


1. Pﬁese'quop astructure in gauge modele

As has been shown by one ot the authors [1] s the phase apaoe
(¥8) of phyeicel variables in gauge theories may differ from ‘the
oonventional plane.‘In a number of models with botb abelian and A
non-abelian gauge groups and one phyeioel degree ot freedom it has
been found that its PS turns out to be a oone unfoldable into a
half-plana. Tbe reason is simples a gauge orbit (a oirole, a epbere,
eto.) bas two common points with the physioal axis, say QC‘ s BO
that pointe: Xy . and:~ X, are indistinguishable and the ‘PS is the -
half-plane XLz with identified points Fi and —-Pi at
gc =0 sdl.esy 8 cone. It weans, in partioular, that after eli-
mination of all unphysioal variables there still exists a disorete -
gauge groups Z 2 with a nontrivial element . 'I:t.-» — Xy acting -
in the physical space. This phenomenon has some immediate physical
consequences. For example, 1t leeds to doublins of an osoillator
.frequenoy and as a result to doubling ot spnoing between energy
levels in the quantum case [1] In quantum theory the path integral
approach changes because of the reduotion of the physical F3 [2,3] Q
“It follows from the latter that the quasiclassigal desoription also
changes, In partiouler,’the P3 reduotion.intluenoee energy levela
of internal exoitations of a quantum aeliton [}.4] , and the deso-
ription of quantum-meohenioal ‘instantons is altered’ [3.4] -
In the present peper we show that in the Yang-Mills theory with
a aemieimple geuse groups ‘of & rank Q _Pg of physical degreea of
freedom for the field oemponente at any space point differs from
the plane. The physical Ps reduotion ariaea beoauae after the eli=
mination of all unphyaioel variables thers remains a discrete gauge

group aoting in the P3 of phyeioal verieblee. Thia residual disorete




geuge group (RDGA) cannot decrepse a number of pbyeicel‘degreee of
freodom but 1t deorueu their P8 1dentifying some pointl in 1%,
RDGG is (@Z ) ®w where’ W {p the Weyl group (5] « e
latter is interpreted as the exietence, in the system, of a phy-
sical field componente with PS being a oone equivalent to a helf- ’
=plane end of the cther e eolponent- with I'S being a 29 -dimen- ;
sional manifold di:feoneorphic to K'® R where K+ is ?
the Weyl ocamera of the grcup (5. - N ’

2. Gauge fields with SU(2) group

Pirst coneider tho.‘linplut came’ of 8U(2) group.' The Lagrangian

2--+FoF%

where F o:‘ is a etlndnrd tensor [6] Omcnicel momentum is
'»E/'QA-‘“ = F;o ", B0 We have primary constraints
‘Jra' 0 [31 . Define S]' ‘Jrl T, s "here To ~are the

is : .
; 0;:4.25- (1)

)

-Pluli matriou. Under geuse trenetomticne they transform a8
- Sx 8t g. exP[\.&) v, | @ D

(] ('x) in (2) are arbitrary function of C . We define the phy- ;
siocal verieblee in the following manner. Choose gauge so that at L
'x='.;: I ('x.) 3r () =0 fixing two of three functions. In

: generel, gauge trenefomtione are genereted both by primery and

- secondary’ constraints, as independent generators [1] . That 1s why

we do not foous attention on unphyeieel nrieblee A ‘JT o .

0 » =0
XNote, however. that we etill have gauge trensfermetione ohanging 8
|. 2
sign of 'JT without touching equalities (x)=0

(for example, S = exp ‘_ 10(x) Ty, where w Qx.) “J%' 'ICéR (z)
- and O(x)=0, X € RE('x) R (®)= {fx: jxc-%KE, lt-lkﬁ} €+0. It means
that the physical momentum 97 € [0 00) N while Ai ‘ ehengee
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in the interval ( — ©° ) 005 ). According o [1] 1t means- that

PS of the canonicel palr’ Ai ”, 'Jl"3 18 a eone unfoldeble into>

i

a helf-plene. This reeult follewe eleo from the fact thet S

changee eign of A (‘I) teo. i.e. pointe Af ,' Urf ‘end—.'Ai
_3r  are indietinguieheble. Thus, phyeical PSof Af erg
18 the cone con{ I ). . ‘ a
- We are left -with gauge treneformetiene connected with ,Sylz .v .
= eXP[LUCOC) 'C3] (etetionery greup of iﬂ' ’C-_,, ). The remaining

‘arbitrariness can be fixed by demending, say ST' ..0 . Agein there

are discrete gauge treneformatiene preserving thie equality but

changing sign of 'jraa*= ', namely S = exP[Lw('x-)‘C;] w(’JC)

being the same as in - 'é e So, PS of A:.' o jf:' is also a
con (7). .
' We conclude thet ef nine peire of cenonieel verieblee gr:'v
A
ones two have eenic PS con (I ). Tt is necessary to say, the

there are three unphyeicel end ei‘ tho remaininb phyaical

choice of concrete phyeical degrees of freedon with the conic PS

ie, in 8 eenee, eonventionel. Indeed in eceording to (2) the trene-
: Rt

formetione S end S from RDGG— Z. @ Z eet on ell phyeicel

field components, 80 they identify peinte in the tetal phyeieel PS

[8] . Hewever, 1t 1e importent thet such phyeioal degrees of free-

dom oan be pieked out. We use thie enelyeie as a pettem in the oase

of an arbitrary group.

"*3, The case of an arbitrary gauge group

-Qonslder now the general case of an arblirary compact simple

‘gauge group G.- Its Lee agebra .X in Cartan-Weyl basis reede a8 [5]

[e e d]_& UL ed] (h d)e [eoL e}] A/ eou_p'(B)



where o 1is a positive root, e is the corresponding root

o -
vector, N“ﬁ are numbers and oL, h belong to the Cartan sub-
algebra H, The scalar product ( o, h_ ) for elements oC > Y QX
is defined as (’x g) SP(’JC ‘é) where 93 18 an operator in
X 'ch [:x_‘ g] o Evidently, canonical momenta fﬂ_ E X
and we have the expansion 4
T Z(T e 'Jl' e ) -ZT:w.

o >0 well (4)
where 3TT< , a9 :) are functions of X, ﬂ is a set of simple
.roots and g 0 _ stands for summation over positive roots.

Gauge transformations of TK can be, written in the form

A
g’ T 9, = e=p }(x) )
equivalent to (2)(aocording to definition of the operator ﬁ ).
Por f there 18 an’ expansion analogous to (4) . '
X = ZCAe+}\e)le }
well - (6)
with N <= dLm G‘) arbitrary funotions 'Ku(oc) s lu(x).
After elimination of nonphysioal variables ‘Ao . Ufo (,UTO -0)
“we are left with 3N pairs of canonical variables UT'K , AK of
which only 2N are physical. ; o
Now let us take 31'1 . As an element of X »i# can be repre-

sented in the form

3r=exp[2(l e, }L -B]T SF -):er coeH- o
>0 ' well
Eq. (7) states that there are 1 physical components in’ 1 : (quimH-

" = number of. simple roots. In i’act Eq.(7) glves ‘a general recipe for
identification of physiosl variables in the ad:joint representation).

- The rest of gauge transformations connected with operators

S’k:e’(?{z Ly @] - (8)

weNl

do not change 3]’1 . (they compose a stationary subgroup of ‘:“4 ).

But besides this group there is a discrete Weyl .group W [5],acting

. in H, i.e., in the space of physical momenta T," and simultane-

4

ously in the configuration space Ai « It cannot. decrease the-
number of physical varisblesbut it does reduce their P5. As is well
known {5] , any Ur can be obtained from EJT € :K+ by trans-
formations from W, whers . K * is the Weyl camera, so that
('JT w)>0 (Uﬁn + Thus physical momenta grik - belong
to K+ ‘ and ps of Urk .1\k 15 R*ith a1l points -
wA wt W'T w! weW identified. PS of the. Ui'rt‘, AL

L
is, in fact, a hypercone equivalent to K ®: ‘R .'

Now consider the gauge transformations connected with operators

, (8). According to (3). ‘? e.= exP(‘? Cu )ygooc‘ 2% J\w’(wjd)}, well,

Then, applying f to ﬂrz one can nullify factors in front

of 1 basic elements, say €+ ©__, ., Indeed:

§le T, +ZZ{ Trte + T e"\"o](e ve_ u)+

RIE ARSI Sl el FCHEE «)}

and the factors in front_ of ew + e__t‘\> are zero if

j;wex‘)[wzlenlw, ((o’)w)) +“JT_:exP[—Z }Lm’ (w’,u))}i()f (10)

Matrix (Q)L) wd) is nondegenerate [5] (1 and j enumerate
simple roots). g0 Eqs. (10) are always solvable relative to A-oo .

(9)°

Observation that qu. (10) are compatible with change of tha sign

~of ‘any basic element e - e_’_lw w €n concludes the conside- )

ration., The last statement follows from the solvability of the



V equations

o[

A//
w ](@w— e’_w>=(l—28 ’) € €0
oell ww (11)
where =/ is fixed, Eqs.(11) are also alweye‘solveble with res-
pect to ?w,, because the U E—-metrix (CO W ) 1s ‘nonde-
generate, Therefore operator (8) with ‘2 P satisfying Eqs. (11)

» glves for every CO a nontrivial element of gauge group Z
changing sign of physical canonical:variables <T -¥ w)/t/___ ’
<A+m Aﬂo)/l/'— + It means that each of this 1 pairs of physical
verieblee has a conic P3-( TN ) unfoldable into a- half-plane, '

-In the general case .of a reductive group (which is the direct
product of eimple and abellan groups) the situation for the abelian
subgroup is analogous to. that -of electrodynamics - the PS of the
vector field phyeicel'verieblee is standard (full plane) because of
the.gauge invariance of the corresponding canonical momenta. Thus,
‘for the reductive group of rank 1 PS of 2 (' e - ew ") degrees: of
- freedom redncee, :where Qa is a dimension of the invariant abelian
subgroup.

‘Our results concei'n to the oleeeiceleeng—Mille f:heory. In the

present letter, we shall not discuss the quantum theory and phyei-

cal consequences of the PS reduction for Yang-Mills fields since this
problem requires a’speoial investigation. However; in the neif point,

we ‘shall consider the other geuge field model in this respeot.

4. PS5 structure in the Gleehow-Weinberg-Selam mcdel

Let us turn now to one immediate phyeical consequence of the
PS reduction phenomenon. We state that the Higge field An the Glee-
how-Weinberg-Salam (GWS) model cannot be elementary. After conveyance

of the Hig(,s doublet (50 LP ) \_-P ‘pheee degrees of freedom to lon-'

~

gitudinal components of vector fielde_l we are left with a real scalar

£1eld (.0, P ). Its PS is con( I ) because § ' is positive

9 >0 . Equivelently, we may present it as a transition CE? EP)
(O ) where Q is a real fleld (i.e.,—°°.<\9<°° )

with the
residual discrete gauge group ﬂ ® Z (’.)c)

ately get that < 9 > because S)
while vacuum (like eny other phy-~

o+ Then we immedi~

: changes sign
under the gauge group - .
gauge group Z 3 ‘
sical etate) is gauge invariant [5] (see Appendix).-lt means

that S) cannot serve as Higgs field (it cannot develcp a8 nonzero

vecuum expectation. value (VEV); it is easily seen that all Wightman

fu{n'ctione of. § (i.e.y <§CEXZ JREE §<0C)> ) also vanish, so
9 4 in fact, doee not- exist in a proper bense). The field 9 '
way have a nonzero VEV but it cannot be coneidered as a normal:"
scalar field because of its being po1sitive. We .could. consider 53 .
as a composite field S) = (@- ‘9) /2

GWS E should have a corpueculer_menifeetei:ion,.i.e., matrix .

+ For renormalizability of
elements of even numbefebof fields ,&P ’ &P should have
proper poles in the momentum space. But it-is the question of dyna-
mics. . - - . C w L

The hypothesis that the-Higgevfield is composed:of two epincr
fields look more plausible. In fact, we already have.in: physics an
example of fenomena like that - the Cooper pairs in superconducti-

vity which play the role of the Higge field, After acquiring masses

<b ..vector fields there still: exists a. residual Z geuge group

changing the sign of the electron field q’ [6] « The- bilinear oom-

bination of-. (lJ (or more accurately a‘'bound state.of Y = in

%the local 1imit) ié"inverient under Zz ‘and may have a nonzero"



. In conclusion we sould like to pay attention to ° Ref:; 10
in which the authors aleoffoand for the Higgs expectation value
<§P>;==0 in the model on the lattices the two-point function also
vanishes in the continuous limit in full accord with our reeulte.

5. APPENDIX

There 1s some misunderstanding concerning the notion of
"spontaneous breahing of gauge eymmetry". Below we argue that in
contrast with the global e&mmetry, the local one cannot be broken
anyway., . _ - )

vIn the case of spontaneous breakiné of global symmetry all the
Lagrangian eymmetries_are left untouched, It is the Bround state that
becomes "non-gsymmetric". For the gauge symmetry there is a prinoiple
difference - appearance of constraints. They are the conditions of
self-consistency of dynamics and they £ix unphysical variables. So
the constraints neither can be "broken“ norlomitted without chaning
physiocs. Even when we break gauge invariance by fixing gauge we muet
be  sure that the phyeioal sector of the theory i1s left untouched,

All the physical quantities should be gauge invariants, i.e.,
they should not depend on unphysical variablee. In quantum theory it
means that all physical quantities should commute with the first
class constraints, and the constraints must nullify all the physical
‘states, .It 18 jast because these constraints are generators-of gauge
" transformations. In this sense gauge symmetry never can be violated
and the Dirac condition on physical states [7] never can be vioclated
or discarded, . ) ) ,

. What happens then in the case of the Higgs phenomenon? There are
two approaches here: formal and phyeical'one. In the formal approach

the phase of the charged field Y  vecomes a longitudinal component

Sl W |

A, of the vector flela. " A, = A A a A.=0. Ueually it
is tacitly assumed thet it is an unphyeioal degree of . freedom (1t
can be eliminated by gauge transformation). Beoauee the component

A‘< of a massive field ie phyeioel one everything looks here so

,ag 1f gauge’ eymmetry were broken. But an unphyeical variable ;

cannot become phyeical one. The thorough analyeie {17 shows that in
fact both At and the phase of the field ¥ . are limear combi-
nations of physical ano unphysical variables. In the "normal" case
3 A =0 and the'phyeioal component of the phase deeoribee the
Coulomb field of oharged partiolee. When the Higga phenomeﬂon takes
place formally thie phyeical degree of freedom goes to K Qf
oouree, in fact (i.e.,in phyeical approaoh) it is ohange of the
ground state deecribed by the physical variables - that is all what
happena in reality. The euperoonduotivity glves us a cleer example

in this respeot.
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