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1~ Pbase.ap~oe •t~oture ~~gauge model• 

As bas been shown by one of the authors (11 1 the phase space 

(PS) of pbysical variables in gauge theories may differ from the 

conventional plane. In a number of models with'both abelian and 

non-abelian gauge groups and one physical degree of freedom it has 

been found that its PS turns out to be a cone untoldable into a 

halt-plane. ~he reason is simples .a gauge orbit (a circle, a sphere, 

etc.) bas two common points with the physical axis, say 'J; ~ 1 ao 

that points· Xi .·and.- '.X:i are indistinguishable and the ·pa is the 

halt-plane 'l:t. ~0 with identified points Pt a~d - p! at 

Xi.:. 0 ,.i.e., a cone. It means, in particular, .that after eli­

mination of ·all unphysical variables there still exists a discrete · 

gauge groups z?. with a nontrivial element 'Xi.- -<:lei. acting. 

in the physical apace. ~his phenomenon baa some immediate physical 

consequences. Por example, it leads to doublins of an osc~llator 
frequency and as a_ result to d~ubling of spacing between energy 

levels in the quantum case [1] : In quantum theorY the path integral 

approach changes because of the reduction of·the physical PS [2,3] ~ 
It follows from the latter-that the quasiclassi¢al description also 

changes. ~ particular,· the PS reduction influences energy levels 

of internal excitations of a quantum soliton (_3,4] , and the des.c­

ription of quantum-mechanical· iristantons i~ altered'(3,4]. 

ln the present paper we show that in the Yang~lls theory with 

• a semis.imple' ~auge groups. of a rank. t . , PS of physical .degrees of 

freedom tor the field components at any space point differs from 

the plane. ~he physical PS reduction arises because after the eli­

mination of all unphysical variables there.remai~ a discrete gauge 

group acting in the PS of physical variables. ~is residual discrete 
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gauge group 'aDQG) cannot deer•••• a·number ot p~yaioal degreea ot . . 
t:reedom 'put it deoreuu tbetr PS ·identitrins acme point• ~n it. 

BDQG ia (®l'l.)e®W where•VJ G tbe Werl group (5]. ~· 
latter is interpr~ted ss th~ exiatence 1 in the s7stem1 cf· ~ phy­

sical field components with PS being a cone equivalent-to a half­

-plane and of tb~ otber e ooa~onenta witb P8 being a .2, e -dimen-
' ·K+ ne + 

lienal manifold diffeomorphic to ® r\ , wbere K ia 

tbe· We7l camera ot tbe group (51 •. 
' -... 

2. Gauge tielda with 8U(2) group 

lirat consider tbe aimpleai oa111. of 8U(2) group. ~e Lagrangian 

is Cl. .• yv 
· :t. = - ~ Fy.~ F ~ , a;= !,2..~. (1) 

rll. , 
wbere r- ~" 11 a aiandard tensor [61 • OanoDioal momentum is 

Q. ..... ~- •. 0.. 'Jt"}'- ::. 11-'/C)A{ = · F .fO · 1 ao we ban pnmarr constraints 

~ 0~ = 0 t 11 • Define !F K = ~KQ. reo...• wbere 't; 0... are ibe 

Pauli matnoea. Under gauge iranaformations tbe7 transfom as 

ttr' c1 ·~-t. S r· a., 1 ~" = ~ ;!fl< >:> , = exp L 1. cu (:r.Jrco. . (2 ) 

Wa.('X.) in (2) are arbiirarr tunoiion of X. • We define tbe pbJ­

aical variables in tbe following manner. Oboose gauge so tbat at 
. 0 l. 0 2 . 
X='X. 

1 
~i('X:.)=~i (-i-)=0 fixiilg two of tbree functions •. In 

general, gauge transformations are generated botb b7 primary and 

a~oondarr constraints, as independent generators (71 .·~at is wby 

we do not focus attention on unpbrsiaal variables ·A 0 , 2[0 = 0 . -
Bote, however, tbai we still bave gauge tranaformations changing· 

..,..z. . t"TT" l,'l. 0) 
sign of .11 i without touobing equaliiiea . '"'' t ( x. = 0 
(for example,· S =ex?\.- iw(:r.)<e,. 1, wbere W (-x.}= 'Jrh,,x~ R£(1:.) 

and ~(-:x:):O, 'l: ~ !\(&), RE(i)= {<x:I~-~\<E, lt-tl<e}, E~O. It means 

i~i tbe pbJaioal momentum 'Jr.,/' E: [01 oo) 1 while~ A~ obangea 

2 

'c 

" 

in the interval ( - oo J oo ). According to [1] it means that· 
. A~ 3 . PS of the canonical pair· 1. , 'Jf i is a cone unfoldabl_! into, 

a half-plane. This result' follows also from' the fact that S 
A ~ ( 0) . A :. -~ .A?. 

changes sign of 1. 'X too, i.e. p~ints 1 , 'Jr 1 and --: t 
~ . . . . A:. rtr-3 

-'Jfi are indistinguishable. Thus, physical ps·of 1 , Jlt. 

is the cone con( ~ ). 

We are left.with gauge transformations connected with ;)
1= 

= exp [ i. 'lJ('JC) '\::~ 1 (stationary group. of :Jr1~CC2> ). The remaining 

arbitrariness can be fixed by demanding, say ~:=0. Again there 

are discrete gauge transformations preserving this ·equality but 

Changing Sign Of' 'Jr:[. I namely s'= e)(p [ ~W('X.)'C31, W('X) 
,.... '2. 2. 

being the same as in · S. '• So, PS of A 2. , :Jr 2. is also a 

con ( 'Jf ). 
We conclude tpat of nine pairs of canonical variables ~K~ A: , there are three unphyoical and of tho rl3m~ining physical 

ones two have conic PS con ( ~ ). It is necessary to say, the 

choice of concrete physical degrees bf freedom with the conic PS 

is, in a sense, conventional. Indeed, in according to "(2) the trans­

formations S and s' _fr~~-RDGG::: Z2. ® Z2 ~~t on all.ph.ysioal 

field components, so they identify points in the total physical PS 

(8) • However, it is important that such physical degrees of free­

dom can be picked out. We use this analysis as a pattern in the case 

of an arbitrary group. 

·3. The case of an arbitrary gauge group 

·consider now the general case of an arbitrary compact simple 

gauge group G. Its' Lee agebra .X in Cartan-Weyl basis reads as [5] 

· [~"',e-~.J=ot,Ih,eoll=Ch,<X)ec£, [e"',eJ]:/{Je"'~f<J> 
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where o( is a positive root. e ,;_ is the corresponding root 

vector, Not..j> are numbers and fX, h.. belong to the Cartan sub­

algebra H~ The scalar product ( cL, h. ) for elements X, '<l EX 
. . ( ) s ( II "') h is derined as X~~ = p x. ·'a , where 'l: is an operator in 

X: 'X.~= [x.~~]· Eviilently, canonical momenta 'Jfl< E. X 
and we have the expansion 

'JIK = L (:n-;o( e~ + 'Jr'""OL e_~ J + L 'Jf: w. 
ol>O I' · cuED (4) 

where Jl ±eX. 5f to.) are functions of x', n is a set of simple 
K ' ~ . 

roots and <X. > 0 stands for summation over positive roots. 

Gauge transformations of 

I 1\ 
. :Jr = p <Jr. 

K ..)~ . K 

C)f~ can be; written in the form 

" = exp j (x.) 
II 

2a 
equivalent to (2)(aocording to definition of the operator 

1\ .. . .. 

For J there is. an· e~pansion analogous to (4) . 
A . + I\ - 1\. .) )' . A 

.J, = L (Xo( e"' + lo( e_ot + L :Aww 

(5) 

j ). 

e>~->0 .. . . GJE.D (6) 

with N (=.c!Lh1 G) arbitrary functions A.!Cx), Jlw(:x:). 

After .elimination of' no~phyeioal variables A
0 

, 'Jf
0 

( .<Jfo •0) 

we are left with JN pairs of' canonical variables ~K ' A of' 
> K 

which only 2N are physical. . 

Now let us take. Jr1 • As a~·element ~f JC it can be repre-

sented in the form 

'Jf.=e)(pfL (~ ~ot. + l- ~_}l'Jfk 
1. . l~'>O o< .at <)j 1. ' 

:Jr h = \' 'Jfw Ct.) E H 
· i L 1 

we:n. 
Eq. (7) etates.that the~e are l physical components ~n ~i 

(7) 

(~•dimH• 

•number of' simple roots. rn fact, Eq.(7) givee·a general recipe for 

identification of physical variables in tpe adjoint representation). 

The ·rest of gauge transformations .connected with operators 
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'1' 

t-

1\ 

' ~ = exp l L lw ~ 1 
h. h. cuc:n 

do not change :Jr
1 

(they compose a stationary 

(8) 
h. 

subgroup of' 'JT i 
But besides this group there is a discrete Weyl group W (5] acting 

h. in H, i.e., in the apace of physical momenta ~. and simultane-. . h. ~ 

ously in the configuration apace A
1

_ • It cannot. decrease the 

number of physical variablesbut it does reduce their PS. As is well 

). 

h. CiT"~-.+ K+-known [5] , any ~i can be obtained from ..111. € by trans-

formations from W, where }( + is the Weyl camera, so that 
h.;- ) . h. 

('Jr1 , W > 0 , WEn • Thus physical momenta 91' 1 belong 

K+ ,h. A"'- 1!) 2e · 
to and PS of ..111 , i. is II\ wi tb all points · 

h. ! . h. i .,.,r . h. Ah. w A w- \II 'Jf w- w E. w identified. PS of the. :Jr i A 

1 , 1.. , ·+ e ' ·• 
is, in fact, a hypercone equivalent to I<·®. IR 

Now consider the gauge transformations connected with operators 

(8). According to (J) §~.. e ~ =- e~p('f)eO(.) ~ex= L.:A.w (w,~o{), w~:fi. 
A 

Then, applying gh.. to ::Jr2. one can nullify factors in front 

Of 1 basic elements t say e W + e _ w . • Indeed I 

§~._ 'JI?. = ~2.h. + ~ z:: { [ 3r;01.. e ~C( + ~-o(e-~«] ( ect + e_cx) + 

. <><:>0 ' . (9) 

+ [ x;e~. e ~~ _ 1r ~oL e-lf«_] ( e""- e _0()} 
and the factors in front of e + e_w <0 

are zero if 

'Jr +W exp[L: lw' (cu~w)] + Jr-2wexb[- L lw' (w~w)]=o. qo> 
~ 'n 1 w~O WE . . 

Matrix ( W ~ 
1 

W J) ia nondegenerate [5] (i and j enumerate 

eimple roots), eo Eqs. (10) are alwaye solvable relative to ~t<) 

Observation that Eqs. (10) are compatible with change of the sign 

of any basic element e w - e- w ) (.i) E. [l concludes the conside­

ration. The laat·atatement follows from the solvability of tbe 
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equations 

exp [z ~ " ~~'] ( e - e_wJ = (!- 2 ~ ,) re - e ) · 
w''Efi w w . ww \.' w -c..l (11) 

where w1 is fixed.· Eqa. (11) are also always solvable with res­

pect to ~ u/1 because the ~ .. e- m~trix ( w i. ) (.r.) d) is' nonde­

generate. Therefore operator (8) with 2 
11 

satisfying Eqs. (11) 
I W z gives for every CO a n·ontrivial element of gauge group 2. 

(c -tWI '\ 
changing sign of physical canonical·variablea \']\' 2. - Jf-w )/Vi, 

( 
+Ul

1 -w) ;, 2.. · A 2. - A i ;Vf . It means that each of this 1 pairs of physical 

variables baa a conic PS.( ~) unfoldable into a-half-plane.' 

·In the general case of a reductive group (which is the direct 

product of simple and abelian groups) the situation for the abelian 

subgroup is analogous to that of electrodynamics - the PS of the 

vector field physical variables is standard (full plane) because of 

the .gauge invariance of the corresponding canonical ·momenta. Thus, 

for the reductive group of rank 1 PS of 2 ( e - e 0.... : ) degrees of 

freedom reduces, where ea.. is a dimension of the. invariant abelian 

subgroup. 

Our results concern to the classical Yang-Mille theory. In the 
/ . . _,.-

presen.t letter, we shall not discuss the quantum theory and physi-

cal consequences of the PS reduction for Yang-Mille fields since this 

problem reqUires a·apecial investigation. However 0 in the next point, 

we shall consider the other gauge field model in this respect. 

4. PS structure in the Glaahow-Weinberg-Salam model 

Let us tu~ n'ow ·to' on.e immediate physical consequence of the 

PS reduction phenomenon. We state ~ha~ th~ Higgs .field .in the Glaa­

how-Weinberg-Sala~(GWS) model. cannot be elementary. After conveyance 

of. the Higgs doublet : (~+):f0)= lj .Phase degrees• of freedom to lon-

6 
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gitudinal components of vector fields .. we are left with a real scalar 

field ( . 0 J J> ). Its. PS is con( 9r ) because J · is positive 

~ > 0 • Equivalently, we may present it as a transiti9n c~: ~0) 
~ ( 0, J) . where g is a real field (i.e.,-cO<J'<oo ) 

with the 

residual discrete gauge group 

ately get.that < f>o = 0 

n ® l2 (x) 
I'JC r-1 

becaus~ J 
• Then we immedi­

. cl}angea sign 

under the gauge group Zr;. while vacuum (like any .other phy-

sioal state) is gauge invariant [5] (~ee Appendix). It.meana 
"' . that f cannot serve as Higgs field (it cannot develop a nonzero 

vacuum expectationvalue (VEV); it is easily seen that all Wightman 

(i.e., <.s (xi) ... J c oc~~.) >o ) also vanish, 80 functions of. 
,..., 
s ('V 

J , in fact, does not exist in .a proper !Jenae ). The field 5' 
may have a nonzero VEV but it cannot be c.onsidered as a normal 

scalar field because of its being positive. We could. con~ider J 
(

- ) 1/2. as a composite field .)> = '-:9 'f . For renormalizability of 

GWS J. should have a corpuscular.manifestation, i.e. 1 matrix. 

elements of even numbers ,of fields . IJ> ~ should have 

proper poles in the momentum space. But it.ia the questio~ of dyna-

mios. 

The hypothesis that the Higgs·field is c;ompoaed of two spinor 

fields look more· plausible• In fact, we already have in. physics an 

example of fenomena like that - the.Cooper pairs in superoonducti­

vi ty which play the role of the .. Higgs field. After acquiring: masses 

b .. vector fields there still: exists a. residual Z 2 gauge group 

changing toe sign of the electron field ~ [6] • The bilinear com­

bination of.~- (or more accurately a:bound state of ~ in 

the local limit) is ··invariant under Z 
2 

and may have a nonzero· 

VEV. 
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In conclusion we sould like to pay attention to Ref• 10 

in which the authors also found for the Higgs expectation value 

<'f)
0
= 0 in the model on the lattic~: the twq-point function also 

vanishes in the continuous limjt in full accord with our results. 

5. APPENDIX 

There is ~ome misunderstanding concerning the notion of 

"spontaneous breaking of gauge symmetry". Below we argue that in 

contrast with the global symmetry, the local one cannot be broken 

anyway. 
' 

In the case of spontaneous breaking of global symmetry all the 

Lagrangian symmetries are left untouched. It is the ground state that 

becomes "non-symmetric". For the gauge symmetry there is a principle 

difference - appearance of constraints. They are the conditions of 

self-consistency of dynamics and they fix unphysical variables. So 

the constraints neither can be "broken" nor omitted without chaning 

physics. Even when we break gauge invariance by fixing gauge we must 

be sur:e that the physical sector of the theory is left untouched. 

All the physical quantities should be gauge invariants, i.e., 

they should not depend on unphysical variables. In quantum theory it 

means that all physical quantities should commute with the first 

class constraints, and the constraints must nullify all the physical 

states •. It is jast because these constraints are generators.of gauge 

transformations. In this sense gauge symmetry never can be violated 

and the Dirac condition on physical states [7) never can be violated 

or discarded. 

What happens then in the case .of the Higgs phenomenon? There are 

two approaches here: form~l and physical one. In the formal approach 

the phase of the charged field ~ becomes a longitudinal component 

II . • 'Au· ·k.l. . .L. .AK of the vector field. AK = . K + 1\K J aKAK.;O. Usu!"lly it 

is· tacitly assumed that it is an Unphysical degree of.freedom (it 

can be eliminated by gauge transformation). Because the component " . . . . -
A K of a massive field is physical one everything looks here so 

,as if gauge·symmetry were broken. But an unphysical variable . 

cannot become physical one. The thorough analysis [1].shows that in 
. A" . ~ fact both K and the'phase of the field · are linear combi-

nations of physical and unphysical variables. In the "normal" case 

OK AK=O and the physical component of the phase describes the 

Coulomb field of charged particles. When the Higgs phenomenon takes . . ·. . II 

place formally this physical degree of freedom goes to AK. • Of 

course, in fact (i.e., .in physical approach), it is change of the 

ground state.described by the physical variables- that is all what 

happens in reality. The superconductivity gives us a clear example 

in this resp~;~ot. 
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