$90-207$

объединенный ииститут ядерных исследований дубна

P. 93

E2-90-207
L.V.Prokhorov*, S.V.Shabanov

PHASE SPACE OF THE YANG-MILLS FIELDS

Submitted to "Modern Physics Letters A"
*Leningrad State University, Department of Physics, Stary Petergof, Uljanovskaja, 1, Leningrad, USSR

1. Pbose space gtructure in gauge modela

As has bean shown by one of the authors [1], the phase apace (PS) of phyaical variables in gauge theoriea may differ from the oonventional plane. In a number of modela with both abelian and non-abelian gauge groups and one physical degree of freedom it has been found that 1ts PS turme out to be a oone unfoldable into a balf-plane. The reason is simples a gauge orbit (a oirole, a ephere, oto.) bas two common points with the physioal axis, bay x_{1}, so that pointe x_{1} and $-x_{1}$ are indiatinguishable and the $p s$ is the balf-plane $x_{1} \geqslant 0$ with identified points P_{1} and $-P_{1}$ at $x_{1}=0,1 . \theta .$, a cone. It means, in partioular, that after elimination of all unphysioal variablea there still exiata a disoreto gauge groups \mathbb{Z}_{2} with a nontrivial element $x_{1} \rightarrow-x_{1}$ aoting. in the physical apaoe. This phenomenon bas some immediate phyaical oonsequences. For example, it leads to doubling of an osoillator frequenoy and as a result to doubling of apacing between energy levels in the quantum oase [1]. In quantum theory the path integral approsch changes because of the raduction of the phyaical PS $[2,3]$. It follows from the latter that the quasiolassióal desoription also ohanges. In partioular, the PS reduotion influenoes onergy levele of internal oxoitations of a quantum aoliton $[3,4]$, and the desoription of quantum-meohanioal instantona is altered $[3,4]$.

In the present paper we show that in the Yang-Mills theory with a nemisimple gauge groups of a rank l. PS of phyaioal degreea of Ireadom for the field componenta at any apace point diffors irom the plane. The physioal Ps reduotion ariaes booaue after the olimination of all unphyaioal variablea there remaine a diserete gauge group acting in the ps of physical variables. This reaidual disorete

gauge group (RDGO) onnnot deorepe a number of physioal degrees of freedom but it deoreases theif Psidentifying aome pointe in it.
 latter is interpreted as the existence, in the syatem, of l physioal field oomponents with $P S$ being oone equivalent to a half--plane and of the othor l oompononta with ps boing a $2 l$-dimenanol manfold diffeomorphio to $K^{+} \otimes R^{l}$. whore K^{+}10 the Woyl oamera of the group [5].

2. Cauge fielda with $\operatorname{sU}(2)$ grous

Firet oonsider the impleat one of gu(2) groupe The Lagrangian is

$$
\begin{equation*}
\mathcal{L}_{a}=-\frac{1}{4} F_{\mu \nu}^{a} F^{\mu \nu}, a=1,2,3 \tag{1}
\end{equation*}
$$

where $F_{\mu \nu}^{a}$ is a standard tonsor $[6]$. Canonioal momentum is $\pi_{\mu}^{a}=\partial \mathscr{L} / \partial \dot{A}_{a}^{\mu}=F_{\mu}^{a} \mu_{0}^{a}$, so wave primary constraints $\pi_{0}^{a}=0[7]$. Define $J_{K}=\pi_{K}^{a} \tau_{a}$, Where τ_{a} are the Pauli matrices. Under gauge trangiormations they trangiorm as

$$
\begin{equation*}
\underline{\pi}_{k}^{\prime}=S \underline{\pi}_{K} S^{-1}, \quad S=\exp \left[i \omega^{a}(x) \tau_{a}\right] . \tag{2}
\end{equation*}
$$

$\omega^{a}(x)$ in (2) are arbitrary function of x. We define the physical variablas in the following mamer. Ohoose gaige so that at $x=\stackrel{\circ}{x}, \pi_{1}^{1}(\dot{x})=\pi_{1}^{2}(\dot{x})=0$ fixing two of three funotiong. In general, gauge transformations are genersted both by primery and seoondary constraints, as independent generstore [7]. That is why we do not foous attention on unphysical variables $\underline{A}_{0}, \mathcal{J}_{0}=0$. Hote, however, that we still have gauge transformations ohanging gign of π_{1}^{3} without towohing equalities $\operatorname{JI}_{1}^{1,2}(\dot{x})=0$
(for example, $\tilde{S}=\exp \left[-i \dot{\omega}(x) \tau_{2}\right]$, where $\dot{\omega}^{0}(x)=\pi / 2, x \in R_{E}(\dot{x})$ and $\dot{\omega}(x)=0, x \in R_{\varepsilon}(\dot{x}), R_{\varepsilon}(\dot{x})=\{x:|\underline{x}-\dot{x}|<\varepsilon,|t-t|<\varepsilon\}, \varepsilon \rightarrow 0$. It means that the physical momentum $\mathbb{J}_{1}^{3} \in[0, \infty)$ while A_{4}^{3} ohanger

In the interval $(-\infty, \infty$). Aocording to $[1]$ it means that PS of the canonical pair A_{1}^{3}, π_{1}^{3} 1s a cone unfoldable into a half-plane. Thia result follows also from the faot that S
changes bign of $A_{1}^{3}\left(x^{\circ}\right)$ too, 1.e. points A_{1}^{3}, π_{1}^{3} and $-A_{1}^{3}$ $-T_{1}^{3}$ are indiatingulabable. Thus, physical PS of A_{1}^{3}, π_{1}^{3} is the cone con (π).

We are left with gauge tranaformations connected with $S^{\prime}=$ $=\exp \left[i v(x) \tau_{3}\right]$ (atationary group of $\pi_{1}^{3} \tau_{3}$). The remaining arbitrarineas can be flxed by demanding, asy $\mathbb{J}_{2}^{1}=0$. Again there are discrete gauge transformations preserving this equality but changing sign of $J \Pi_{2}^{2}, ~ n a m e l y ~ \tilde{S}^{\prime}=\exp \left[i \omega(x) \tau_{3}\right], \omega(x)$ being the same as in \tilde{S}.So, PS of A_{2}^{2}, π_{2}^{2} 1s alao a $\operatorname{con}(\pi)$.

We conclude that of nine paire of canonical variables π_{k}^{a}; A_{K}^{Q}, there are three unphysical and of tho romaining phyaioal ones two have conic PS con (J)). It is necessary to eay, the choice of concrete phyeical degrees of freedom with the conio PS 18, In a senge, oonventional. Indeed, in according to (2) the transformations \tilde{S} and \tilde{S}^{\prime} from RDGQ $=\mathbb{Z}_{2} \otimes \not \mathbb{Z}_{2}$ aot on all physioal field oomponents, so they identify points in the total physioal $P S$ [8]. However, $1 t$ 1e important that suoh phyeical degrees of freedom oan be picked out. We use this analyeis as a pattern in the oase of an arbitrary group.
3. The oase of an erbitrary gauge group

Consider now the general case of an arbitrary oompact aimple gauge group G. Its Lee agebra X in Cartan-Weyl basis reads as [5] $\left[e_{\alpha,} e_{-\alpha}\right]=\alpha,\left[h, e_{\alpha}\right]=(h, \alpha) e_{\alpha,}\left[e_{\alpha}, e_{\beta}\right]=N_{\alpha \beta} e_{\alpha+\beta^{\prime}(3)}$
where α is a positive root, e_{α} is the corresponding root vector, $N_{\alpha \beta}$ are numbers and α, h belong to the Cartan subalgebra H. The acalar product (α, h) for elemente $x, y \in X$ is defined as $(x, y)=S_{p}(\hat{x} \hat{y})$, where \hat{x} is an operator in $X: \hat{x} y=[x, y]$. Evidently, canonical momenta $J_{k} \in X$
and we have the expansion

$$
\begin{equation*}
\pi_{k}=\sum_{\alpha>0}\left(\pi_{k}^{+\alpha} e_{\alpha}+\pi_{k}^{-\alpha} e_{-\alpha}\right)+\sum_{\omega \in \Pi} \pi_{k}^{\omega} \omega \tag{4}
\end{equation*}
$$

where $\pi_{k}^{ \pm \alpha}, \pi_{k}^{\omega}$ are functions of x, Π is a set of aimple roots and $\quad \alpha>0$ stands for summation over positive roots. Gauge traneformations of J_{K} can be written in the form

$$
\begin{equation*}
\pi_{k}^{\prime}=\hat{\rho}_{g} \pi_{k}, \hat{\rho}_{g}=e x p \hat{\mathcal{V}}(x) \tag{5}
\end{equation*}
$$

equivalent to (2)(according to definition of the operator $\hat{\mathcal{X}}$). For $\hat{\chi}$ there is an expansion analogous to (4)

$$
\begin{equation*}
\hat{\chi}=\sum_{\alpha>0}\left(\lambda_{\alpha}^{+} \hat{e}_{\alpha}+\lambda_{\alpha} \hat{e}_{-\alpha}\right)+\sum_{\omega \in \square} \lambda_{\omega} \stackrel{\hat{\omega}}{\omega} \tag{6}
\end{equation*}
$$

with $N(\equiv \operatorname{dim} G)$ arbitrary functions $\lambda_{\alpha}^{ \pm}(x), \lambda_{\omega}(x)$. After elimination of nonphysical variables $A_{0}, J_{0}\left(J_{0}=0\right)$ we are left with $3 N$ pairs of canonical variablea J_{K}, A_{K} of which only 2 N are physical.

Now let us take π_{1}. As an element of X it can be repreeented in the form
$\pi_{1}=\exp \left[\sum_{\alpha>0}\left(\lambda_{\alpha}^{+} e_{\alpha}+\lambda_{\alpha}^{-\hat{e}}-\alpha\right)\right] \pi_{1}^{h}, \pi_{1}^{h}=\sum_{\omega \in \Pi} \pi_{1}^{\omega} \omega \in H$
Eq. (7) etates that there are 1 physical componenta in π_{1} ($l_{\text {madim }}$ = number of almple roote. In fact. Eq. (7) gives a general recipe for identification of phyaical variablea in the adjoint representation). The reet of gauge traneformations connected with operatore

$$
\begin{equation*}
\rho_{h}=\exp \left[\sum_{\omega \in \Pi} \lambda_{\omega} \hat{\omega}\right] \tag{8}
\end{equation*}
$$

do not change π_{1}^{h} (they compose a atationary subgroup of π_{1}^{h}). But besides this group there is a diecrete Weyl group W [5] acting in H, 1.e., in the space of physical momenta π_{1}^{h} and simultaneously in the configuration space $A_{1 .}^{h}$. It cannot decrease the number of physical variablesbut it does reduee their PS. As is well known [5] , any π_{1}^{h} can be obtained from $\pi_{1}^{h+} \in K^{+}$by trane= formations from W, where $K+$ 1e the Weyl aamera, so that $\left(\pi_{1}^{h+}, \omega\right)>0, \omega \in \Pi$. Thus physical momenta $\pi_{1}^{h} \quad$ belong to K^{+}and PS of π_{1}^{h}, A_{1}^{h} is $\mathbb{R}^{2 l}$ with all pointa $w A_{1}^{h} W^{-1}, w J_{1}^{h} w^{-1}, w \in W$ 1dentified. PS of the π_{1}^{h}, A_{1}^{h} 1a, in fact, a hypercone equivalent to $K^{+} \otimes \mathbb{R}^{l}$

Now consider the gauge trangformations connected with operators (8). According to (3) $\hat{\rho}_{h} e_{\alpha}=\exp \left(\varphi_{\alpha}\right) e_{\alpha}, \varphi_{\alpha}=\sum \lambda_{\omega}(\omega, \alpha), \omega \in \Pi$. Then, applying $\hat{\rho}_{h}$ to π_{2} one can nullify factors in front of 1 basic elements, say $e_{\omega}+e_{-\omega}$. Indeeds

$$
\begin{align*}
\hat{\rho}_{h} \pi_{2} & =\pi_{2}^{h}+\frac{1}{2} \sum_{\alpha>0}\left\{\left[\pi_{2}^{+\alpha} e^{\varphi_{\alpha}}+\pi_{2}^{-\alpha} e^{-\varphi_{\alpha}}\right]\left(e_{\alpha}+e_{-\alpha}\right)+\right. \\
& +\left[\pi_{2}^{+\alpha} e^{\left.\left.\varphi_{\alpha}-\pi_{2}^{-\alpha} e^{-\varphi_{\alpha}}\right]\left(e_{\alpha}-e_{-\alpha}\right)\right\}}\right. \tag{9}
\end{align*}
$$

and the factors in front of $e_{\omega}+e_{-\omega}$ are zero if
$\pi_{2}^{+\omega} \exp \left[\sum_{\omega^{\prime} \in \Pi} \lambda_{\omega^{\prime}}\left(\omega^{\prime}, \omega\right)\right]+\pi_{2}^{-\omega} \exp \left[-\sum_{\omega^{\prime} \in \Pi} \lambda_{\omega^{\prime}}\left(\omega^{\prime}, \omega\right)\right]=0$
Matrix $\left(\omega_{i}, \omega_{j}\right)$ is nondegenerate [5] (1 and j enumerate eimple roote), so Eqs. (10) are always solvable relative to λ_{ω} Observation that Eqs. (10) are compatible with change of the sign of any basic element $e_{\omega}-e_{-}, \omega \in \Pi$ concludes the consideration. The last statement follows from the solvability of the
equations

$$
\begin{equation*}
\exp \left[\sum_{\omega^{\prime \prime} \in \Pi} \eta_{\omega^{\prime \prime}} \hat{\omega}^{\prime \prime}\right]\left(e_{\omega}-e_{-\omega}\right)=\left(1-2 \delta_{\omega \omega^{\prime}}\right)\left(e_{\omega}-e_{-\omega}\right) \tag{11}
\end{equation*}
$$

where ω^{\prime} is fized. Eqs.(11) are also always solvable with respect to $\eta_{\omega \prime \prime}$ because the $l \times l$-matrix $\left(\omega_{i}, \omega_{j}\right)$ is nondegenerate. Therefore operator (8) with $\eta_{\omega^{\prime \prime}}$ satisfying Eqs. (11) gives for every ω^{\prime} a nontrivial element of gauge group \mathbb{Z}_{2} ohanging aign of physical canonical variables $\left(\pi_{2}^{+\omega^{\prime}}-\pi_{2}^{-\omega^{\prime}}\right) / \sqrt{2}$, $\left(A_{2}^{+\omega^{\prime}}-A_{2}^{-\omega^{\prime}}\right) / \sqrt{2}$. It means that each of this 1 pairs of physical variables has a conic PS: (π) unfoldable into a-half-plane.

In the general case of a reductive group (which is the direct product of simple and abellan groups) the situation for the abelian aubgroup is analogoue to that of electrodynamice - the pS of the vector field physical variables is standard (full plane) because of the gauge invariance of the corresponding canonical momenta. Thus, for the reductive group of rank 1 PS of $2\left(l-l_{a}\right.$) degrees of freedom reduces, where l_{a} is a dimension of the invariant abelian subgroup.

Our resulte concern to the olaseical Yang-Mills theory. In the present letter, we shall not discuss the quantum theory and physical consequences of the PS reduction for Yang-Mills fields since this problem requires a epecial investigation. However; in the next point, we shall consider the other gauge field model in this respect.

4. PS structure in the Glashow-Weinberg-Salam model

Let us turn now to one immediate physical consequence of the PS reduction phenomenon. We state that the Higgs field in the Glas-how-Weinberg-Salam (GWS) model cannot be elementary. After conveyance of the Hiegs doublet $\left(\varphi^{+}, \varphi^{0}\right)=\varphi$ phase degrees of freedom to lon-
gitudinal components of veotor fields we are left with a real scalar field ($0, \rho$). Its PS is con(\mathbb{T}^{\prime}) because ρ is positive $\rho>0$. Equivalently, we may present it as a traneltion ($\left.\varphi^{+}, \varphi^{0}\right)$ $\rightarrow(0, \tilde{\rho}), \quad$ where ρ is a real field (1.e.,$-\infty<\tilde{\rho}<\infty$)

> with the
residual disorete gauge group $\prod_{x} \otimes \mathbb{Z}_{2}(x) \quad \tilde{\tilde{\rho}}$. Then we 1mmediately get that $\langle\tilde{\rho}\rangle_{0}=0$ because $\tilde{\rho}$ changes sign under the gauge group \mathbb{Z}_{2} while vacuum (like any other physical state) is gauge invariant [5] (see Appendix). It means that $\tilde{\rho}$ cannot serve as Higgs field (it cannot develop a nonzero vecuum expectation value (VEV); it is easily seen that all wightman functions of $\tilde{\rho}$ (i.e., $\left\langle\tilde{\rho}\left(x_{1}\right) \cdots \tilde{\rho}\left(x_{n}\right)\right\rangle_{0}$) also vanish, so $\widetilde{\rho}$, in fact, does not exist in a proper sense). The field ρ may have a nonzero VEV but it cannot be considered as a normal scalar field because of its being positive. We cculd congider ρ as a composite field $\rho=(\bar{\varphi} \varphi)^{1 / 2}$. For renormalizability of GWS $\quad \rho$ should have a corpuscular manifestation, i.e., matrix elements of even numbers of fields $\bar{\varphi}, \varphi$ should have proper poles in the momentum space. But it is the question of dynamios.

The bypothesis that the Higgs field is composed of two spinor fields look more plausible. In fact, we already have in physics an example of fenomena like that - the Cooper pairs in superconductivity which play the role of the Higgs field. After acquiring masses b vector fields there still exists a residual \mathbb{Z}_{2} gauge group changing the aign of the electron field $\psi[6]$. The bilinear combination of ψ (or more accurately a bound state of ψ in the local limit) is invariant under \mathbb{Z}_{2} and may bave a nonzero VEV.

In concluaion we sould like to pay attention to Ref: 10 In which the authors aleo found for the Higge expectation value $\langle\varphi\rangle_{0}=0$ in the model on the lattices the two-point function aleo vanishes in the continuous limit in full accord with our resulte.

5. APPENDIX

There 18 some misunderstanding concerning the notion of "spontaneous breaking of gauge symmetry". Below we argue that in contrast with the global symmetry, the local one cannot be broken anyway.

In the case of epontaneous breaking of global symmetry all the Lagrangian symmetries are left untouched. It is the ground state that becomes "non-symmetric". Por the gauge eymmetry there is a principle difference - appearance of constrainte. They are the condition of self-consistency of dynamice and they fix unphysical variablea. So the constraints neither can be "broken" nor omitted without chaning physiog. Even when we break gauge invariance by fixing gauge we muet be eure that the physical eector of the theory 1e left untouched.

All the physical quantities should be gauge invariante, 1.e., they should not depend on unphysical variables. In quantum theory it means that all phyeical quantities should commute with the firet clase constrainte, and the constraints must nullify all the physical states. It 1s jast because these conetraints are generators of gauge transformations. In this sense gauge symmetry never can be violated and the Dirac condition on phyeical states [7] never can be violated or diacarded.

What happens then in the case of the Higge phenomenon? There are two approachea heres formal and physical one. In the formal approach the phase of the charged fleld φ becomes a longitudinal component
$A_{K}^{l l}$ of the vector field $\quad A_{K}=A_{K}^{\prime \prime}+A_{K}^{1}, \partial_{K} A_{K}^{1} \equiv 0$. Usually 1t 1e tacitly assumed that it is an unphysical degree of freadom (it can be eliminated by gauge trangformation). Because the component
$A_{K}^{l l}$ of a maseive field is physical one everything looks here , as if gauge symmetry were broken. But an unphysical variable cannot become physical one. The thorough analyels [1]. shows that in fact both $A_{k}^{\prime \prime}$ and the phase of the field φ are linear combinations of physical and unphysical varlables. In the normal" case $\partial_{K} A_{K}=0$ and the physioal component of the phase desoribes the Coulomb field of charged particles. When the Higes phenomenon takes place formally this phyelcal degree of freedom goes to A_{K} - of course, in fact ($1 . \theta$, in physical approach), it is change of the ground state described by the physical variables - that $1 s$ all what happens in reality. The euperoonduotivity gives us a clear example in this respeot.

References

1. L.V.Prokhorov, Sov.J.Nucl.Phys. 35 (1982) 129
2. L.V.Prokhorov and S.V.Shabanov, Phys. Lett.B 216 (1989) 341.
3. S.V.Shabanov, Phase Space Structure in Gauge Theories (JINR, P2-89-533, Dubna, 1989) (in Russian).
4. L.V.Prokhorov and S.V.Shabanov, In: Topological Phases in

Quantum Theory, ed. B.Markoveki, and S.Viniteky (WSPC, Singapore, 1989)
5. O.Loos, Symmetric Spaces (H.A.Benjamen, INC, N.Y.-Ameterdam, 1969).
6. C.N.Yeng and RL M11ls, Phys.Rev. 101 (1954) 1597
7. P.A.M.Dirac; Lecturea on Quantum Mechanice (Yeshiva University, N.Y., 1964).
8. S.V.Shabanov, JINR Preprinte No E2-90-23. E2-90-25, Dubna 1990
9. S.Weinberg, Prog.Theor. Pbye.Suppl. 86 (1986) 43
10.J.Frohlich, G.Morch1o and F.Strocch1, Nucl. Phys. B 190 (1981) 553.

```
Received oy Publishing Department on Harch 22, 1990.
```

