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In this paper we present a possible modification of par

ton models for inelastic processes at very large, but finite, e

nergies. As a result, we find that the scaling te:nns in an asymp

totic expansion for the deep inelastic structure function are on

ly the zeroth order approximation with respect to a parameter 

which may possibly be a constant characteristic of processes ut 

future energies. 

The modification we want to propose is based upon the 

combination of the following two facts. It is known that the sca

ling property of the deep-inelastic structure functions can be 

derived in simple models which are assumed to have the symmetry 

pr~perties of a two-dimensional non-relativistic (in what follows, 

2-Galilean) theory /l/. The mapping of the originally three-di

mensional relativistic (j-Poincare covariant) theory onto the 

2-Galilean one is defined by transforming the scatterinc system 

into the infinite momentum frame (IfuF). A careful investication 

of the problem of how to define the transforr.ation properties 

of various physical quantities in the I&F /
2 ,J/ has led us to 

the conclusion that the transformation into the IJ.~' is a hidden 

way of using the method of group contraction for establishing 

the above-mentioned maJ>pine. On the basis of this conclusion we 

have been able to describe the ~appinG of j-Poinca.re covariant 

current matrix elements onto current matrix elements in a 2-di-
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mensional relativistic (2-Poincare covariant) th~ory 131. 

The symmetry group of the two-dimensional theory is ge-

nerated by 

. 1 
K1 = ,\ (M,_ + N1) - 4Xc.>. (rut- N1) , 

K~ - \ (lnl- N2) + 4 :c, (Iii, + ~) (l) 

H = 
4
\ (1-', + Pl) + ACL (P0 - P~) 

and M, , f.~= (P1 , Pl.), the generators !i.e, , N;. , i=l,2,3, and Pf"" 

~= 0,1,2,3, being those of the )-Poincare group, the symmetry 

group of the three-dimensional thaory in the ordinary reference 

frame. ilo simple kinematical argument tells us the value of the 

parameter c > 0. It is a kind of "light velocity" from the point 

of view of the 2-Poincare algebra: 

l 1 . l K1 , K.~. = -~ ;-,_M.:~ , [M~, K,)= i E,~K$ , i,j;=l,2, 

LK < ' l:j 1 = i ~2. 6,! H, ~. ' It 1 = H'~ ' (2) 

[M 1 , P, 1 = i C.4 P4 ' 
[M, ,H) = l P, ,PJ = [ H, P.) = 0. 

That Casimir operator of the 2-Poincare algebra which corresponds 

to the "mass" can be written as 

_L H.>. - p'
c, -.~.. 

where 

"" l. 1. P,.._P + f'- c 

f'" = }., (Pc- PI) - 4X~J. (Pc + p1) • 
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(3) 

(4) 

~ 

In the limit c~oo , for every fixed value of ..\ > o, the fornlU

las (1-4) reproduce the quantities of the 2-Galilei group advo-

cated in ref. 1. 

The other parameter, ~> 0, does nou appear explicitly 

in the formulas (2) and (3). A detailed analysis of the contrac-

tion procedure shows that the arbitrariness of A is an inherenu 

freedom in the mapping of the three-dimensional theory onto the 

two-dimensional one /JI. It is natural to assume that the predic-

tiona of the two-dimensional theory are independent of A • This 

is a natural generalization of the corresponding scaling property 

of the two-dimensional Galilean theory in the IfuF /l/. 

In what follows we consider the process 

e + p ----+ e + anything • (5) 

We shall asume that for large incoming energies what actually 

happens is reflected by a two-dimensional theory, its symmetry 

group being generated by the operators (1). For simplicity, we 

assume that the protons have zero spin and a scalar current, J(x), 

intermediates the interaction between the electrons and protons. 
~ 

Consequently, the inclusive cross section for process (5) is de-

termined by the structure function 

H(q:z., pq) = 5 eixq <p\J(x)J(O)\p)d~x (6) 

Instead of (6) we sh~l consider the auxiliary quantity 

it= ) eixq<p\J(x)J(O, Q.
2
,a' l\p') d~xd~· (7) 
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in a reference frame, where 

I 

J:!.i= l!.l. ' q_ "qc- q3 = O ' (8) 

In eq. (7) the notations 

T=t+z. 2a = z - t , 4 - 2. d X: dJ d .!,1 d~ 
are used. It is easy to verify that, if (8) fulfills, 

;=211S(p_-p~)w. (9) 

Let us notice that, since xq : t q-1-T + .51..1..!..1. , W can be expressed 

• in terms of the transverse current" 

"'> 

j( 'J, .!.J.> = ~J< '), .!..~.• a> dJ (lo> -.., 
as follows: 

N = ~e1x<i<Pij,(i)j(o>IP') d
1 i (ll) 

where X= ( '!', .!,__)' 
] ,... l. AI\ 

d X = d T d .!,__l.~ Xq = Xqo 

Our basic assumption is that in the DlF (moving in the z-direc-

tion)i the function W can be described in terms of 2-Poincare 

covariant quantities. This description follows from the mapping 

of the transverse current matrix element 

m = <P'\HT, . .!.1>IP> = 

i 
= 21t e 

(12) 

~T(p: -p.) +i(p~ -_p-L).!,.i F(m' ,.m, (p' -p}"') ~ (p~ -p_) 

onto the matrix element of a 2-Poincare scalar currentS(~), 

~ = ( x', .!,J.), between 2-Poincare states I m, ~ , ~ )' and lm' , ,.< , -~· > 
of "mass" ~[(m'-+,M.'c'-))'t'"a.nd ~L(m'-~. + 1-i"-c'-)f; respectively: 
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1 
~ 

miMr-=(!5
1 

~~ 1 m1 1 S(~)~~ tf'-t m) = 

ix(k
1

- k )\ I ' 1 )~ ) = e N ~ ~ :r1Mr- Cm, m , ~ ~1-'- ; (Jj: - !!: · ', 
(13) 

Without repeating the argumentation, we cite the mapping of (12) 

onto (13), established in ref, 3. The current s(:e) is related 

to j( I, . .!..1.) by 

( ) _ . c..!.. o >' S ~ ; J 2 )., X 1 .!,__ • 

The state (m, I-t, Js > is a spinless momentum eigenstate in that 

subspace of the irreducible 3-Poincare representation space of 

mass m, which corresponds to the "mass" 

1 k" 1 (1 ... '-)• 1 ( l. • l. )' - ~- -k -k =--;m +"'-C' c'-"' c .. c .. c -.1.. c,_ ,. 

for the 2-Poincare group generated by the operators (l). The 

mapping between the J-Poincare and 2-Poincare momenta is defined 

as follows: 

Y. 
2 Ac p_ =J.i-c +lm'- +f'c'-J"" 

2 
\ I 1 m~ Jj..l. 1.. l.L •1. l_ I 2,. 
1\ c p_ =f- c + + c tm + M- c - (k - k) 

2 (m ,_ + fA L c '- }·';: " ~ 

(p- p')"., (k'- k >"- (f--;-.r'c._, 
~ v 

~ = l!_,_ 
I 

:!£.._ = l!.L 

(14) 

(15) 

(16) 

(17) 

Finally, the form factors" :r 1"' and F are related in the follo-

wing manner: 

(18) 
F,Mc-(m, m', 1--< •M'; (!s- ~· )2.) = 21lF(m, m' ;(p- p' t )~(p_ -p~ ). 

This mapping is a generalization of the usual formulas corres-
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ponding to 2-Galilean ff.Ymmetry in the IMF /l/. It is easy to ve-

rify that the Galilean formulas are reproduced by eqs. (14-18) Ln 

the limit c ___, .,.., • 

Now we transform the quantity W into the IMF, that is~ 
" ,, 

we map .V onto ii, 11 , , w,,." being given in terms of 2-Poincare co-

variant quanti tie e. In order to make our formulas plausible we 

repeat the recipe for finding out the mapping (12-18). First, 

one considers (12) in that special case, when~= o, pl.' =(0, p' ). 
.1. - J. 

In this case eqs. (13-18) follow simply from the definitions 

(1-4). Then one applies a 2-Poincare transformation 

1\ 
-i. 9 ]1,, -i"' K2 -iG

1 

M, 
""=e ·•e e '• 

which gtves the three-momenta~= ( c/m :>. +t-<'cL + !_~' ,_ !_~ )'; , 

~· = ( cym"- + re;;;-~? , !( )', when applied to the ones 

:_ t. I ,/ "' 
1 

C 1 k = ( cym'- +JA'c .. , 0 ), k = C cym'L+U: .. c' + p'', 0, p )1
• 

'IV -.i .... J- .L J... 

~ 

Applying this recipe to W one obtains: 

·:V,Mr- =- 2 A~ ei~ <m, f-, !=IS(~) S(£l) \m, /-'-', ~~ > d1 e , 
where 

\ "- ' >'''-2 o\CP_ =}-lc + (m +1-\C' , 

2 Acp~ =,;.c + (m' +)-A'c')''•, 

P.._ 

'h. 

k •tmz. + /.A.c .. J ·= p 
-.1. m'L. + .I.A..l.Cl. -i k 

-J., 

q=0<i 
"' 

q = ( _J_ q , q )• 
4>.. .. -J. 

The 2-Lorentz transformation 1\ in (23) 
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(20) 

(21) 

(22) 

(2j) 

(19) 

... 
I 

.. 

A -iG M, -i"' K:>. 
.L'>- = e ' e ,..., 

~s determined by the equation 

k =L\k 
N N-

~ .I l. • • ) 
k = ( cym + r c , 2. .1. • 

Inserting a complete set of states between the two currents 

:lin (19), 

( L ~"" " )

00 

dl. k I jdM dJ.A. c:t.~ Ml.• ·' 
I 2k' '/-'- t 

Me - "'> -,., 0 
· 

~")(J&'',rl',. M'"/ 

where M is the 3-Poi.ncare mass of the states, one can analyse 
A 

·w •Ht= with the help of the matrix elements •m 1,,.. The calculation 

(mast conveniently performed in a reference frame, where !_.L.= 0) 

:La, actually, integration by: mak:img use of Dirac-delta functions. 

The result is: 

A !"-'- -1 \ . N 

W,MF = 2 >-.(1 + r;,••r-'c.l)) O(f-J-') W(c,;;-, q1. ~), (24) 

where 
2. 

l. - "- + (gp) 
q - q l. 
"' Cfc+o/m'- +f--~c .. ')• 

(25) 

qk = qp ( l + ~ 
(m"' +f>'LC,_ 

) 
-~ (26,) 

By comparison of (9) and (24) we can make the following identi-

fication: 

~ ~ L 
W(q , pq) = N( c, f- , <l , ~'! ) • (27) 

So far the only consequence of assuming that a two-dimensional 

framework is proper to calculate N(ql. , pq) has been eq. (27), 

wh!i.ch. says that W depends on q;~. and pq only via the oombinations 
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(25)' \26), By expanding into series in powers of' l,one obtains: 
c 

2. ~ I ) 
c'" )~-Pc • 1 > 1.imL.Jf(tt •• 9 •,z:pq 

'' q ' pq ~ ~ ~\.("' q ' 2'PCl + c:'- 4,"'-o d '\.'-

- L I ) 
1 m ~ 

]._ 
m 1( )-~,_ + - ... pq 4 ;-<. c 

d f(~"·' l.. I i P'\ 
'd(P'I,) - cl. ~-

l ( '- l ) + c'- g fo· q , 2 pq + •••••••• , 

where 
.,_ 

1 m 
JA = M.- ~ 4f. 

and the notations 

~ .. - " l ) 
N(c, (",. ~ , J:.r;Jlj'-'«>: f( {'-. ' q-' 2 pq' 

2 ~ (, ' e_ ) 
'dW~_._I-<,~. -'i 

d ;!.) 
=.g(f, q'- , ~) 

lc o 

~ ( c ' \ 

d fl"'' 'l.. ' i Fl. I 
df-l. 

(28) 

are introduced, and it is assumed that there are no. terms of or

der ~. Obviously, the function f(p,, q"-, ~ pq)' co:iincides w:ith 

W(q•,. pq) if the 2-Galilei group is chosen as the symmetry group 

in the IJI'JJI', It is, by assumption,independent of f. , consequently, 

it does not depend on jJ- • • Now we assum.e, that the proton is a 

composite object of some elementary constituents which transform 

with respect to the irreducible representations of the 2-Poincare 

group, r..oreover, we assume that in the limit c ~"" the dynamical 

properties of this composite system coincide with those of the 

Galilean parton model as formulated, e, g., by Kogut and 0usskind 

in ref, 1. It follows that, when :q'-l>>m•, :pql >>m"'-, for the function 
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T 
~ 

f( /"" q"-, t pq) an approximation 

f(~"'' q'-, tpq);o; f(c...:), 
pq 

<A..= 2qc (29) 

is valid. Among the terms of order 1 
'(;"l. we " 1 ) f~d g(f,, q-, ~. 

For this function the Galilean model says nothing, it can be pre-

dieted only if more detailed properties of the 2-Poincare cova-

riant model are specified. Nevertheless, a reasonable appro~-

tion can be obtained from the requir~~ent that also the terms of 

order l,_ must give a contribution. independent of A • It seems c 

natural to assume that by an appropriate choice of JA.o the term 

containing g can be made negligible in comparison with the other 

ones of order lz.. These assumptions yield the following appro:rltc 

mate relation for W(q"-,. pq): 

,_ ml. • (pq) • 
i'l(q , pq)::: f(~) + ~ W:t:(W)- 2~w f (w) + ... (JO) 

In this formula the quantity M
2
must be phenomenologically deter-

mined. It certainly depends on q2 and pq. ObJIIiously, eq. (30)' 

has some phenomenological value only if this dependence :ii.s weak. 

The ideas we presented in this paper serve only as an il-

lustration for what happens when one property, the 2-Galilean sym-

metry, of the parton models is changed. Obviously, in order to 

obtain more definite ~esults a more detailed model must be for-

mula ted. 
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