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0. Introduction 

In/12/ there was given a complete classification of the 
d:>mains of closed operators in a Hilbert space and a desc­
ription of the structure of these domains. Now we present 
a first part of a classification of another type of domains, 
the domains of operator * -algebras (Op* -algebras). 
Thereby we restrict ourselves in this paper to the spe­
cial but very important case, where the domain is 

·a Frechet space with respect to a certain natural topology. 

1. Preliminaries 

We use the same notations and notions as in /t 2
/, Let 

H be a separable Hilbert space, D c H a dense linear 
manifold, <, > . II II, resp., the scalar product, the norm 
resp. in H . A kernel of D is an infinitely dimensional 
closed subspace N c D . A kernel N is said to be maxi..: 
mal, if there is no kernel N'c D , N c N' such that 
dim (N' eN) =""' • By f + (0) we denote the set of all 
linear operators A from D into D, AD c D such that 
D --: D ( .~) and A' V c D . S: (0) is a * -algebra with respect 

to the usual operations, and the involution is defined by 
A .... A+ • where A"" is the restriction of A* to D . 
A * -subalgebra a ( D l = a of S: 'D' containing the 
identity I will be called Op* -algebra. An Op* -algebra 
G (D) is said to be closed, if 

D = (\ D(A). 
A~G 
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Equivalently, an 0 p* -algebra (j (D) is closed, if the 
domain D equipped with the topology t (j defined by 
the seminorms • 

11¢11 "'11¢11 + IIA¢11, A~ a, ¢~o 
is compfete (further considerations concerning Op* -
algebras are contained, for example, in 19 , 10' 11, 19/ ). 

By a diagonal operator we mean an operator S"' Sl(a ) ,(<A) l 
with the domain n n 

D==D(S)"' !¢"'~X¢: ~/x /2 /a [2 <ool, n n n n 

where I ¢ n l is an orthonormal basis of H contained 
in D and Ian l a sequence of real numbers unbounded 
if D 1c H . Two linear manifolds D, D' are called linearly 
(unitarily resp.) equivalent if D'"' KD, where K is a 
rounded operator with bounded inverse ( a unitary opera­
k>r resp.). 

In what follows we need some notions about sequences. 
let ( a 0 ) be a sequence and ( b

0
) a subsequence of 

( a ) , ( b ) c( a ) then by ( d ) "' ( a ) - ( b ) we denote 
tlur subsequenc~ of ( a

0 
) obt~ined f¥om th~s by cancelling 

the elements ( b 0 ) • We write ( a
0

)"' ( b 
0

) u ( d 0~Let (a 
0

) be 
a sequence of naturals. By ( a

0
) ' we denote the set of 

accumulation points of ( a 0 ) and by (a~) we denote the 
sequence ( a0 ) '-lool such that a}:;: a2 .:S ... 

An iterated sequence ( i
0

) "' ( arf) is a sequence 
obtained from ( a 0 ) in the following way: Let a be 
a monotone map from N onto itself, then (~n)=(a~)"'(aa(nl). 
Fbr example,(a0 ) could be at. a1, a2, a3, a3, a3, ... 
We call a the "iteration" and, for brevity, we will 
often use the same sign """for any iteration. 

Let (au),{ b0 ) be two sequences of positive numbers. 
Ole says that ( a ) is majorized by ( b ) ,((a) <( b ) ) , if 

n n n n there is a constant C > 0 such that a < C. b for all n . 
n- n 

In/1
2

/ we defined different notions of equivalence of 
such sequences to obtain a description of the structure 
of domains of closed operators. Now we deal with systems 
of sequences and give the following 
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Definitj.on 1 

Let ~ 
1

"" !(an) l , ~ 2 = l( b 0 ) l be two systems of sequ­
ences of positive numbers. ~ 1 and 5 2 are said to be 
equivalent ( "') , if any sequence ( a0 ) ~ ~1 can be 
majorized by a suitable sequence ( b 0 ) .;; .~ 2 and conver­
sely, any sequence of .~ 2 can be majorized by a suitable 
sequence of ~ 1 essentially equivalent ( e ) ' if there 
are s, t.;; N such that the systems I( as+n) I and l( b t + n) I 
are equivalent; weakly equivalent ( w ) , if there are 
suitable monotone maps a , r of N onto itself such 
that the systems C~ 1 ) a,(~ 2 ) , of iterated sequences 
!(a~) I , I( b ~) l obtained from a and · r are equi-
valent. 

If the systems ~1 
we obtain the same 

and ~ 2 contain on7 one sequence, 
notions as in I 12 , Definition 1. 

2. Classification of the Domains of Op* -Algebras 

In this section we give a classification of the domains 
of Op* -algebras and note some properties of the 
structure of these domains. 

First we remark that these considerations are proper 
extensions of those of 1121 because of the following 
tact /9, 18, 19/: 

Let D be the domain of an 0 p*-algebra containing 
at least one unbounded operator. Then D annot be 
the domain of a closed operator, i.e., these two types 
of domains are essentiall different. 
With the following classification we continue the enu-

meration begun in /12/.. 
c

4
: Classification of the domains of closed Op* -algebras 
Let ct (D) be a closed Op* -algebra. D is said 

to be of 
Class I iff D does not contain a kernel, 
Class II iff D contains a maximal kernel, 
Class III iff D contains kernels but not maximal one. 

We write D.;; I , ~ II and 4;: lii . 
For the domains of closed operators in/121 there was 

given the same definition and this geometrical picture 
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was translated in the language of equivalence of se­
quences. The classification C 4 is co~plete and disjoint. 
No class is empty, as can easily be seen (cf. also sec­
tion 3). 

The following remark shows roughly speaking that the 
class to which a domain D belongs is not determined 
by the class to which D(A) belongs, for all A~ f+(D) in an 
invariant manner. 

Remark 1 

Let D be the domain of closed Op* -algebra. Then 
there can arise the following cases: 

i) D~ I, then there are A, B .::: sn- (D) such that D( A).;; II , 
D(B) ~III. + _ 

ii) D4; II, then there is an A-=: f (D) such tha1 D (A)~ III , 
butthereisno B.::f+(D) such that D{B) ~;;I. 

iii) Dr,;III,then there is an A.;:f+(D) such that D(A).::: II 
but there is no B ~ s:+ (D) such that D(B) ~I. 

Proof 

All statements can be proved in a similar way by 
examples constructed from diagonal operators. We regard 
for example i) and construct the operator B. 

Let H = P 2 , D = s = I( a
0

) : I. n1 I a 
0

1 2 < oo V I ~ N I . 
Let ¢ = (0, ... , 1,0, ... ) where the 1 stands as the 

n th elem~nt. Now regard an arbitrary decomposition of 
the set of naturals: N = M

0
, M

0 
infinite sets, M{' Mk= ¢ 

for k fc i. Put m0 =min M
0 

and let C be the following 
diagonal operator: 

C=CI(b 0 ),(¢ 0 )1 with bj=m
0 

forallj~M 0 . 
It can e_!lsily be seen that D c D ( C) and B = q 

0 
~ 2 + ( D 

and D(B) = D(C)~III, but D obviously~;.. I. Q.E.D. 
For a detailed classification and description of the 
structure of the domains it is important to investigate 
the following 

Problem 

Under which conditions the domain D of a closed 
Op* -algebra (i(D) can be represented in the form 

D = I ¢ = I. x 0 ¢ 0 : I. I x 0 1 
2 (a ~a)) 2 < "" a.,: A I 
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( ¢
0

) c D an orthonormal basis, I (a ~a) ) , a ~ A I a suitable 
system of positive sequences. In other words, D is 
isomorphic to the space of sequences D s c e 2: 

D s = I { x ) : I. I x I 2 { a ( a) ) 2 < oo V a ~ A I . 
n n n 

Then with the diagonal operators Ta= Tal{a(0a)) ,(¢ 0 ) I, 
a~A 

D = n D(T). 
a~A a 

The crucial point of this problem is 
basis ( ¢ 

0
) must be the same for all 

This problem leads to the following 

statement 

the fact that the 
operators Ta. 

If the domain D of a closed 0 p * -algebra d (D) can 
be realized as a space of sequences, then the maximal 
0 p* -algebra f+(D) is selfadjoint, that is, 

D = " D(A) = " D(A*) 
A _.;. f +( D) A ~ 2 + ( D) 

(cf.also /1,8,11,19/ ). 

In general it is an open question whether f+ 1 D! is self­
adjoint in any case where D is the domain of an ar­
bitrary closed 0 p *-algebra. 

In what follows we regard such algebras (i (D) in 
which the topology t (:j is metrizable, i.e., D [ ta J is 
an F -space because we regard only closed algebras. 
Therefore one has 

D=" D(A 0 ), 
n 

+ 
A

0
!

0
.;;f(Dl. 

A special case is the following 

(1) 

D = D""( T) = r D ( T 
0 

) • T = T * , T 1 ~ £-+ (0), (2) 
n 0 · D 

Without loss of generality one always may assume that 
T = T" _I, I :2_ A n :: A ri and D ( An _. 1l r: D( A 0 ) for all n . 

Domains of form (2) were regarded by many authors 
from other points of view as we do it here. These were 
regarded, for example, in connection with differential 
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operators or in the interpolation theory aq centers of
1 Hilbert- or Banach-scales. (Cf. for example, 18 ' 13 - 16 ·20 , 

and the references there). We here only remark that an 
important example for a space of form (2) is the Schwartz­
space 1S of rapidly increasing functions. 

Remark 2 

Obviously, the class of domains of form (2) is con­
tained in the class of domains of form (1), but the two 
classes do not coincide, i.e., there are domains D =n~o D(A) 

such that there is no closed operator T with D= n D(Tn) 

We give an example: n>n 

Let l ¢ n I be an orthonormal basis in a Hilbert space 
H , ( t 0 ) a sequence of naturals with I irn fn= "" . Further 
let l M n I be a sequence of infinite sets with the following 
properties: 

1. Mn eN, i.e., Mn is an infinite set of naturals, 
2. M { M , 

3. th~ ~ets N1 = N-M 1 , Nj = Mj _1-Mjare infinite for all j > 1. 
At last we use the notion ( t . J for the sequence 
( tj , tj+ 1 , ... ) . .Now we define a sy"kfem of diagonal opera­
tors An= Anl(a\n)),(¢

1 
)I as follows: 

a< 1) 
I = 

and for n > 1: 

a(n) 
I { 

tl 
t
1 

j + I 

For the operators 
1. O(An)=HnEBOn, 

sional, 
2. 0 (An + J c 0 ( An) 

tl if 
1 if 

if 
if 
if 

~ N 1' 

l~MF 

.,; N 1' 

.; Ni 
~ Mn. 

for 2 .::; j :.; n , 

An constructed above there hold: 
On .; l , Hn closed, infinitely dimen-

more precisely: 

Hn+1:Hn' On - 0 n + ', 

8 

Hn = Hn + 1 EB 
-"\ A J\ .1\ 

H n + 1' 0n + 1 = D n EB D n + 1 ' D n + 1 C H n + 1 • 

Roughly speaking the operators .An are formed in such 
a way that, if .An is bounded on Dn , An+1 is bounded 
only on an infinitely dimensional subspace of H n and 
unbounded on the also infinitely dimensional orthogonal 
complement. 
3. The representation 

D= n D(T 0 ), 

n> 0 
T closed 

cannot hold, were D is defined to be the domain of the 
algebra generated by the operators An, i.e., 

0 = n 0 (.A~) . 
m,n > 0 

In fact, from the closed graph theorems it would otherwise 
follow that 

k 
IIT¢11<C(IIA1 ¢11 +II¢ II) for suitable k,I.;N, C>O 

and all ¢ .; 0 . 
But then the boundedness of A' on the dense subspace 
H 

1 
n 0 of H 

1 
leads to 

IIT¢11 ~ C(IIA~¢11 + 11¢11) <;;. 011¢11 

for all ¢ .;;; H 
1 

n D . 

This means that T is bounded on H1 n 0 and becau-
se T is closed we have H1 cO(T) therefore H

1
cD 

which is a contradiction with 2. This concludes the 
example. Because the topology t (j on the domains of 
i>rm (1) can be given by a system of scalar products 
l < , > n I these domains are countable Hilbert spaces /6/, 
With respect to this and in connection with the construc­
tion of the space D s of sequences isomorphic to 0 we 
recall the following 

Definition 12 ' 5 I 
A system ( x n) of elements of a linear topological 

space E is called a basis of E, if there is a system 
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( fn) of linear functionals fn ~ E' such that for any 
x ~;;-E there holds the unique representation 

00 

x= ~ f(x)xn. 
n= 1 n 

(3) 

The basis ( x n) is called unconditional if ( x rr( n)) is 
a basis for any permutation rr of N, or equivalently, 
if the series (3) is unconditionally convergent for any 
x ... E. In /15/ the following fact is mentioned: 

Proposition 
Let D be a countable Hilbert space D = 11 Hn with the 

topology r defined by the scalar products l <, > n I. If 
( ' i ) is an unconditional basis in D, then there is 
a system l · , '~ I of scalar products defining the same 
topology r such that ( x j ) is an orthogonal system 
with respect to any < . :· ~ . Hence we obtain the following 

Conclusion 
If the domain D = n D(An) contains an unconditional 

tasis • ~r, n ) then there are diagonal operators T1 = 

T 1 l(t<~l), (1/Jn) I such that D= no(T1 ) namely, we 
moose t <J l = 111/J n II '1 ,where II II 1 denotes the norm 
corresponding to the new scalar product <, ~· { . In the 
special case D=D""(T)= 11 D(T"), T=T* from the spectral 
theorem it can be easily obtained: there is an uncondi-
tional basis (1/Jn l c D such that D = D ""(A) , where 
A= t\ l (a ) , ( 1/J ) I is a suitable diagonal operator. 

Thus, "the e~istence of an (unconditional) basis gives 
the possibility to regard D as a sequence space. But 
to speak about the sequence space associated with D it 
must be shown that this space is independent of the choice 
of the (unconditional) basis. This is the "problem of quasi­
Equivalence of unconditional bases" which can be formu­
lated as follows. 
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Let D [ r l be a locally convex space, (¢n I, ( t/J n l two 
unconditional bases of D [ r J • Is there a permutation 
rr of N and a sequence of positive numbers ( r n) such 
that the operator T defined by T ¢ n ~, r n t/1 rr(n) is 
a homeomorphism of D [ r l onto itself? 

l 

) 
l, 

For the domains in which we are interested (namely 
(F) -spaces) a positive answer to this question can be 
given, in essence, only in two cases. The first one deals 
with the so-called "regular" bases introduced by Dragi­
lev 124 I. The results along this line concern nuclear 
(F) -spaces and countable Hilbert spaces and were ob­
tained by Crone, Robinson 1221, Kondakov 1231 and 
Djakov 125/. The second case deals with center~ g~ Hilbert 
scales and has been regarded by Mityagin 2 

. In the 
sequel we make essential use of his result which can be 
summarized as follows 

Theorem /15/ 
Let D = n D(T")= n D(S") with s~ s l(s) ,(cf; ) I and 

n..? 0 n..? 0 n n 

T = T I ( t n ) , ( ~~ n) I , , S, T:,:: 1 . Then there are constants 
R> 1, C · 0 such that with a suitable permutation 11 of N 

1 1/R , R c< 8 n) _t rr(n) s C( Sn) holds for all n '- N. (M) 

This Theoren:'. can/~ regarded as a gene~alization of the 
Theorem of Kothe ' 7 essentially used in' 12 /. 

All the results known up to now about bases and quasi­
Equivalence of bases make clear that it is very hard to 
give a detailed description of the structure of domains 
of Op* -algebras by means of spaces of sequences in 
quite general case D = n D( A ) , a c: A. Therefore we 
restrict ourselves to tlie ca~e D~Dcx.(T) ~ n O(T") , 

n 0 

T = T' '· I which will be investigated in the next section. 

3. Classification of Domains D =Doc ( T) 

For the domains of this form we have: D ~ I (,;;II , 
;; Ill. , resp.) if and only if T ~I (.;:.II , ~ Ill, resp.) with 
respect to the classification of operators given in /12/ . 
Recalling the facts from the conclusion above, we find 
a suitable diagonal operator A=A!(a ).(0 )!onD(T) such n · n 
that 
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D = I if! = ~ X 0 if! 0 : ~ I x 0 I 
2 

( a 0 ) 
2
j < oo V j = 1, 2, ... l 

and the system of sequences 5 =!(a~) ,j = 1, 2, ... l, ~~NV n, 
describes the associated sequence space. That is, we 
have an isomorphism between D and the space of 
sequences 

D 
8 

= I ( x ) : ~ I x I 2 a 2i < oo V j ~ N l . n n n 

It is clear that we have to justify that the system :I in 
fact characterizes the domain D up to unitary equi­
valence. By using Theorem of Mityagin we obtain the 
desired justification and a complete description of the 
regarded domains. We remark that it is sufficiently to 
restrict oneself in the following Theorems to the case 
D = D' and to prove only the direction that from D = D' 

&>mething follows about the systems :I, :I ' of sequences. 
'The remaining parts of the Theorems follow by simple 
oonsiderations or are obvious. 

Theorem 1 

Let D, D ' ~ I . D and D' are unitarily equivalent 
if and only if there are diagonal operators S=S!(s

0
) ,( ¢

0
) l 

and T = T I( t
0

) , ( if! 
0 

) ! with 
D = D 00

( S) , D' = Doo ( T) 
such that the systems of sequences 

5= !(s~), I= 1,2, ... l, S:'=l(t~), I= 1,2, ... ! 
are equivalent. 

Proof 

With respect to the remark before Theorem 1 we use 
the inequalities (M) and can prove, as it is done in I 3 I , 
Lemma 5.4 that (M)holds with the identical permutation. 
:&it this means just the equivalence of S: and 5'. We 
note that the assertion of this Theorem can also be 
obtained from the closed-graph theorem and some con­
siderations like in /12/ (cf. for such a proof I 191 ). Now 
we go on to the domains of class II. 

Theorem 2 

Let D , D' ~ II . D and D' are unitarily equivalent 
if and only if there are diagonal operators 

12 I 

I 
! 

S==SI(s 0 ),(¢Jl, T==T{(t
0
),(1/1

0
)l 

with(s 0 ) ==(sb)u(s0 ), ,(t 0)==(t~)u(t 0) and D==D(S), 
D' == Doo (T) such that the systems of sequences 

:f=={ (s~i), j == 1, 2, ... 1, 5'= l(t~i), j == 1, 2, ... 

are essentially equivalent. 
Before proving the Theorem we repeat that from 

D, D '~II it follows that the diagonal operators S, T are 
also of the class II ( cf. I 12 I and the remark at the 
beginning of this section). From the considerations of 112 I 
it follows that the sequences ( s 0 ) , ( t n) resp., can be 
decomposed in the above mentioned way, where ( s~) is 
a bounded sequence and for ( s~) : lim s ~ = oo (analo­
gously for ( t 0 ) ). Repeat that the decomposition is 
unique up to a finite number of elements in any subse­
quence. 

Proof of the Theorem 
From (M) we obtain especially 

J.. ( 8 b) 1IR < t < C( s b) R 
C n - k 0 - 11 ' 

(1) 

_!_ ( 8 oo) 1IR < t . < C( s":P , 
C n - ln - n (2) 

for suitable subsequences ( t k ) and ( t i ) of ( t 
0

) 

(Clearly, (1) means, if s~ = s 1 ° then n~ == srr(I > 
and an analogous interpretation°for (2)). n n 

From (1) and (2) it follows that ( tk n ) is a bounded 
sequence and for ( t j ) : lim tin = oo • 

But this means: ( tk" ) coincides, up to a finite number 
of elements, with . 0(t~) and (tj) coincides, up to 
a finite number of elements, wi~ 0

( t ;>. Conse9.uent1y, 
(2) gives the equivalence of !( s;"l ) ! and !( ~~ ) l , 
tut ~is means the essential equivalence of {( s;;'l )~ and 
!(t;;' 1 ) l) Q.E.D. 

Now we go on the class III. Like in 1121, we shall 
distinguish three subclasses described below. Let D~ Ill , 
D == D 

00

(S), S= S !( s 0 ) ,( ¢ 0 ) l with the associated sequ-
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mces ( s~) (Cf. Preliminaries) and t s~) , the sequence 
of all eigenvalues of S with finite multiplicity, s ~S. s ~'S.-·· 
Put S: == I ( s~l) , j == 1, 2, ..• I It can easily be seen, that 

D == ~j fJ H
0 

e D 0 , 

\~here H 
0 

is the infinitely dimensional eigenspace asso­
ciated with the eigenvalue s~ and ~ j- fJ H0 , D 0 resp. 
mean 

~qeH == lx=~ x :x ~ H .~llx 11 2
(s')

2
i <oo,Vj<;-Nl, 

J n n n n n n 

D 0 = I ljJ = ~X ljJ : ~ I X I 2 
( s 

0
) 

2
j < 00 ' v j f: N l ' n n n . n 

where ljJ n is the eigenvector of S asSOfiated with the 
eigenvalue s~. We also usethenotation D0 =!(sgi),j= 1,2, ... 1 
Like in /12/ we use the notation of "reduction" of D 

' (or D 0). Let D = ~ jfJ H
0 

ED D 0 . We say that D (or 0 0) 
can be reduced, if D also has a representation 

A A 

D == ~ j ED H0 ED D0 

A " - A 

with H n c H n , dim ( H n e H0 ) < oo , , dim ( D 0 G D0) 
- A' 

(Because finite dimensional reductions, i.e., dim (D.pDfi<oo 
are trivial and always possible, we regard only infinite 
dimensional reductions such as just defined). 

More informally but roughly speaking, the possibility 
of reduction of D = ~ s: ~ H0 fJ D 0 means that we can find an 
infinitely dimensional submanifold of D0 and can "add" 
it to ~ j fJ H0 • Now we give the following definition of 
three cases which can aris_r in class lll. 
Class IliA if D = ~:;: E9 H0 we say Do can be 

Class III 

Class III 

completely reduced. 
A A 

if D = ~jE9H 0 E9 D 1 , 0 1 = l(a1),L 12, ... 1 and 
D 1 cannot be reduced further, we say can 
be maximal reduced. 
if for an_y reduction of Do which leads to 
D==~jfJ H 0 E9 D 2, D 2 can be further redu-
ced, we say D

0 
can be reduced but not 

maximal. 

Like in /l2/ one can easily obtain the following statement 
\\bich we give here without proof. 

Slatement 

i) D0 can be completely reduced iff there is a subse­
quence ( s~ 1 ) c ( s~) such that with a suitable 
iteration "' (cf. preliminaries) !( i 'j) l and !(s Oj ) 1 
are equivalent. n I n 

ii) D 0 can be maximal reduced iff there is a decomposition 
(s:)==(a0 )u(b 0 ) andasubsequence(sj) '(s') 
such that with a suitable iteration ... n " 

I (a 
1 

) , i = 1, 2, ... I and I (; ~ 1 ) , I = 1, 2, ... I 
n J n 

• A l 
are equivalent, and D2 = I( b 

0
) I cannot be reduced. 

iii) D 0 can be reduced but not maximal iff ,.fo_r any 
decompo_sition ( s ~) =( a

0
) u ( b 

0
) such that l(s i 1 ) I 

and l ( a~ ) I are equivalent for a suitable s8bse­
quence of ( s ~) and a suitable iteration, there are 
a further decomposition ( b

0
) = ( c 

0 
) u ( d n) and 

subsequence ( sh ) c ( s~) and an iteration such 
A · n · 

that l( sh J ) I and l( cJ ) l are equivalent. 
The next 8roposition deals with the proof that the 

membership of a domain D to one of classes III A, 

III 8 or III c does not depend on the choice of the diagonal 
operator S in the representation D = D 00 ( S) 

Proposition 1 

Let D=Dcx(S)= '0(S 0
). If D~IIlA(f.lll 8,.;,:llJc) with 

respect to the representation D = D"" ( S), so D ,::. HI A 

f:III 8 , ~ lllc ) with respect to any representation D=D""(T) 
where 

1 
1 

S = S l ( s
0

) ,( 0
0

) I , T = T l ( t
0

) , ( lfJ 
0

) • 

Proof: 

1. Suppose, D"" (;..;) .; Ill-\. Regard again the sequences 
( s ) , ( s') and ( t ) , ( t~ ) , ( t 0 ) . Note that by the 
as~umptfon D"( S) .:Ill"" the set ( s{) is void. From the 
estimations 

1 ( ) ! /R t , ('( ) R - s ·, . s . C n - TT( n) - n · (M) 

14 15 

I ~-------------------



it follows especially for ( t ~) = ( t I ) that 
n 

1 1/R • R 
-( s ) < t < C( s ) : 
C rr-1( I ) - I - rr -1 (I ) n n n 

(3) 

Let ( s ) = ( sh ) Since any s~ has infinite 
77-lo ) n 

n 

multiplicity, we can find a 
with: 

further subsequence ( s 0 ) 
n 

s = s for all n · 
un hn ' 

{ s 
0 

) C !( s 
0

) - ( s h ) l. 
n n 

The latter and (3) lead to 

lsl/R <t <CsR ,(t )c!(t )-(t"")l, (4) 
C u

0 
- rr(u

0
)- u

0 
rr(u 0 ) n n 

that is ( t 
77 

< u ) ) = ( t j, ) for a suitable subsequence 
( t'j ) c( t ~) "and a s'Oitable iteration. From (3) and (4) 
we ~btain 

2 2 " 2 
tO < C( s ) R < C · C R t R = E( t '. ) R n - hn - 7T ( u n ) J n 

(5) 

l 
0 1 ' 1+ . 2 

t ?. - s 1/R > ( !..) RZ( t l /R ) -
n C "-lo )- C rr<un> -

n 

D ( t j n) 1/R 2: (6) 

Consequently, 
" 1 2 ,. z 

D ( t~ ) 1 R < t 0 < E ( t ~ ) R 
Jn - n - ln 

i.e., the systems 
I ( t~ 1 ) I and I ( t '. 1 ) l are equivalent. 
Hence D oo ( T ) (; nl ~ . 

2. Suppose 0 00(S) (;Jll 8 , D"'(T);;Illc 
( s 

0
) , ( s ~) , ( s ~ ) and ( t 0 ) , ( t ~ ) , ( t ~ ) 

From (M) it follows that 

and regard 

_!_( 8 0) 1/R . t < C ( 8 0) R 
C n - k 0 - n ' 

(7) 

for all n . 

_!.._ ( s I )1 R ( t 0) • C ( s I ) R ' 
C n - 0 - n 

(8) 
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This leads to ( tk ) c ( t ~) up to a finite number of 
elements, because? if it were not the case one could 
obtain a contradiction with D ""( S) .:;: III 8 by similar con­
sideration like in 1. (Because finite dimensional reduc­
tions are always possible, we may, without loss of 
generality assume that ( tkn ) c ( t g ) for all n ) 

From (7) and (M) it follows that for 1 ~t 0 )- ( tk ) l = ( u ) 
I ( u ~ ) I is equivalent to a suitable I (s; ) 1 B.nd, agai'h, 
by (M) and the con~iderations of 1: " I ( u ~ ) l is equiva­
lent ,to a suitable I ( t t. !) I. From this and D""( T) (; III c 
it follows that there is a further decomposition( tk

0
)=(a

0
) u(b J 

such that the system I (a: ) I is again equivalent to 
a suitable l(t j k) l . But this means after all that the 
subsequence ('l,ko ) of ( so) the elements of which stand 
in (7) together ~ith the "elements of ( an ) "could be 
reduced" which is a contradiction with the assumption 
D""( S) (; III 8 : Q.E.D. 

The next Theorem gives us information about unitary 
equivalence of domains of class III. 

Theorem 3 

Let D, D' ,;_ III : D and D' are unitarily equiavalent 
if and only if the following requirements hold: 
1. there are operators S=SI(s 0 ) ,(¢~I andT=TI(t

0
),(¢

0
)l 

such that D=D ""(S) and D'= D""( T): 
2. both D and D' are of the same class III A , III 

8 III c , resp. 
3. for the sequences ( s'

0
) , ( t ~) , ( sg) , ( tg) one has 

i) (s~) and (t'0 ) are weakly equivalent, that is, 
there are suitable iterations u and r such that 

(s;(n)) "'(t'r(n) ) 
ii) for the classes III 8 and IIIc in addition 

to condition i) one has: 
III 8 : the S}'Stems I( s ~~) l, l(t~I) l are essen-
tially equivalent 

III there are decompositions ( s
0
°) = ( a

0 
) u( b

0 
) 

( tg ) = ( c n) u ( d n) subsequences ( u n) c ( s 'n ) 
( vn) c ( t'n) and suitable iterations such that 

the three pairs of systems of sequences 

17 



l(a 1 )1, t(c
1
)l, 

n n 
l A l l ( b
0

) I , l ( u 0 ) l. 

I( d~) I , 
"l !( v 0 ) l . 

are equivalent. 

Remark 3 
Let us note that the conditions for classes Ill 8 and 

III c must be formulated in the language of systems of 
sequences (as it is done) while the condition for class 
ill A is requirement only for the sequences themselves. 

Proof of the Theorem 
Let Mk = I sj ,;; ( s 0 ) 

Nk =I ti c;;(t 0 ) 

From the estimations 

_1_ s 1/R < t < C s R 
C n - rr(n)-

sj = k l , 
ti = k I. 

" 
(M) 

it follows: if s i ~ M k, then t (.) ~ U N. 
TTl n=1"J " 

mk, n k """ k 
. mk 
if t . .;:; Nk then s c;; u M- . 

I ' 7/1(i) j=1 ) 

But this is the same situation as in the proof of Theorem 3 
of /12 I from which it follows that ( s~) and ( t ~) are 
'Aeakly equivalent. 
ill

8
: Like in the Proof of Proposition 1 we obtain from 

(M) for the sequences ( s ~) and ( t ~) the following: 
i) if on the left-hand side and on the right-hand side of 
(M) the elements sO stands, then the corresponding t _ l n 

0 
.. ( n 

must belong to ( t
0

) up to a finite number elements. 
ii) if for the t rr( n l the elements of ( t 0°) stand, then 
m the right-hand side and on the left-hand side of (M) 
elements of ( s g ) must stand up to a finite number of 
elements (if it is not the case, we obtain in both cases 
a contradiction with D"" ( S) ~ III 8 , i.e., D maximal 
reduced). 

18 

i) and ii) mean that in (M) the elements of ( s~) and 
( t~) "stand together" up to a finite number of elements. 
But this shows the essential equivalence of I ( s~ 1 ) I and l(tgi)I. 

illc: Regard the following decomposition of ( t 0 ) : 
0 n ( t 0 ) = { c n) u ( d 0 ) 

where c 0 are those elements of ( t~) which stand in 
(M) together with elements of ( s9) ,denote these elements 
of ( s~) by ( a 0 ). Let ( d0 ) =I( tg)- ( <1J)I;{b 0)=1(s~)-(a0) I 
The elements of ( s0 ) which stand in (M) together with the 
elements d0 form a sequence ( Si~ .. ) . From our "standard 
argumentation" it follows that I( s l ~ ) I is equivalent to 
a suitable system 

... , I A I 
l(th )l=l(v

0
) f, 

n 
. I A I I.e., (d

0
) I 

is equivalent to I ( ~J ) I. Analogously, one finds that 
I ( b ~) I is equivalent to I( ;pn1 ) I "" I ( ~ J ) I for 
a suitable subsequence ( sp ) = ( u 

0
) c ( s '

0
) and a suitab­

le iteration. This conclu~es the proof of the Theorem. 
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