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In this paper we present a possible modification of par­

ton models for inelastic processes at very large, but finite, e­

nergies. As a result, we find that the scaling te:nns in an asymp­

totic expansion for the deep inelastic structure function are on­

ly the zeroth order approximation with respect to a parameter 

which may possibly be a constant characteristic of processes ut 

future energies. 

The modification we want to propose is based upon the 

combination of the following two facts. It is known that the sca­

ling property of the deep-inelastic structure functions can be 

derived in simple models which are assumed to have the symmetry 

pr~perties of a two-dimensional non-relativistic (in what follows, 

2-Galilean) theory /l/. The mapping of the originally three-di­

mensional relativistic (j-Poincare covariant) theory onto the 

2-Galilean one is defined by transforming the scatterinc system 

into the infinite momentum frame (IfuF). A careful investication 

of the problem of how to define the transforr.ation properties 

of various physical quantities in the I&F /
2 ,J/ has led us to 

the conclusion that the transformation into the IJ.~' is a hidden 

way of using the method of group contraction for establishing 

the above-mentioned maJ>pine. On the basis of this conclusion we 

have been able to describe the ~appinG of j-Poinca.re covariant 

current matrix elements onto current matrix elements in a 2-di-
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mensional relativistic (2-Poincare covariant) th~ory 131. 

The symmetry group of the two-dimensional theory is ge-

nerated by 

. 1 
K1 = ,\ (M,_ + N1) - 4Xc.>. (rut- N1) , 

K~ - \ (lnl- N2) + 4 :c, (Iii, + ~) (l) 

H = 
4
\ (1-', + Pl) + ACL (P0 - P~) 

and M, , f.~= (P1 , Pl.), the generators !i.e, , N;. , i=l,2,3, and Pf"" 

~= 0,1,2,3, being those of the )-Poincare group, the symmetry 

group of the three-dimensional thaory in the ordinary reference 

frame. ilo simple kinematical argument tells us the value of the 

parameter c > 0. It is a kind of "light velocity" from the point 

of view of the 2-Poincare algebra: 

l 1 . l K1 , K.~. = -~ ;-,_M.:~ , [M~, K,)= i E,~K$ , i,j;=l,2, 

LK < ' l:j 1 = i ~2. 6,! H, ~. ' It 1 = H'~ ' (2) 

[M 1 , P, 1 = i C.4 P4 ' 
[M, ,H) = l P, ,PJ = [ H, P.) = 0. 

That Casimir operator of the 2-Poincare algebra which corresponds 

to the "mass" can be written as 

_L H.>. - p'­
c, -.~.. 

where 

"" l. 1. P,.._P + f'- c 

f'" = }., (Pc- PI) - 4X~J. (Pc + p1) • 
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(3) 

(4) 

~ 

In the limit c~oo , for every fixed value of ..\ > o, the fornlU­

las (1-4) reproduce the quantities of the 2-Galilei group advo-

cated in ref. 1. 

The other parameter, ~> 0, does nou appear explicitly 

in the formulas (2) and (3). A detailed analysis of the contrac-

tion procedure shows that the arbitrariness of A is an inherenu 

freedom in the mapping of the three-dimensional theory onto the 

two-dimensional one /JI. It is natural to assume that the predic-

tiona of the two-dimensional theory are independent of A • This 

is a natural generalization of the corresponding scaling property 

of the two-dimensional Galilean theory in the IfuF /l/. 

In what follows we consider the process 

e + p ----+ e + anything • (5) 

We shall asume that for large incoming energies what actually 

happens is reflected by a two-dimensional theory, its symmetry 

group being generated by the operators (1). For simplicity, we 

assume that the protons have zero spin and a scalar current, J(x), 

intermediates the interaction between the electrons and protons. 
~ 

Consequently, the inclusive cross section for process (5) is de-

termined by the structure function 

H(q:z., pq) = 5 eixq <p\J(x)J(O)\p)d~x (6) 

Instead of (6) we sh~l consider the auxiliary quantity 

it= ) eixq<p\J(x)J(O, Q.
2
,a' l\p') d~xd~· (7) 

5 



in a reference frame, where 

I 

J:!.i= l!.l. ' q_ "qc- q3 = O ' (8) 

In eq. (7) the notations 

T=t+z. 2a = z - t , 4 - 2. d X: dJ d .!,1 d~ 
are used. It is easy to verify that, if (8) fulfills, 

;=211S(p_-p~)w. (9) 

Let us notice that, since xq : t q-1-T + .51..1..!..1. , W can be expressed 

• in terms of the transverse current" 

"'> 

j( 'J, .!.J.> = ~J< '), .!..~.• a> dJ (lo> -.., 
as follows: 

N = ~e1x<i<Pij,(i)j(o>IP') d
1 i (ll) 

where X= ( '!', .!,__)' 
] ,... l. AI\ 

d X = d T d .!,__l.~ Xq = Xqo 

Our basic assumption is that in the DlF (moving in the z-direc-

tion)i the function W can be described in terms of 2-Poincare 

covariant quantities. This description follows from the mapping 

of the transverse current matrix element 

m = <P'\HT, . .!.1>IP> = 

i 
= 21t e 

(12) 

~T(p: -p.) +i(p~ -_p-L).!,.i F(m' ,.m, (p' -p}"') ~ (p~ -p_) 

onto the matrix element of a 2-Poincare scalar currentS(~), 

~ = ( x', .!,J.), between 2-Poincare states I m, ~ , ~ )' and lm' , ,.< , -~· > 
of "mass" ~[(m'-+,M.'c'-))'t'"a.nd ~L(m'-~. + 1-i"-c'-)f; respectively: 

6 

1 
~ 

miMr-=(!5
1 

~~ 1 m1 1 S(~)~~ tf'-t m) = 

ix(k
1

- k )\ I ' 1 )~ ) = e N ~ ~ :r1Mr- Cm, m , ~ ~1-'- ; (Jj: - !!: · ', 
(13) 

Without repeating the argumentation, we cite the mapping of (12) 

onto (13), established in ref, 3. The current s(:e) is related 

to j( I, . .!..1.) by 

( ) _ . c..!.. o >' S ~ ; J 2 )., X 1 .!,__ • 

The state (m, I-t, Js > is a spinless momentum eigenstate in that 

subspace of the irreducible 3-Poincare representation space of 

mass m, which corresponds to the "mass" 

1 k" 1 (1 ... '-)• 1 ( l. • l. )' - ~- -k -k =--;m +"'-C' c'-"' c .. c .. c -.1.. c,_ ,. 

for the 2-Poincare group generated by the operators (l). The 

mapping between the J-Poincare and 2-Poincare momenta is defined 

as follows: 

Y. 
2 Ac p_ =J.i-c +lm'- +f'c'-J"" 

2 
\ I 1 m~ Jj..l. 1.. l.L •1. l_ I 2,. 
1\ c p_ =f- c + + c tm + M- c - (k - k) 

2 (m ,_ + fA L c '- }·';: " ~ 

(p- p')"., (k'- k >"- (f--;-.r'c._, 
~ v 

~ = l!_,_ 
I 

:!£.._ = l!.L 

(14) 

(15) 

(16) 

(17) 

Finally, the form factors" :r 1"' and F are related in the follo-

wing manner: 

(18) 
F,Mc-(m, m', 1--< •M'; (!s- ~· )2.) = 21lF(m, m' ;(p- p' t )~(p_ -p~ ). 

This mapping is a generalization of the usual formulas corres-
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ponding to 2-Galilean ff.Ymmetry in the IMF /l/. It is easy to ve-

rify that the Galilean formulas are reproduced by eqs. (14-18) Ln 

the limit c ___, .,.., • 

Now we transform the quantity W into the IMF, that is~ 
" ,, 

we map .V onto ii, 11 , , w,,." being given in terms of 2-Poincare co-

variant quanti tie e. In order to make our formulas plausible we 

repeat the recipe for finding out the mapping (12-18). First, 

one considers (12) in that special case, when~= o, pl.' =(0, p' ). 
.1. - J. 

In this case eqs. (13-18) follow simply from the definitions 

(1-4). Then one applies a 2-Poincare transformation 

1\ 
-i. 9 ]1,, -i"' K2 -iG

1 

M, 
""=e ·•e e '• 

which gtves the three-momenta~= ( c/m :>. +t-<'cL + !_~' ,_ !_~ )'; , 

~· = ( cym"- + re;;;-~? , !( )', when applied to the ones 

:_ t. I ,/ "' 
1 

C 1 k = ( cym'- +JA'c .. , 0 ), k = C cym'L+U: .. c' + p'', 0, p )1
• 

'IV -.i .... J- .L J... 

~ 

Applying this recipe to W one obtains: 

·:V,Mr- =- 2 A~ ei~ <m, f-, !=IS(~) S(£l) \m, /-'-', ~~ > d1 e , 
where 

\ "- ' >'''-2 o\CP_ =}-lc + (m +1-\C' , 

2 Acp~ =,;.c + (m' +)-A'c')''•, 

P.._ 

'h. 

k •tmz. + /.A.c .. J ·= p 
-.1. m'L. + .I.A..l.Cl. -i k 

-J., 

q=0<i 
"' 

q = ( _J_ q , q )• 
4>.. .. -J. 

The 2-Lorentz transformation 1\ in (23) 
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(20) 

(21) 

(22) 

(2j) 

(19) 

... 
I 

.. 

A -iG M, -i"' K:>. 
.L'>- = e ' e ,..., 

~s determined by the equation 

k =L\k 
N N-

~ .I l. • • ) 
k = ( cym + r c , 2. .1. • 

Inserting a complete set of states between the two currents 

:lin (19), 

( L ~"" " )

00 

dl. k I jdM dJ.A. c:t.~ Ml.• ·' 
I 2k' '/-'- t 

Me - "'> -,., 0 
· 

~")(J&'',rl',. M'"/ 

where M is the 3-Poi.ncare mass of the states, one can analyse 
A 

·w •Ht= with the help of the matrix elements •m 1,,.. The calculation 

(mast conveniently performed in a reference frame, where !_.L.= 0) 

:La, actually, integration by: mak:img use of Dirac-delta functions. 

The result is: 

A !"-'- -1 \ . N 

W,MF = 2 >-.(1 + r;,••r-'c.l)) O(f-J-') W(c,;;-, q1. ~), (24) 

where 
2. 

l. - "- + (gp) 
q - q l. 
"' Cfc+o/m'- +f--~c .. ')• 

(25) 

qk = qp ( l + ~ 
(m"' +f>'LC,_ 

) 
-~ (26,) 

By comparison of (9) and (24) we can make the following identi-

fication: 

~ ~ L 
W(q , pq) = N( c, f- , <l , ~'! ) • (27) 

So far the only consequence of assuming that a two-dimensional 

framework is proper to calculate N(ql. , pq) has been eq. (27), 

wh!i.ch. says that W depends on q;~. and pq only via the oombinations 
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(25)' \26), By expanding into series in powers of' l,one obtains: 
c 

2. ~ I ) 
c'" )~-Pc • 1 > 1.imL.Jf(tt •• 9 •,z:pq 

'' q ' pq ~ ~ ~\.("' q ' 2'PCl + c:'- 4,"'-o d '\.'-

- L I ) 
1 m ~ 

]._ 
m 1( )-~,_ + - ... pq 4 ;-<. c 

d f(~"·' l.. I i P'\ 
'd(P'I,) - cl. ~-

l ( '- l ) + c'- g fo· q , 2 pq + •••••••• , 

where 
.,_ 

1 m 
JA = M.- ~ 4f. 

and the notations 

~ .. - " l ) 
N(c, (",. ~ , J:.r;Jlj'-'«>: f( {'-. ' q-' 2 pq' 

2 ~ (, ' e_ ) 
'dW~_._I-<,~. -'i 

d ;!.) 
=.g(f, q'- , ~) 

lc o 

~ ( c ' \ 

d fl"'' 'l.. ' i Fl. I 
df-l. 

(28) 

are introduced, and it is assumed that there are no. terms of or­

der ~. Obviously, the function f(p,, q"-, ~ pq)' co:iincides w:ith 

W(q•,. pq) if the 2-Galilei group is chosen as the symmetry group 

in the IJI'JJI', It is, by assumption,independent of f. , consequently, 

it does not depend on jJ- • • Now we assum.e, that the proton is a 

composite object of some elementary constituents which transform 

with respect to the irreducible representations of the 2-Poincare 

group, r..oreover, we assume that in the limit c ~"" the dynamical 

properties of this composite system coincide with those of the 

Galilean parton model as formulated, e, g., by Kogut and 0usskind 

in ref, 1. It follows that, when :q'-l>>m•, :pql >>m"'-, for the function 
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T 
~ 

f( /"" q"-, t pq) an approximation 

f(~"'' q'-, tpq);o; f(c...:), 
pq 

<A..= 2qc (29) 

is valid. Among the terms of order 1 
'(;"l. we " 1 ) f~d g(f,, q-, ~. 

For this function the Galilean model says nothing, it can be pre-

dieted only if more detailed properties of the 2-Poincare cova-

riant model are specified. Nevertheless, a reasonable appro~-

tion can be obtained from the requir~~ent that also the terms of 

order l,_ must give a contribution. independent of A • It seems c 

natural to assume that by an appropriate choice of JA.o the term 

containing g can be made negligible in comparison with the other 

ones of order lz.. These assumptions yield the following appro:rlt­c 

mate relation for W(q"-,. pq): 

,_ ml. • (pq) • 
i'l(q , pq)::: f(~) + ~ W:t:(W)- 2~w f (w) + ... (JO) 

In this formula the quantity M
2
must be phenomenologically deter-

mined. It certainly depends on q2 and pq. ObJIIiously, eq. (30)' 

has some phenomenological value only if this dependence :ii.s weak. 

The ideas we presented in this paper serve only as an il-

lustration for what happens when one property, the 2-Galilean sym-

metry, of the parton models is changed. Obviously, in order to 

obtain more definite ~esults a more detailed model must be for-

mula ted. 
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