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1 Introduction 

There are two main motivations to study matrix models. The first one is the existence 
of real physical objects such as liquid crystals [1) or llquid Helium-3 [2),. which can 
be described within the models with a 3 x 3 matrix ~rder parameter. In both cases, 
different phases could exist and a phase transition occurs. Tho~gh its nature is not· 
yet clear, several characteristics. have a singular behaviour which presumably can be 
described by the standard renorma.lization group approach. 

The second motivation is connected with lattice formulation of 2-dim.· quantum 
gravity. In the discrete approach based on dynamically triangulated random surfaces 
the theory can be regarded as N x N. matrix field theory, where the sum over various 
genuses is simply the large N .expansion (3]. Continuum limit actually corresponds to 
the critical point of the underlined field theory. For a number of models corresponding 
to conformal field theories with central charge c ~ 1 the critical exponents have been 
calculated from the discrete approach (3], while for the string theory c > 1, and in this 
regime calculations have so far failed. 

In the present paper we write down matrix models and treat them according to the 
standard field theory approach and renorma.lization group method. Critical behaviour 
in the infrared region is studied and all the critical' points are found. We show that 
the critical point, if it exists, corresponds to an n-vedor model with an appropriate 
number of parameters, where the critical exponents have been calculated already with 
great accuracy. 

2 The Model. Relation to Critical Phenomena 

We consider the model with a single order parameter (field) which is an N x N real 
(Hermitian) matrix i. Symmetry properties are dictated by the !orin of this matrix 
and could be different· in different phases. We concentrate below on three particular 
cases being irreducible representations of SO(N) and 'SU(N). Namely, we consider~ 
to be real traceless symmetric, antisymmetric and hermitian traceless matrices. 

In the field theoretical. approach to critical phenomena a crucial role is played by a 
Lagrangian rather than by free energy. To construct a Lagrangian, which is invariant 
under an appropriye sJmmelry~grCiiUPr•We..CQ~IiQG,o~l possible invariants restricted 
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by the renormalizability requirement. Having in· mind .:-expansion, where dimension 
is D = 4 - 2.:, we are left with quadratic and quartic terms. Thus, we come to the 
Landau-Ginzburg type Lagrangian for a traceless field ~ : . 

1 - • m
2 

• 2 h1 • 4 h2 • 2 2 £ = - Tr 8~8~ - - Tr ~ - 1 Tr ~ - 1 (Tr ~). (I) 
. 2 2 ~ ~ 

Three different choices of the matrix~ are distinguished by the form of the propagator. 
We have respectively : · 

symmetric .j,ab.j,cd 

antisymmetric .j,ab.j,cd 

hermitean .j,ab.j,cd 

where a, b, c, d = 1, 2, ... , N. 

__ i_ ~ (O"d/J'< + /i"c/ibd _ 2_/iab{jcd) . 
p2 -m2 2 N ' 

_i_ ~ (li"d!J'< ~ /i"c/ibd) 
p2- m2 2 ' 

__ i_ (li"dlibc _ 2_6.b6cd) 
p2 - m 2 N ' 

Critical phenomena are associated with the infrared properties of the model. Scaling • 
behaviour in the vicinity of the critical point caused by the appearan~e of a long-range 
order can be des~ribed in terms of Euclidean quantum field theory possessing an infra­
red stable fixed point [4]. 

A systematic approach to the description of infra-red asymptotics is based on the 
renormalization group. In the presence of infra-red stable fixed points defined by the 
vanishing of RG .8-functions·the dimensionless. Green functions obey the scaling laws 
for small p2 

rR P'~o (p2t-n-(h
0

) 

with the powers "'r equal to the anomalous dimensions at h = h•. There exist direct 
relations between the anomalous dimensions and critical exponents, which characterize 
the scaling behaviour of various quantities in the neighbourhood of a second order 
phase transition. For example, the critical exponents T/ (correlation function) and v. 
(correlation length) can he expressed through the anomalous dimension of the field and 
mass, respectively [5,6] 

T/ = 2"(2(h"), 
v = 2(1 -'y .. (h•))' (2) 

All other critical exponents are not independent and can be evaluated via the scaling 
laws 

"f. D+2-TJ 
"( = (2- TJ)v, a= 2- vD, .B = -

6
-, 6 = D . 

. -1 -2+TJ 

Critical point h" is the infra-red stable fixed point of the renormalization group equa­
tion. Within the .:-expansion method it is a pow<;r series of e calculated in perturbation 
theory. · 
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3 . Renormalization Grqup Equations. Fixed Points 

In this section we consider RG equations for the effective couplings of the model at 
hand in 4 - 2.: dimensions. Remind that in the MS-scheme the .8-functions in 4 - 2.: 
dimensions are connected with those in 4 dimensions by the equation [7] 

f34-2e(h) = -.:h + .i34(h). 

Fixed points correspond to the r .h.s equal to zero. They are ;,n the power series of 

": 
hi = eut + e2u~ + · · ·, 

where the coefficients ui are determined in k-th order of perturbation theory. 
Having this in mind we get the following RG equations written to one-loop order 

in symmetric, antisymmetric and Hermitian cases, respectively: 

3.1. Symmetric matrix, SO(N)' 

h1 2N2 +9N'- 36. 
-eh1 + 

12
N h~ + 2h1h2, 

h2 h N
2

+6h2 2N2 +3N-6hh N 2 +N+14h2 
-e 2 + . 4N2 1 + 6N 1 2 + 12 2' (3) 

According to the general analysis [4, Sect XI] there are four types of fixed points of 
eq.(3): · 

1. u1 = u 2 = 0; 

2. u1 = O,u2 = N'.::+14; 

{ 12/85 N = 2 . { 9/17 N = 2 
3. u1 = -4/39 N = 3 • u, = 20/39"'' N = 3 

absent N > 3 · absent N > 3 

{ -12/17 N = 2 { 6/17 N = 2 
4. u1 = -4/3 N = 3 • u2 = 2/3 . _N ":" 3 

absent N > 3 absent N > 3 

The situation is illustrated in Fig.l. Before analysing the stability properties of 
these fixed points it is useful to note that real symmetric N x N matrices for N = 2 
and 3 obey the following equation: 

Tr ~4 = ~ ( Tr ~2)2. 
2 

. (4) 

Hence for N = 2,3 there exists only one independent coupling in eq.(l) equal to 
( h1 + 2h2)(Tr ~2}'. Looking for the value of the coupling h1 + 2h2 at the critical points 
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(1 - 4) we find out that it is the same for ihe I¥>ints 1 arid 4 as well as for 2 ~d 3, 
,. respectively. Thus, the presence of four different_ points for N = 2, 3 is just an artefact, 

and there are o~y two relevant fiXed points for any value of_N. 
Stability properties of the fixed· points can be in~estigated in a standard way. The 

fixed point 1 is absolutely infra-red unstable and the fixed point 2 is a saddle point. 
The phase portrait of the trajectories is shown in Fig.2. One can see that the fixed 
point 2 can be reached only when the coupling h1 = 0. In this case, the fixed point is 
infra-red stable and according to a general belief corresponds to a second order phase 
transition one. Otherwise, there is no fixed point solution of eq.(3). 

3.2 Antisymmetric.matrix, SO(N) 

,;. 

hz 

2N -1 2 -eh1 + --h1 + 2h1 h2, 
12 . 

-eh !h2 2N - 1 h h N2 - N + 16 h2 
2 + 4 1 + 6 1 2 + 12 2" (5) 

The situation here is exactly the same as in the previous section. There are four 
types of the fixed points: 

1. Ut = u2 = 0 i 

12 • 
2. u1 = O,u2_ = N'-N+16' 

{ 

2/9 N = 2 
3. Ut = -12/77 N = 3 

absent N > 3 { 

4/9 
u 2 = 36/77 

·absent 

{ 

-4/3 N = 2 { 2/3 
4. u1 = -12/7 N = 3 , u 2 = 6/7 

absent N > 3 · absent 

N=2 
N=3 
N>3 

N=2 
N=3 
N>3 

Here again equation(4) is valid for N = 2,3, i.e. again only two points are relevant. 
Qualitative picture repeats that shown in Figs.1, 2. 

3.3 Hermitian matrix, SU(N)-

ht N 2 9 
-eht + -N-h~ + 2h1h2, 3 . 

h2 N 2 + 3 2 ' 2N2 - 3 N 2 +.7 2' 
-eh2 + 2N 2 h1 + ~h1h2 + -

6
-h2 • (6) 

The situation here is only slightly different from those of the previous 
sections. The fixed points are: 

l.u1 =u2 =0; 

2. u1 = O,u2 = N:+7j 

4 

) 

i 
I ,, , 

{ 6/121 N = 2 { 63/121 N=2 
3. u 1 = -1/4 N = 3 , u 2 =· 1/2 N=3 

absent N > 3 absent N>3 

{ -6/11 N = 2 { 3/11 N=2 
4. u, = -1 N = 3 , u 2 = 1/2 N = 3 

absent N > 3 absent N>3 

In this case equation ( 4) is also valid for N = 2, 3. Hence, qualitatively 
we have the same picture as before. There are essentially two fixed points 
for any .value of N. 

So far, we have considered the leading approximation. However, the obtained results 
are stable with respect to higher order corrections. In any loop order the infra, red fixed 
point will lie on the h2 axis being the power series of e 

hi = 0, hi = u~e: + u~e2 + · · ·. 

It is a saddle point in the coupling constant space. This will be true for all three models 
considered above. 

It should be stressed that the conclusion is valid for any value of e , i.e. for any 
value of D. 

4 Critical Exponents 

To find the critical exponents one has to calculate the anomalous dimensions at the 
infra-red fixed point. The results will be expressed.via the power series of e. However, 
there is no necessity to perform any new calculation. Indeed, if one looks at the 
Lagrangian, eq.(l), at the fixed point, one finds out that the only coupling which 
survives is (Tr 4>2

)
2

• Then, expanding the matrix field <}over the irreducible set of 
matrices in an appropriate representation 4> = ET;qi, we get 

(Tr 4>2)2 ~ (q}tf>;)2, 

where we have taken into account that Tr T;T; ~ li;;. 
Thus, what we finally get is the n-vector model with the number of components 

equal to that of the original matrix. For the three cases of interest we have respectively 

( 

(N-t~N+2l symmetric SO(N) 
n = (N-.t)N antisymmetric SO(N) 

N 2 -1 hermitian SU(N) 

Critical exponents in the n-vector model have been calculated with high acc~racy. 
Recent most accurate estimates have been achieved in the framework of e-expansion 
[8]. We present below the results of five-loop calculations for v and '1 for arbitrary 
value of n [6,9]: 
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v 

2 n+2 3 n+2 2 • • " 
{2E) 2(n + 8)2 + {2E) 8{n + 8)4 {-n + 56n + 2•2) 

(2E)
4 32~n :

2
8)6 (5n

4 
+ 230n3 + i18~.949n2 + 10698.57ln + 35095.814) 

n+2 
+ {2E)5 

( ) 8 (6.2336n6
- 282.5728n5 + 15724.800n4 

128 n + 8 · 

+ 561446.40n3 + 5088128n2 + 21985280h + 38204160), 
n+2 n+2 . 

2 ,..- (2E)--- {2E)2
-(--)

3
(13n + 44) 

n+8 2 n+8 
n+2 · 

+ (2E )
3 

( )S (3n3 + 124.9873n2 + 4482.6427n + 14997.953) 
. 8 n+8 . • 

(2E)4 ~ + 
2 

)1( -60:6987n5 + 3967.5948n4 . 
32 n +8 

+ 111115.32n3 + 997507.91n2 + 4907350.4n + 9646986.2) 
n+2 -

(2E)
5 

( ) 9 ( -91.1731n7 + 13165.389n6 -j, 502397.44n5 

128 n + 8 

+ 12698829n4 + 184391780n3 + 1361732900n2 + 5154359300n 

+ 7846792400). 

(7) 

(8) 

As can be seen from eqs.(7) and (8), the coefficients grow very fast which is a 
manifestation of asymptotical character of E-expansion. This means that to get a 
numerical result for D = 2 or 3 (i.e. E = 1 or 1/2) one needs a special summation 
procedure. The latter was proposed in a number of papers [5,6,8]. The results obtained 
for small values of n are in very good agreement with experiment as well as with other 
approaches. The procedure can be repeated for any value of n. · · 

In a recent paper [10] we have proposed an.empirica! expression for the correlation 
length critical exponent v. It is valid for arbitrary n and D and fits all known· exact 
and numerical values. Even if"it is not 1!-n exac~,solution, the advocated res.ult.can serve 
as a very accurate approximation to the true value. It has the following form: 

(D- 2)(3x + 2)- x 
v = 2(D- 2)(3x + 2)- 2x -(4- D)(x + 2)' 

where the parameter x is connected with n by the equation 

_ { n;s for even n 
x - n-[i[-s · for udd n 

3 . 

ForD = 3 eq.(9) gives a smooth curve 

shown in Fig:3. 

3+x 
v = 4+x' 

6 

,; 

(9) 

(10) 

(11) 

I 
\ 

I 

ht 
N:02 

I 
3 

• •• , 2 

or·.. h2 .. .. ·· .. ' 

ht 
N•2 

0 r·;··. -...• 3 h2 .. . . .. ·· .. .. .... ,. 

ht 

0 

Figure 1: Fixed points for various values ~f N. 

N >3 

2. 

h2 

Figure 2: Phase portrait of solutions for N > 3. The arrows show the direction of 
decreasing argument t corresponding to the infra-red limit . 
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Figure 3: The critical exponent 11 as a function of n for D = 3. 
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Thus, to get the values of the critical exponents for the matrix model one has 
to substitute an appropriate value of n = n(N) into eqs.(7) and (8) or directly into 
eqs.(9),(10) and (11). 

Special attention is paid to the N = oo case. For the_ matrix model, eq.(1), it • 
corresponds to taking into account of planar diagrams in all orders of perturbation 
theory. However, at the critical point due to the absence of the Tr ~· term the 
situation is drastically simplified. For the (Tr ~2 )2 interactio~ (or equivalently for the 
n-vector model) in the large N limit only one-loop diagrams survive. As can be seen 
from eqs.(7) and (8) the results.for n = oo are 

1]=0, 
1 

v= D-2· (12) 

This corresponds to the so-called spherical model which admits an exact solution [11]. 
Strictly speaking, eq.(12) is valid only for D = 3 or 4 as far.as for D :'0 2 the phase 
transition for large n :;::: 2 disappears. For D = 3 we get 17 .= 0, v = 1 in accordance 
with eq.(ll ). 

5 Conclusion 

We have shown above. that the critical behaviour in matrix models of eq.(l) is deter­
mined by the presence of nontrivial infra-red fixed point. Our conclusion is true in all 
orders of perturbation theory for any. value of e: and N. This fixed point is believed to 
be associated with the second order phase transition with the matrix order parameter. 
As we have see~, it exists only when the interaction is essentially (Tr ~2 )2 • Addition 
of arbitrary small amount of Tr ~· destroy~ a phase tr~sition. 

At this point, our conclusion contradicts that of ref.[12], where different phases were 
obtained with critical exponents having negative values. From our point of view the 
negative values of exponents mean that the formulas are out of the range of applica­
bility. A way out of this descrepancy is probably in different meaning attached to a 
phase transition and connection between the field theory model and statistical system. 
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