hamil-

tonian (A.3) as follows
A .

‘L' A LY A (,\
1 4,9)
‘_‘ 2 P 3 P + VCL + v ' *
1 /2 .
where P = jlk are Hermitian momentum operators
in curvilinear coowhnates (see (A,5)) and V is an effective
gquantum correction to the potential ( N'F ) which can be found
from the comparison of (4.,9) with (A.,3)

V‘L: Ef*\_r_ﬁ(étgq)%ry * :L&\/ngM g (4303

For example, in the case of polar coordinates, =Y

and

vqy:—i/g Y"_z' . Using the equality BL"SLJ(%) ’ad 8(%'a)=
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L %LJ (a) 3. '3 _ \L%LJ(Q)B _l g(% Q> which is easily
preved in the theord of generallzed functions, and the represen-
. tation 8[3 a)=(am) SdPexP 1p(té o)
one transforms the expression i/g l:) 84(%) Pd 4%“% >

as follows

aé" ' CJP i 1P(ﬁfd”) 0o 1
SM ()™ S@N o H (py'e Qly'y)  Gan

were Ho(py)=% p, 4% P+ % o PR, )

QYY) = % 8 (y-8y)  ye RN, y'e X

In an anzlogous wWay one can rewrite other terms in the brackets

of (4.8), i,e.y, 1, Vangd v
2

accurate te terms O(E )

; dg" U eﬂ( n [N .
=\ =2 4,4") QL y) (413
U& (4,47 SIR” (Juju")i/a 3 d | L

where

eff y d
U& (‘é:% ) = SiR” (‘Q—%N exp “E[ e{;(? ‘3)] (414)

(4,12

q° On the whole, we get the formula

Hepe (9= Hloy) +V (40 V) 2

13 the effective Hamiltonian of a system and the difference ld-g"
is changed by £ 3 " O C€2) .

Let us pay attention to symmetry properties of the kernel
' (A13). By construction, the kernel should satisfy fhe equalities
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Us(%ltd,) = Ug (‘{{:égf) = Us(gg,‘d') 8e S (4.16)

Indeed, the first equality in (4,167 is trivial since S is
a group. To prove the seooné equality, we return to the initisl
expression (4.8). Now we can sce that the second equality in

(4.16) will ve zignt 17 < %gltd’> = <Yly'> since H@%):

= H (‘d) = i (OC) - Consider the action of the unit operator
with the kernel <g[lé’>on a smoeth function 9?

- - -4 .
%(&1%Sda’ﬂa’)L[}*(w(@a’)l 8(4-54)9¢)- o
K S

In the general case, gg :-S(H) is a function of HEK (for
8EIQN it can te defined as a composition 5(%}: go§g (%)»
where § € S and gé 1< ). Since the measure A9 = c:]OC(ka)
is invariant under S, we conclude: d%y(‘d)= ds(‘a)}*(s(‘d)) =
. dld JS(H)JU. (S(Ld)) +  where Js(%) is the Jacobian of

transition from 8(‘3) to 4, d.ed,

KEY =TI ey, (4.16)

With the help of (A.18) we can carry out the integration in
(A.17) if the swmmation is interchanged with integration, and

/ A -
then new integration variables,a - Std" s are intreduced for

each addend in (A.17)

Ply)=0" 8 NPy, a9y

>
where O ( )-_-B' (§‘* ) and @ (‘é)"— 1.0  ir e,
K M4 4 K 4
é—K . iespectiffrely. It follows from (A.j.9) that @(Sa) =
= @(%) ) QES . Therefore, < g%l%’): <‘3\\é’), and
Eq. (4.18) is proved. Note that @ [%) =W(y)

26



if };P(‘é) belongs to the initial Hilbert space LP(%) dﬂ(x(a))
since EP(% a) k:P(a) and

& =
it

To get the kernel (A.8) for a finite time interval, it is

(& 20)

necessary to iterate (4,13). By definition of the scalsr product
(15..5), we have '

L&a(%»8’):5K431y¢[LKHAL>L£(%“%’)=

”c} . el - ? .
:éN e d /2U Qd% Sda [Oe ( )Usgg(gi,g")@(%ﬁéf).

In the integral over %L we substitute (4,12) for G(_%ﬂ.,al)

(4, 21)

and interchange the order of summation and integratiocn, Then
using {4.18) we change variables Léi - 931 = g(‘a ) in each
addend after which the integrals over 3 aﬁ can easily be taken,
Further, we take advantage of the second equali_ty (A.16) into
which one should substitute the explicit expression (4.13) znd
transform the measure ‘JLL— 2(’5\%) in accordance with (4.18).
The remalning sum ovesr S.disappears because of (A4,20), On the

whole, we get

UQE (%,Lé/)‘ S O[% { S Ue{cj ‘Q)UQH( )} (&d”’g')_ (4,22)

o ()

eff
The integral in brackets of (&,22) is identified with U2

Thus, for a finite time interval U we may write

U, (4,4)= S %Uﬁ% RN (4. 2)

[RN
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where U;H (%,\d”) is determined by the standard HPI representsw

ticn

t e t

Ueﬁ(%’%ﬂ):\s § dPC”C)de(QQXP . Srjrc (P\d‘ H ) Ch2)
£ t=o QW) o s

and \d(t):\é , %(O)Ilé”.

In conciusion, two notes have to be made. As notieced above,
the transformations from 5 are not alway linear. In the genergl
case, §%: S[la) is a function of géK . Moreover, it is not
difficult to invent a chanze of variables under which the
functions S(%) cannct bte lefined smoothly on the Full region
K, but this is possitle on its subrezgions K_d ’ K = Z@ ch .

It means that the group Ssplits inte subgrours S =ﬂ®5d, and
besides, each Sd s acts ounly on KD( and has fixed number of
elements, In fact,the split of K 4into K,*should be performed
#.r,t. the number of elements of S in the neighbourhoocd of a point
SE K « An example of such coexrdinates is given in seci.4,
However, the above-suggested derivation of HPT holds valid if

in all calculation, 754“’:43%5‘ and SK - Z‘ SK“ '

Now EPI can be written in the polar coordinates with the
help of the recipe {A.23). In this case the integration over new
canonical variables H: (r, 0) » P:(Pr aPa) has to be fulfilled
within infinite limits and

Qlrr,e,8)=8(rr) q.(8,6)+ §(ree)g(8,04%) (hon

This result coincides with the one obtained in [14] if one

= ‘ v
setss J‘u = Y , 3"& = O{Laé (i, Y J,i.e., IB'L %Ld :O)
Vﬁ, = - 44 R
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