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0. Introduction

In/lz/ there was given a complete classification of the
domains of closed operators ina Hilbert spaceand a desc-
ription of the structure of these domains. Now we present
a first part of a classification of another type of domains,
the domains of operator + -algebras (0p* -algebras).
Thereby we restrict ourselves in this paper to the spe-
cial but very important case, where the domain is

‘a Frechet space with respect toa certain natural topology.

1. Preliminaries

We use the same notations and notions as in /12/, Let
H be a separable Hilbert space, D CH a dense linear
manifold, <,>.!| ||, resp., the scalar product, the norm
resp. in H. A kernel of D is an infinitely dimensional
closed subspace NcCD . A kernel N is said to be maxi-
mal, if there is no kernel N'ZD , N~ N’ such that
dim (N“eN) =« .By £%(D) we denote the set of all
linear operators A from D into D, AD-D such that
D~ D(%) and A*L-D. £ (D) isa »-algebrawithrespect
to the usual operations, and the involution is defined by
A. A" . where A" is the restriction of A* to D .
A  +-subalgebra (D)= @ of £ ‘D' containing the
identity 1 will be called Op* -algebra. An Op* -algebra
d(D) is said to be closed, if

D = © D(A).
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Equivalently, an 0p* -algebra (i( D)

the seminorms

el = 1181l + [[ag| @
‘ | , Aeld, ¢ebD
is compﬂate (further considerations concerning

algebras are contained, for example, in /9,10, 11,%; )_
€ mean ano .
perator S- S{(an)’(‘?sn)}

By a diagonal operat
) or w
with the domain

D=D(S) = {¢- 2xpbpt Zix Pl 2 <,
where {¢ | is an i
pere 14 n{an} orthonormal basis of H
if D#H . Two linear i

) . manifolds D,D’ ar
t(;:zl;tggjly resf.) equivalent if D= KD, where K

operator with bo i ’

tor resp.). unded in
Letln what follows we need some notion
( (an) pe a sequence and (b )
2,) (b, C(a,) then by () -(a")_(p

the subsequence of i
(a,) obtained fr i
the elements (bp). We write N

a sequenc'e of naturals. By (a )’
accumulation points of (a,) arr;d by (a’)
sequence (a ) ~i~} such that aj<ay < .. .

s about sequences.
s by cancelling

we denote the

An iterated se 2
' quence (a ) = (ao) is a
:b::(::g:ionf;c:;n (;n) in the 'f]ollowil'x]g way: Let Seguenlc)::
ap from N ontoitself, then () ("
vFg;r g:ﬁmple,(an) could be a,, al,, asn ;a;)z(:‘n)=(aa(n)).
we o the “iteration” and, for brev’ity 3;»'23’ ll
n use the same sign “* * for any iteration ’ "

QleL:;)E:n)ﬂ,](;)tn)( . )beitwo sequences of positive numbers
. S majorized by (b i
there is a constant C> 0 Y et <(B)) - iE

such that a, <C-b_ for'all n .

In/1%/ we defi )
efined different notions of equivalence of

such i
Sequences to obtain a description of the structure

of domains of closed o
perators. N .
of sequences and give the followinfg)W wedealwlth systems
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o uiv . _ is closed, i
aln B equipped with the topology tq de,ﬁx:(fedtgs

contained
a sequence of real numbers unbounded

e called linearly

verse ( a unitary opera-

a subsequence of
we denote

(25) = (bg)u(d)Let (a,) be
we denote the set of

Definition 1

Let F,={(ap}t , Fp=1(by) } be two systems of sequ-
ences of positive numbers. ¥; and J, are said to be
equivalent (=) , if any sequence (ap) & %1 can be
majorized by a suitable sequence (b,) €%, and conver-
sely, any sequence of ¥, canbemajorizedby a suitable
sequence of ¥, essentially equivalent (e), if there
are s,tc N such thatthe systems {(a_ ) } andi(b, , ) }
are equivalent; weakly equivalent (% ), if there are
suitable monotone maps o,r of N onto itself such
that the systems (F;),,(F2); of iterated sequences
f(a§)} , (b})} obtained from o and 7 are equi-
valent.

If the systems 3, and 5y contain only one sequence,
we obtain the same notions as in/ 1%/ Definition 1.

2. Classification of the Domains of Op* -Algebras

In this section we give a classification of the domains
of Op* -algebras and note some properties of the

structure of these domains.

First we remark that these considerations are proper
extensions of those of /12/ because of the following

fact /9,18, 19 /.

Let D be the domain of an Op*-algebra containing

at least one unbounded operator. Then D annot be

the domain of a closed operator, i.e., these two types

of domains are essentiall different.

Wwith the following classification we continue the enu-

meration begun in/12/.

C,: Classification of the domains of closed Op*-algebras
Let G(D) be a closed Op* -algebra. D is said

to be of
Class I iff D does not contain a kernel,
Class II iff D contains a maximal kernel,

Class III iff D contains kernels butnot maximal one.

We write bcl, €ll and <III.
For the domains of closed operators in

/12/ there was

given the same definition and this geometrical picture
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was translated in the language of equivalence of se-
quences. The classification C, is complete and disjoint.
No class is empty, as can easily be seen (cf. also sec-
tion 3).

The following remark shows roughly speaking that the
class to which a domain D belongs is not determined

by the class to which D(A) belongs, for all A < £¥(D) in an
invariant manner.

Remark 1

Let D be the domain of closed (p* -algebra. Then
there can arise the following cases:

1) D<I, then thereare A,Bc $ (D) guchthat D(A) <1l
D(B) <. .

11) D<II, then there is an Ac® (D)  gych that D(A)clr ,
but there is no B<£'(D) such that D(B) < I.

1ii) D=Mlthen there is an A<®'(D) such that D(A)< Il
but there is no B<9*(D) such that D(B)clI.

Proof

All statements can be proved in a similar way by
examples constructed from diagonal operators. We regard
for example i) and construct the operator B.

Let H -2 D-s-i(a) :3n'ja2<w v IcN]|.

Let ¢,=(0,..,1,0,...) where the 1 stands as the
n th element. Now regard an arbitrary decomposition of
the set of naturals: N= M s M_ infinite sets, M;"'M_ -

for k #i. Put m, -minM, and let C be the following
diagonal operator:

C=C{(bn),(¢n)} with b, -m foralljeMn.
It can easily be seen that pc D(C) and B-C|p, e £* (D)
and D(B) = D(C)e I, but D obviously < I. Q.E.D.
For a detailed classification and description of the

structure of the domains it is important to investigate
the following

Problem

Under which conditions the domain D of a closed
Op* -algebra (D) can be represented in the form

D=td=3xp¢,: Zlx | %(al®) 20 24y

(a) .
{(¢,) C D an orthonormal basis,!(a, ),a < A} asu‘;tab!e
sysntem of positive sequences. In oth%r words, is
isomorphic to the space of sequences D~ C (™

DS = {(x,):2lx,1%(a{P)? <= Vacal,
Then with the diagonal operators T,= Toi(a'®) ,(¢n) 1,
«ac4 p- " D(T, .
cA

The crucial pt:)int of this problem is the fact thatTthe
basis (¢_) must be the same for all operators a
This Sroblem leads to the following

tement 7
Smlf the domain D of a closed 0p* -algebra { (D .cax;
be realized as a space of sequences, t.pen the maxima
Op* -algebra £7*(D) is selfadjoint, that is,

B- O  D(A)= O D(A)
Ae L) Ac®*(p)
(cf. also /1,8,11,19/ ).

St _
In general it is an open question whether Q. ‘D) is self
adjoint in any case where D is the domain of an ar-
itraryclosed Op*-algebra. ‘
o In ywhat follows we regard suchlalg.ebrasuﬁ[(?)] :Isl
i ;1 izable, i.e., G
hich the topology 1 is metrizable,
:n F -space becausecl we regard only closed algebras.
Therefore one has

+
: , 1
D:f: D(A,. AngDQQ(D). 1)
A special case is the following
D-D¥T) - ~ D(T"). T=-T~, T! < e . (@)
n_.0

Without loss of generality one always may a)lsfsum:uthat
< A : Y D(A or n.
=T L 1<A_TA and D (A, . n
gomain_s "of “form (%) were regarded by many authors
from other points of view as we do it hex.'e. T!lese were
regarded, for example, in connection with differential
b
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operators or in the interpolation theory as_centers of
Hilbert- or Banach-scales. (Cf. for example, '8 13~ 16,20/
and the references there). We here only remark that an
important example for a space of form (2) is the Schwartz-
space '§ of rapidly increasing functions.

Remark 2

Obviously, the class of domains of form (2) is con-
tained in the class of domains of form (1), but the two
classes do not coincide, i.e., thereare domains D :nQOD(An)

such that there is no closed operator T with D= " D(T")
n

. n>
We give an example: -

Let { ¢,! be an orthonormal basis in a Hilbert space
q, (ty) a sequence of naturals with lim t,= ~ . Further
let {M,! be a sequence of infinite sets with the following
properties:

1. M, CN, i.e,, M, is an infinite set of naturals,
2. M L1CM

3. the sets Ny =N-M, N, =M; _,-M;are infinite for all j > 1.
At last we use the notion (tj for the sequence

(tj, tj1,...). Now we define a system of diagonal opera-
tors Anp=Api(a{),(¢,)} as follows:

alD _ gt if 1EN,,
1 1if lem,,

and for n > 1:

7

1
j for 2 <j<n,
n

) if 1
a(l") = t]'+ 1 if |
1 if 1

hMn M
=22z =z

For the operators A, constructed above there hold:

1. D(An)aneDn y Dpel, H, closed, infinitely dimen-
sional,

2. DCA,,. DT D( Ap) more precisely:

H,, cH,, D D

n + n n+ ¢

A A

® H D =D oD

n+1 “n+ 1 n n+ 1’ n+1 n+1°

(= 39
>

n = H, +1
Roughly speaking the operators A, are formed in such
a way that, if A, is bounded on B, , A,.; is bounded
only on an infinitely dimensional subspace of H, and
unbounded on the also infinitely dimensional orthogonal
complement.

3. The representation

D= p(TM |, T closed
"2 0
cannot hold, were D is defined to be the domain of the
algebra generated by the operators A,, ie,
D= " D(A™).
m,n ‘>_ 0 ( n )
In fact, from the closed graph theorems it would otherwise
follow that

IT6]] <C(IIA} 611+ 116 1l)  for suitable k.1 €N, € >0
and all ¢ «D.

But then the boundedness of A'{ on the dense subspace

Hl N p of Hl leads to

Tl < CULAT Sl + [1811) < D[]
forall¢ < H, "N D.

This means that T is bounded on H," D and becau-
se T 1is closed we have H, cD(T) therefore H,Cp
which is a contradiction with 2. This concludes the
example. Because the topology t3@ on the domains of
form (1) can be given by a system of scalar products
{<,>,}1 these domains are countable Hilbert spaces /8/,
With respect to this and in connection with the construc-
tion of the space D% of sequences isomorphic to D we
recall the following

Definition /2-5/

A system (x,) of elements of a linear topological
space E is called a basis of E, if there isa system

9



(f,) of linear functionals f < E’ such that for any
x «E there holds the unique representation

-«

X = njzol f(x) %, 3)

The basis (x,) is called unconditional if (x,.,,) is
a basis for any permutation » of N, or equivalently,
if the series (3) is unconditionally convergent for any
x~F. In/15/  the following fact is mentioned:

Proposition

Let D be a countable Hilbert space D=" H  with the
topology : defined by the scalar products f{<,>_ }.If
(v ) is an unconditional basis in D, then there is
a system {-,> 1| of scalar products defining the same
topology - such that (x;) is an orthogonal system
with respect to any <. >, . Hence we obtain the following

Conclusion
1If the domain D="D(A,) contains an unconditional
hasis ', ) then there are diagonal operators T, =
T D), (g such that D= "D(T,) namely, we
choose t(D-||y ||y ,where || ||{ denotes the norm
corresponding to the new scalar product <, >/ . In the
special case D=D%(T)= "D(T"), T=T* from the spectral
theorem it can be easily obtained: there is an uncondi-
tional basis (y,)c D such that D-p™(A), where
A= Al a ), (¢ ) } is a suitable diagonal operator.
Thus, the existence of an (unconditional) basis gives
the possibility to regard D as a sequence space. But
to speak about the sequence space associated with D it
must be shown that this space is independent of the choice
of the (unconditional) basis. This is the “problem of quasi-
equivalence of unconditional bases” which can be formu-
lated as follows.
Let D[ r] be alocally convex space, (¢.), (y,) two
unconditional bases of D[7]. Is there a permutation
7 of N and a sequence of positive numbers (r,) such
that the operator T defined by Té,=rn% 7z(n) is
a homeomorphism of D[ - ] onto itself?

10

For the domains in which we are interested (namely
(F) -spaces) a positive answer to this question can be
given, in essence, only in two cases. The first one deals
with the so-called “regular” bases introduced by Dragi-
lev /24 The results along this line concern nuclear
(F) -spaces and countable Hilbert spaces and were ob-
tained by Crone, Robinson/??/, Kondakov /2%  and
Djakov /25/. The second case deals with centers gl} Hilbert
scales and has been regarded by Mityagin /2 . In the
sequel we make essential use of his result which can be

" summarized as follows

Theorem /15/
Let D= ﬁoo(T“): N D(S") with S=Si(s).(¢ )| and

n> n2>0
T=Ti(ty), (¢y)}, » S, T> 1. Then there are constants
R>1, C 0 such that with a suitable permutation » of N
1, 1/R g R
< (sn) “tany £ Usp) holds for all n = N. (M)

This Theorem can/t7e regarded as a generalization of the
Theorem of Kothe 7/ essentially used in/'?/.

All the results known up to now about bases and quasi-
equivalence of bases make clear that it is very hard to
give a detailed description of the structure of domains
of Op* -algebras by means of spaces of sequences in
quite general case D - "D(A ). «<c A. Therefore we

restrict ourselves to the case D-D™(T) - f’;]D(T“) ,
n-

T=T*>1 which will be investigated in the next section.

3. Classification of Domains D-=D™(T)

For the domains of this form we have: D< 1 (<,
=M, , resp.) if dand only if T =1 (=11, < III,resp.) with
respect to the classification of operators given in /12/ .
Recalling the facts from the conclusion above, we find
a suitable diagonal operator A - Ai(a ).(v,)on D(T) such
that



D=ty =Sxpup:2lx, 1% (a)¥ < V. jo1,9,..}

and the system of sequences 5 = {(afl ).i=1,2,...1, a, €N Vn,
describes the associated Sequence space. That is, we

have an isomorphism between b and the space of
sequences

DS=§(xn): E[xnlz a:j<oo V jeNi.

It is clear that we have to justify that the system § in
fact characterizes the domain D up to unitary equi-

valence. By using Theorem of Mityagin we obtain the
desired justification and a complete description of the
regarded domains. We remark that it is sufficiently to
restrict oneself in the following Theorems to the case
D=D’ and to prove only the direction that from p - D’

something follows about the systems ¥,3’ of sequences.

The remaining parts of the Theorems follow by simple
oconsiderations or are obvious. '

Theorem 1

Let D,D"c€ 1. D and D’ are unitarily equivalent
if and only if there are diagonal operators S=8{(s,) ,( bu)
and T=TI(t) ,( Y,)} with

D =D>S), D"=D>(T)
such that the systems of sequences
F=t(shy,1=12,...1, Fr=t(tly,1=1,2,...3

are equivalent.

Proof

With respect to the remark before Theorem 1 we use
the inequalities (M) and can prove, as it is done in /3 / ,
Lemma 5.4 that (M)holds with the identical permutation.
But this means just the equivalence of ¥ and §°,We
note that the assertion of this Theorem can also be
obtained from the closed-graph theorem and some con-
siderations like in /12/ (cf. for such a proof /19/ ). Now
we go on to the domains of class II.

Theorem 2

Let D,D"<Ill. Dand D’ are unitarily equivalent
if and only if there are diagonal operators

12

S:S{(Sn)7(¢r)}’ T=T{(tn)7(l/’n)} .
With (sn) =(sR) U(sR), , (tw) =(th)u(t&) and D-pS),
D’=D™(T) such that the systems of sequences

F=t(spi),j=1,2,..1, F=A(eTI) L j=1,2,.0 0

are essentially equivalent.

Before proving the Theorem we repeat that from
D, D’ <ll it follows that the diagonal operators S,T are
also of the class II (cf./lz/ and the remark at the
beginning of this section). From the considerations of /12 /
it follows that the sequences (sp),(ty) resp., can be
decomposed in the above mentioned way, where (S?n) is
a bounded sequence and for (sp) i limsy= (analo-
gously for (tn, ) ). Repeat that the decomposition is
unique up to a finite number of elements in any subse-
quence.

Proof of the Theorem
From (M) we obtain especially

__é_(snb)l/R <ty s C(shHR )]

TEDVR <1 ce(sR &

for suitable subsequences (tkn) and (tjn) of (tp)
(Clearly, (1) means, if sP - S1y, then 't
and an analogous interpretation for (2)).

From (1) and (2) it follows that (tx,) is a bounded
sequence and for (t; ) :limtj, = « .

But this means: ( tkn) coincides, up to a finite number
of elements, with (td) and (tj,) coincides, up to
a finite number of elements, with (t:) . Consequently,
(2) gives the equivalence of {(s°J )} and e H1 o,
but this means the essential equivalence of () )™ and
(tx?) 1) Q.E.D. P

Now we go on the class III. Like in 2/, we shall
distinguish three subclasses described below. Let D< Il ,
D=D7(8), S=S{(s,).(¢ ,)} with the associated sequ-

=Sz,
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ences (s;) (Cf. Preliminaries) and (,s,'!’),. f.he sgquer:ce

of all eigélnvalues of S withf{inite mulhp‘hcny, s < sz_...t

Put §-1(s’9),j=1,2,...1 It can easily be seen, tha
- n b b k]

where H_ is the infinitely dimensional eigenspace asso-
ciated winth the eigenvalue s; and Xg@®H, ,D, resp.
mean

205V <o, yjeNI,
Ei}@Hn:{X:E xn:XnGHn’EHXHH (SI’I) <o, V]
- 2 0,\2j o0 "GN},
D,- b =2x ¢ @ x| (sp) <o, Vj

where i, is the eigenvector of S_ assogmtﬁ? wlth;he}

eigenvalue s0 . We also use mer}otauOll“Do={(sq ),’! _f ’D

Like in/12/ "we use the notation of “reduction” o

(or Dy. Let D-Sq0H, ® D, . We say th:;tt.Dn(or Dy

can be reduced, if b also hasA a representatio
D=3q0H o D,

with Hoc H, , dim(Ha® Hp) < =, , dim (D@ Do) = =

.. . . . i e. dim(DoelS()Qx;
use finite dimensional reductions, i.e., ¢ Do
gic:rivial and always possible, we regard .only infinite
dimensional reductions such as ]ust. defined). alit
More informally but roughly speaking, the poss! :j y
of reduction of D=9 ®H, ®D, means that wecan ff‘n a,r’l
infinitely dimensional submanifold of Do' and can 'addf
it to £ 90®H, Now we give the following definition o
i isg i II.
ee cases which can arisg in class
g:ss I, if D=2x290 Hy, we say Dy can be
completely reduced. . (ah).1o 121 and
III lfD:z“@H eDl’Dlz a),l=
class D, camiz)t be reduced further, we say can
be maximal reduced. .
Class 1II if for any reduction of Dy Wwhich leads to
' D=4 H, ©D,, D, can be further redu-
ced, we say Do can be reduced but not
maximal.

14

Like in "2/ one can easily obtain the following statement
which we give here without proof.

Statement

1) Dy can be completely reduced itf there is a subse-
quence (s,;l) C(s8h) such that with a suitable
lteration ~ (cf. preliminaries) {($J)} and (99 )y
are equivalent. g "

ii) Dy can be maximal reduced iff thereisa decomposition
(Sr?)=(an)u(bn) andasubsequence(s]f ) (s’ )

such that with a suitable iteration n "

faly, i= 1,2, 4

! and f(s°') 1_q2 .

In

are equivalent, and D, 2 {(b:l) } cannot be reduced.

iii) Dg can be reduced but not maximal iff ,for any
decomposition (s %) =(a )L (b,) such that Hsid )i
and f{(a))} are equivalent for a suitable slubse-
quence of (s') and a suitable iteration  there are
a further decomposition (by) =(cp) v (dp) and
subseqyepce (sp_ ) C(sg) and an iteration such
that {(s;J ) | " and e )i are equivalent.

The next Proposition deals with the proof that the

membership of a domain D to one of classes III ,

Il or III  does not depend on the choice of the diagonal

operator S in the representation D=D >(8)

Proposition 1

Let D=D>(3) - ~ D(sS™. If b SRUINESI) g <llls) with
respect to the representation D=D>~(S), so Dc I
GHIB, - llIC ) with respect to any representation D=D>(T)

where
S=51(s,) ()} T= Ti(t) ()
Proof: 7
1. Suppose, D™ (%) = lll, . Regard again the sequences

(s),(s’) and () , (tg ), (t2). Note that by the
asSumptfon D>(5) <M, the set () is void. From the
estimations

1 ; - B R
C'n ~Lam = Usp) ™, (M)

15



i 0y = that
it follows especially for (t) _(tln)
« R
L WR L <e(s ) (3)
T Sn—l(ln) N P T \

i sp  has infinite
) =(sp_ ) Since any Sp
Let (s S1a ) .

n
multiplicity, we can find a further

with:

subsequence (sun }

- - - }.
sun=shnforall n; (:un)J(Sn) (Shn)

The latter and (3) lead to
IO E U RO

- R t

_Ls;/R St"(u“) §Csu“ ’(rr(un

C" ( =(t7 ) for a suitable subsequence
that is (t;(y ) =(t;

(t% ) c(ty) 'and a shitable iteration. From (3) and (4)
in n

we obtain
r? RZ e RE (5)
9 cc(s )R Ct g, ) =B ) ,
n - n
l ' /R
; 1+——2- l/’RZ " 1 (6)
¢ 5 1L VR ZJE) Rt r(up ) o(tf)
nTC oaml(ry
Consequently, ,

N T
D(t] ) L/RT < SE(CE )
n
i.e., the systems ‘
?(eto’l) } an {(t-! )t are equivalent.
n
Hence D*(T)GIIfA.
2. Suppose DX(S) €lllg AUAYH
(s).(s) (s?) and (t ), (ty) ,(ty) .
From (M) it follows that

D~(T)<lll . and regard

(N

LSOVR a2 C(sR
c'n -
for all n.

_1._(3 )1'R i((o) ‘/\C(Sl )R7 (8)

This leads to (ty,) C(t)) wup to a finite number of
elements, because, if it were not the case one could
obtain a contradiction with D *(8) €l g by similar con-
sideration like in 1. (Because finite dimensional reduc-
tions are always possible, we may, without loss of
generality assume that (tky) C (t9) for all p )
From (7) and (M) it follows that for {g‘t 0y ¢ ty, Y i=(u_)
{(uk )} is equivalent to a suitable { (5, k)] nd, again,
by (M) and the considerations of 1: §(u,‘: )} is equiva-
lent to a suitable i( tﬁh) . From this and D¥(T) c Il ¢

it follows that there is a further decomposition(tkn):(an)u(br)
such that the system {(ak)} g again equivalent to
a suitable {(f;“) . But this means after all that the
subsequence ("sk"n) 0of (s0) the elements of which stand
in (7) together with the elements of (a,) “could be
reduced” which is a contradiction with the assumption
D™(8)< Illg: Q.E.D.

The next Theorem gives us information about unitary
equivalence of domains of class III.

Theorem 3

Let D,D'cill: Dand D’ are unitarily equiavalent

and only if the following requirements hold:

L. there are operators §- St(sn) (¢ | and T=T{(t,), (4 n)}
such that D=D *(S) and D’- D>(T) :

2. both D and D’ are of the same class III, , III g
IIl¢ , resp.

3. for the sequences (%) (tp , (s, (t2) one has
i) (s;) and (t",) are weakly equivalent, that is,

there are suitable iterations o and r such that
(86 (n)) = (t7(ny )

b

ii) for the classes Il and I in addition
to condition i) one has:
iy : the systems {(s )1, (%) jare essen-

tially equivalent
III there are decompositions (sJ) - (ap)u( by)
(tn) =(cn) U (dg) subsequences (un)cC (sh)
(van) C(th) and suitable iterations such that
the three pairs of systems of sequences

>
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Halyt, t(egdts .
f(ohy 1, f(ag)t,
f(ady 1, 1 1

are equivalent.

k 3 .
Re’;l_:e: us note that the conditions for classes IIIBand

aI must be formulated in the languag(;e' tci)f syfsot:.el:lsa ;);
it i ile the condition
ences (as it is done) while
;‘iqu is re(quirement only for the sequences themselves.
A

Proof of the Theorem ‘
Let M, -fs; (s, s;=Kki,
Ny =tt; €(ty) : t; =kt

From the estimations

M
1 1/R oy o Cs® (M)
¢°n = mm= |

(n) y,
it follows: if s; € My, then t ) € Y N
m
Kk

mk’nk'(oo k

if {; <Ny, then sn_lme ji’n M; -
But this is the same situationasin the px:oof of Tl(lfs)x;er;lrz
of /12/ from which it follows that (sp) and (tq

i nt. _
;Iea-khl,..ii(:emi;altie Proof of Proposition 01 we obtallln ‘ix;xcl)m
(M];‘ for the sequences (s?) and (t7) the fc()1 oide gf
i) if on the left-hand side and on the rlght—ha(rilms )
(M) the elements s? stands, then the correstl))on elegmei-ﬁ;)
must belong to (t,?) up to a finite num0 er eler thex.l
ii) if for the t,.,, the elements of (t,) st ,f v
- the right-hanf(ri side and on the left-m_mq side of ( 2
f:llements of (s%) must stand up to a finite S(l)ltltrxlt::rs:s
elements (if it is not the case, we ob_tam mD th cases
a contradiction with B~ (§)c g, i.e,

reduced).

1) and ii) mean that in (M) the elements of (s)) and
(tg) “stand together” up to a finite number of elements.
{l%uté ltl)li}s shows the essential equivalence of {( sy} and
OI.: Regard the following decomposition of ( td)
(t8) =(cp) u(dy) 0

where ¢, are those elements of (t,) which stand in
(M) together with elements of (sd) ,denote these elements
o (s% by (a,). Let (d,) ={(td)- (en)lsbp) =H(s9(ap) }
The elements of ('sy) which stand in (M) together with the
elements d, form a sequence (‘s,-;h) . From our “standard
argumentation” it follows that {(Sj’l: ) ! is equivalent to
a suitable system

IGWSIEICORE fe., {(dl)
is equivalent to f(V{i)}. Analogously, one finds that
f(b}) 1 is equivalent 0 {(51) t=t(a}) | for

a suitable subsequence (spy) =(up)c( s,) anda suitab-
le iteration. This conclud1es the proof of the Theorem.
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