


L. INTRODUCTION

It was realized some time ago [1]-[5] that there is a unique possibility to define gauge
theory in odd dimensions by adding the Chern-Simons terms to the nonabelian Yang-~
Mills action. In D = 3 Euclidean space-time the sction of this theory called topological
massive gluodynamics is defined as (2,3,5]

§= 5cg+Sy~, (1)
where Scs is the action of the D = 3 nonabelian Chern-Simons gauge theory
k 2.
SoslA] = i [dzemr e (A,D.A, - snA,A.,A,) _ @

Here A, = A3t® is the gauge field, ¢* are Hermitisn g tors of the fi repre-
sentation of nonabelian group G:

[t5,84) = ifeee, Te(eoe) = % &
and metric is chosen to be g, = diag(1,1,1). Sy is the standard action on gluodynamics
= e
Sruldl = o7 [ #2Te(FuF=) |

where F[A] = 8,4, ~ 8,4, - i{A,, A,) and the parameter M > 0 acales like & mass.

Topological massive glnodynumc- has lnlerenlng properties [2,3,5,6]. In particular,
for this theory be gauge invariant the d i pling constant k must be quantised
[3]: k € Z. It turns out (6] that cn.lculnhon of quantum corrections within the framework of
perturbation theory leads to integer-valued additive renormalieation of the bare parameter
k in the limit M — oo:

ko =k +6,(G) ®)

where k > 0 and ¢,(G) is ihe quadratic Casimir operator of the group G in the adjoint
representation,

The interest in the Chern-Simons gauge theory was renewed after it was found that the
tatistics of fermions interacting with the abelian Chern-Simons gauge field transmutates
[7,8]. Then, Witten [8] considered the quantum field theory defined by the beli
Chern-Simons action (2) and found that it was exactly solvable and had intzinsic relation
to two dimensional conformal field theories and geometry of three-dimensional manifolds.
The main results of his paper were developed and confirmed later on [10,11].

One of the interesting pmpema of nonsbelian Chern-Simons gauge theory predicted

by Witten in the following tions have the effect of replucing k by k+6,(G).
It is well-known that sn uulogouc effect occars in the Wess-Zumino-Witten model [12]
and some other integrable dels in two d i M , topological massive

sluodynamics possesses the same property (3) in the limit Af — oo when only Chera--
Simons term survives in the classical action (1).

To verify this conjecture, perturbation theory calculations were perf d [13,14] aad
the results contradicting ench other were obtained. It has been shown in [13] that there




is no shift of coupling constant in the nonabelian Chern-Simons gauge theory, but in [14]
it has been demonstrated that the Witten conjecture is true under proper regularization

of theory.

The main result of the present paper is that the shift of the coupling constant indeed
occurs in the D = 3 nonabelian Chern-Simons gauge theory and this property is a conse-
quence of the appearing of the parity anomaly in the theory well known from the study
of odd dimensional fermions [4].

2. PARITY OF THE EFFECTIVE ACTION

Let us examine symmetry of the Chern-Simons gauge theory. Under gauge transforma-
tions

A, — AU =UT'AU +iUBU
of the gauge field vanishing at infinity |z| — oo faster than I:_I’ the classical action of the
theory transforms as follows:

S[A] — S[AY] = S[A] + 2xikW(4] ,

where W{A] = 35 f d®ze* Te(U'8,UU'8,UU'8,U) is the winding number of gauge
transformations that takes intcz=r values for continuous transformations U(z). Hence,
the partition function of the Chern-Simons gauge theory

Z= [Da,e S

is invariant under both infinitesimal (“small™) and topologically nontrivial (“large”) gauge
transformations provided the coupling constant k takes integer (positive or negative)
values [3]:
keZ .
It must be noticed that the classical action p the following important property:
it is pseudoscalar. It means that under discrete parity transformation P defined as

P: z, — z: =(~z;,23,23)
Afz) — AP(z) = (= A (z"), AdlzT), As(="))
the action changes the sign:
P:  Scs|A] — Scs|AF] = —Scs[A] . 4)

The main object under ideration in quanium Chern-Simons theory is the eflective
action. We divide the gauge field into the sum of the background field a,,(z) and quantum
fluctuation B,(z) and define the effective action I'csla] as

efesttl = [ DB, §(D*B,)e 11 det (DD, - i{B, 1)),



where the background field gauge was fixed

D“B, = 8“B, —i{a*,B,] = 0.
The effective action is invariant under large and small gauge transformations of the back-
ground field a,(z). As to parity properties, using relation (4) and taking into sccount that

the classical action (2) is a pure imaginary quantity, one easily obtains a transformation
law of the effective action

P:  Tgsla] — Tosfaf] = (Tesla])". (8)

This relation implies that the real and imaginary parts of I'cs[a] are scalar and pseu-
doscalar, respectively, and therefore, Im [csfa] is proportional to ¢*-symbol.

In the weak coupling region (or,equivaleatly, for large k) we restrict ourselves to the
one-loop approximation of the effective action

eTostel = gSesle) / DB,D¢DcDE
x exp (_m / &Pz (B,%EMD,B, +2¢DB, + ED“D,,c)) S ®
where the backgronlmd field a,, for k > 1 is the stationary point of the classical action
Fulaj=0. (7

Let us introduce an auxiliary field B4 = ((i)'/’B,,(;“;)‘V’:#) and represent ¢~Toslel
in the form

e~Foslel — c's‘-"('l/DB‘ exp (i'I\-/d’:B‘A‘“’[a]BB)) det(D*D,)

—sestay det(D*D,)
e~ Scslal *_(detA[u])‘/’ , (8)

where the operator A[a] is defined as

Santel = ("5 ) A= ut) B s,

The ghost functional det(D*D, ) takes real positive values whereas det Afa] has the non-
vanishing imaginary part and it is this imaginary part that is the source of the renormal-
ization of the coupling constant. To prove this statement, we will demonstrate that for
an arbitrary gauge field A,(z) the following relation holds:

(det A[A])Y? = detiD , )
where D = y#(8, - i[A,, ]} is the three di jonal Dirac operator in the adjoint repre-
sentation of gauge group and the Dirac matrices v* coincide with the Pauli matrices.

Let {1} be eigenvalues of the operator A[A]
ASRlAI® = M5, $u= (Y ¥) (10)
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where a,b are “color” indices. This relation is equivalent to the following system:

~ ¢ Db+ Dus = My, D, = -2y, (11)
It turns out that {A} coincide with the eigenvalues of the Dirac operator
iDo=2p,

Indeed, multiplying both sides of this equation by iv* with % being constant spinor
and using the identity 49" = g* 4 ie**,7”, one obtains the relation which after the
replacement of variables

(ne®) =9, i(e®) =98
identically coincides with the first equation of the system (11). The fulfillment of the
second equation (11) may be easily checked:

Dy + Mpy = —ix(iD - N)p =0 .

Thus, for an arbitrary gauge field A,(z) we have:
4
det A[4] = (n,\.) = (detiD)?.
&

3. PARITY ANOMALY

The properties of the effective action of three dimensional Dirac fermions in the r.h.s. of
(9) are well-known {4]. In particular, it contains nonzero imaginary part whose dependence
on gauge field A,(z) is nonanalytic. It means that after expansion of the imaginary part
iu perturbative series near A,(z) = 0 some diagrams contributing to the effective action
have ultraviolet diverg Therefore, the calculation of the effective action of fermions
within the framework of perturbation theory requires regularization. As usual, one chooses
the Pauli-Villars gauge invariant regularization where

. A H
A iD Ap _ . o " M
et _ddif)+|’M_(I;I/\|.+iM = I,:IAZ+M’ exp 2:;::.11“"‘I .

Hence, in the limit M — oo we find [4]

Imly[A] = tngn(M)(z 1- Y 1)

A0 Ay <o
= 3 sin(M)n(4)
= i (M)ﬂ'[a'za"'n(A 8.4, - iA.A 4,)
= gn! e e A e S

where 5[ A] is the Atiyah-Patodi-Singer function [15] for the Dirac operator in the adjoint
representation of G.



To make sense of (9), the Chern-Simons theory must be regularized as well. We have
to provide regularization that does not apoil the invariance of the theory under large
and small gauge transformations. There are problems with dimensional regularization
since the action (2) contains e-symbol. Therefore, we are forced to use higher derivative
regularization [16] which consists of the introduction to the action of additional explicitly
gauge invariant terms with second and higher powers of derivatives. The regularized action
cannot contain terms proportional to the Chern-Simons lagrangian since it transforms
nontrivially under gange transformations. The only allowed terms have the form of the
product of the strength tensor and covariant derivatives and among them the simplest one
is ot [ &z TrF,, F**. Adding this term to (2) we have found that the regularized Chern-
Simons action is equnl exactly to the action (1) of topolog:ca.l musxvc gluodynamics with
M being the regularization p ter. The I of teg tion corresponds to the
limit M — oo. It must be noted thut introduction of the term with higher derivatives,
which is scalar, does not spoil gauge invariance of the Chern-Simons theory but parity
symmetry (4) of the classical action is broken explicitly. This is the manifestation of the
general property: in the quantum Chern-Simons gauge theory it is impossible to maintain
simultaneously gauge invariance of the partition funclion and parity of the action.

Repeating previous consideration of the one-loop effective action we are led to the
regularized functional

det A|A] — det A™#[A] = det

Santal - g (P9 PP DN

where A = (p,4), B = (v,4). To calculate this expression we , for simplicity, that
the gauge field A,(z) satisfies the classical equation of motion (7): A,.(z) = a.(z). Let X
be eigenvalues of the following operator

LS¢p = —¢,”*Dyp, = Xp, |

where D, = 8, — i[a,, ]. Some of X are equal to zero with zero modes being D, but
the remaining nonvanishing ones coincide with the cigeavalues defined in (10). Indeed,
climinating 4 from the system (11) one obtains

(a7D. + 3D.D°) ¥, = -0 . 3)

Multiplying both sides of this equation by €,5* D? we derive
c.,“D’ €Dy, = —AC,,“D’¢,

since ¢ag" D?D, = —ie,*Fp,[a] = 0. In the matrix notation this relation may be rewrit-
ten ag
LLiy)=ALI¥) .
Hence, either L{y) is null-vector or A is equal to the eigenvalue X of the operator L:
A=A



This relation allows us to find the eigenvalues of the regularized operator
ARBAlPE = N, W = (),

Now ¢ obeys the equation analogous to (13)
dxi L
(oD, + T (D' - D,D,) + FDuD) e = - XTege

Multiplying as before both sides of this relation by 1** and using the identity Dg,, —
D,D, = — L L%, we conclude that

Axi regy _ are gy
(£+220%) s = 3w gy
Thus either Liy) is null-vector or the eigenvalues of A™* are equal to
4xi 4xi
zer = hill O Ax .,
A+ % MX A+ % MA .

where X are nonzero cigenvalues of the operator L.
As a result, the regularized determinant is

{4
deta™ia] = [I (A.. + f—'x:)
162228\ ? . 4x)a

I“I (4\: + YL ) exp (4nuctnn M )

., lexa\t kM
H (/\“ + o exp { —4i arctan i,

n

and has & nonvanishing imaginary part.
There is a simple relation (9) between bare values of functionals. Moreover, in the
limit M — oo when regularization is removed the imaginary part of log det A[a] ia

—Imlog (det Afa])*/? = wsign(k) ( Yi-3 l)

A >0 Ay<0

= %!isn(k) nla]
= -sign(k) c-'4—(fl /d’: e Ty (a,.&..n, - giu,u,a,)

and up to unessential factor it is equal to the imaginary part of the ~ffective action of
fermions.

Now, we substitute the received relations into the one-loop expression (8) for the
effective action and take into consideration that the ghost functional det D* Dy as well
as |det Afa]| are gauge invariant explicitly and are proportional to the product of the



strength tensor and covariant derivatives. Then, with the equation of motion (7) the
one-loop effective action of the Chern-Simons gauge theory has a simple form

e~Terlel = exp (—(k + nign(k)c.(G))f;-l_- /d’z & Tr (a,,&,a, - ;ia,,a,a,)) (14)

in accordance with the Witten conjecture [9].

The following queation araises: does this result is changed in higher orders of per-
turbation theory? There is a simple argument [6] that eq.(14) is exact to all orders of
perturbation theory. In the weak coupling region 1/k is a lmall parameter. Calculation

of quantum corrections lead to renormalization of the coupling constant
k— keen = 2k ,
where Z = 1 + § + 3 + --.. The invariance of the effective action under large gauge

transformations implies that k.., € Z for arbitrary large k hut this condition is fulfilled
only for z; =0, > 2.

What do the derived results mean? To calculate the effective actions of the Chern--
Simons theory and massless Dirac fermions regularization is needed. It turns out that
it is impossible to introd larization and maintsin all symmetries of the classical
theories: gauge invariance and parity (the classical actions of the Chern-Simons theory and
massless Dirac fermions are pseudoscalar and scalar, respectively). Under regularization
we keep gauge invariance and spoil parity of the regularized action: S, = scalar +
paeudoscalar (term with higher derivatives and massive term of Pauli-Villars regulator
are scalar and pseudoscalar, respectively).

In the regularized effective action, the ultraviolet divergences are replaced by the
singular dependence on M in the limit M — co. H , it was d trated that the
effective actions in both the theories are finite [4,17], that is ultraviolet divergences are
cancelled as M — oo but the nonvanishing finite part survives. It is natural to expect
that the finite part of the regulator contribution to the effective action has the form of
a local operator with dimension 3. Gauge invariance fixes unambiguously the following
operator!

i 2.
- C-al(@) [Ezemre (A,o,A, - 5.A,,A,A,) , (15)
In the Chern-Simons nonabelian theory C = sign(k) and inclusion of (15} leads to additive
renormalization of the coupling constant. At the same time, for the Dirac fermions we

have C = —sign(M) and appearance of (15) leads to violation of the parity of the classical
action of massless fermions [4].

However, in both cases the parity properties of the effective actions are not spoiled
since the definitions (4) and (5) of the parity are different for classical and effective actions.
It follows from (5) that the real and imaginary parts of the effective action must be scalar
and pseud pectively. We note from (15) that the parity anomaly contribution
is pleudoltllll’ md takes pure imaginary values.

In conclusion, it would be interesting to reproduce all the above results performing
one-loop calculation of the Feynman diagrams.

'There is second permissible operator [ &z ¢*# Ty (D, F,,) bat it is equal 1o serc due to the Bianchi
identity .




4. PERTURBATION THEORY CALCULATIONS
The regularized effective action of massless Dirac fermions is given by
I,{4] = AR
To remove regularization we set M — co
iD
TjlA] = ~logdet =~ :

+ iM
2 _
c.(G)Trf @) s Au(—P) (—e“"‘p., sign(M) + g“’;;é__‘/;l:‘p’) A,(p) +---(16)

where dots denote terms with higher powers of gauge field.

To calculate the Chera-Simons effective action let us perform power-counting analy-
sis of the Feynman diagrams. In the pure Chern-Simons theory there are five different
vertices: three-gluon (AAA), ghost-gluon (écA), ghost-two-gluon (€cAA) and vertices
corresponding to interaction of the Lagrange multiplier with the gauge fields ($A) and
(#AA). A simple calculation of the superficial degree of divergence of a diagram G yields:

w(G)=3—L4—%L, ,

where L, denote the number of external lines of the corresponding type. So only two-
and three-point functions with w(G) < 0 are formally ultraviolet divergent to any order
of the coupling constant. To regularize divergences, the term with higher derivatives is
edded in (2). Then, new three- and four- gluon vettices induced by the Yang-Mls action
nppear in diagrams and the ultraviolet behaviour of the gluon propagator is changed:

M? P~
D‘,.,(p) = 1 ) (-%%w?""M(ng’ _PuPV)) - % .

YR IOY
7 (7 + (%
The superficial degree of divergence in the regularized theory is equal to

3 1 1 1 1
w(G) =3~ EN;AA = gVaaa = gNeca = GNoas = Necan = Nanaa = GLexe

where L., is the number of external lines, N, denotes the number of different vertices
with N§,, and N§,, corrcsponding to “odd” (or Chern-Simons) and “even” (or Yang—
Mills) three gluon vertices, respectively. Solving the equation w(G) < 0 onc finds that
only a finite part of one- and two-loop diagrams are divergent. Moreover, Nj,, can take
only two values: 0 and 1. At N3,, = 1 the condition w(G) < 0 fixes the following nonzero
parameters of diagrams: L, = 2, N5, = 10t Ly = 2, Nysg = 1. These diagrams have
w(G) =0 but a detailed calculation gives finite results. So to be potentially divergent the
diagram has to have no Chern-Simons three gluon vertices and

1 1
w(G)=3- NAAA ENpM - EN“A — Necaa = Napaa - 5[«« . (17)



It may be easily scen that this expression is equal exactly to the superficial degree of
diverg, of di ontributing to the effective action of Yang-Mills gauge theory in
the background field gauge. It is well known [5,18] that the three dimensional Yang--
Mills theory is finite. Hence, to regularize one- and two-loop dxversent disgrams whose
superficial degree of divergence is given by (17) the d ional reg ion with D =
3 — ¢ may be used [6]. Then, ultraviolet poles in 1/¢ are cancelled in the sum of all
diagrams and there is no any finite contribution induced by regnlators.
Now, to the lowest order of perturbation theory we have

X x
log{det AJA]) Y = 'W[{\:::}w + 'rr{;}-n + ’l{\}v + 1{::}11 + 4{}1 ,

where the internal wave and continuous lines denote gauge field and Lagrange multi-
pliers, respectively, and the cross on the line corresponds to the interaction term ¢8¢B,,.

In the limit M — oo we get the final result in mc tum rep tation
L 1 P — P
toglaet ALA = @)D [ ZE A-5) (L e siaih) + LHZET) o).
(13)
Analogously, the ghost functional is equal to
o~
PR '\ 1'
logdet(D*D,) = 1w Yor & i
_—
.o
= — A, 19
c.(Gm/(2 L 16-/? ®», 09
where the dashed line denotes a ghost. Combining eqs. (18) and (19) one receives
det(D“D,) &£p . )
198 et aTapes = (O™ [ s Au(=p) (sia(k) e, + ———8\,? Ap).
(20
The second term in this expression is a nonlocal (in z-space) infrared singular functional
whose properties were studied in [5,6,18]. With higher order corrections being included, it

is proportional to the strength tensor, and therefore, does not contribute to the effective
action. Substituting {20) into {8) we reproduce eq.(14). It is interesting to note that for
an arbitrary gauge field and M, k > 0 relation (9) is fulfilled not only for bare expressions
but for the renormalized functionals (16) and (18) also.

Thus, we conclude that perturbation theory calculations confirm the result obtained
before.

5. CONCLUSION

The D = 3 Chern-Simons gauge theory is & finite theory and ultraviolet divergences
are cancelled in the sum of diagrams contributing to the effective action. Nevertheless,
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for quantum theory to make sense it must be regularized. The regularization conserves
gauge invariance but spoils inevitably the parity of the classical action. The regularized
effective action depends on the regularization parameter M. In the limit M — oo when
reguiarization is removed, the singular dependence of the effective action on M disappears
but the finite contribution induced by parity violating regulators survives. This contribu-
tion being added to the classical action leads to additive renormalization of the coupling

constant.
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