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In this paper we present a possible modification of par-
ton models for inelastic processes at very large, but finite, e-
nergies. As & result, we find that the scaling terms in an asymp-
totic expansion for the deep inelastic structure function are on-
1y the zeroth order approximation with respect to a parameter
which may possibly be a constant characteristic of processes at
future energies.

The modification we want to propose is based upon the
combination of the following two facts. It is known that the sca-
ling property of the deep-inelastic structure functions can be
derived in simple models which are assumed to have the symmetry
properties of a two-dimensional non-relativistic (in whet follows,

2-Galilean) theory /1

« The mapping of the originally three-di-
mensional relativistic (3-Poincaré covariant) theory onto the
2-Galilean one is defined by transforming the scaltering system
into the infinite momentum freme (IkF). A careful investigation
of the problem of how to define the transformation properties
of various physical quantities in the IMP /243 has led us to
the conclusion that the transformation into the L.t is & hidden
way of using the method of group contraction for establishing
the above-mentioned mdpping. On the basis of this conclusion we

have been able to describe the mapping of j-Foincaré covariant

current matrix elements onto current matrix elements in a 2-di-



mensional relativistic (2-Poincaré covariant) theory /3/.

The symmetry group of the two-dimensional theory is ge-

nerated by
R 1
K, =A(M,+ N,) - ryves (- N,) ,
K, = = Nl = 1) + —— (U
2 = = Al 2 Arol L+ N) , (1)
1
H =Z,T(P°+ P,) + Ae* (B - P,)

and My , B = (P, , P,), the generators &, , N; , i=1,2,3, and B,
M= 0,1,2,3, being those of the j3-Poincaré group, the symmetry
group of the three-dimensional theory in the ordinary reference
frame. o simple kinematical argument tells us the value of the

parameter ¢>0. It is a kind of "light velocity" from the point

of view of the 2-Foincaré algebras

' o1 .
(%, , KJ: i, , [m3 , Kt] 16,6, , 1,3=1,2,

) lc.
&, f;]: 1 58,1, (K,_ , ) =1p; , (2)

[MS b= 18,8, (u, ,u] - LPL ,PA: (5, )= o.

That Casimir operator of the 2-Poincaré elgebra which corresponds

to the "mass" can be written as

?:7}1" - _Ij_i = BP + utet (3)
where
\ 1
/A=,(PC-PA,)—W(PC+P3) . (4)

In the limit c—yeos , for every fixeq value of A > 0, the formu-
las (1-4) reproduce the quantities of the 2-Galilei group advo-
cated in ref. 1.

The other parameter, A> 0, does not appear explicitly
in the formulas (2) and (3). A detailed analysis of the contrac~
tion procedure shows that the arbitrariness of A is an inherent
freedom in the mapping of the three-dimensional theory onto the
two-dimensional one /3/. It is natural to assume that the predic-
tions of the two-dimensional theory are independent of A . This
is a natural generalization of the corresponding scaling property
of the two-dimensional Galilean theory in the IMF /l/.

In what follows we consider the process

e + p —» o + enything. (5)
We shall asume that for large incoming energies what actually
happens is reflected by a two-dimensional theory, its symmetry
group being generated by the operators (1). For simplicity, we
assume that the protons have zero spin and a scalar current, J(x),
intermediates the interaction bet%een the electrons and protons.
Consequently, the inclusive cross section for process (5) is de-
termined by the structure function
#at , 3a) = [ o <3O ) a"x (6)

Instead of (6) we shakl consider the auxiliary quantity

A

W= {0, 0,43 > a'xay (7



in a reference frame, where
B=R, » q_=q-q, =0. (8)
In eq. (7) the notations
T=1t+ 2,

1= p o b a2
2} = 2z t, dx-dxdg:_ldg

are used. It is easy to verify that, if (8) fulfills,
fa — .
W=2T&(p. -p) w. (9)
{

A
Let us notice that, since Xg = q+’.r+ X W can be expressed

in terms of the 'tra.nsverse current"

7y x)= (o, 5,1 4 (10)
as follows:
b= (Pl @] o> a'x (11)

where ;:(T,,L), dlizdrd"gil, fcﬁ:xq.

Our basic assumption is that in the IiF (moving in the z-direc-
tion) the function W can be described in terms of 2-Poincaré
covariant quantities. This description follows from the mapping

of the transverse current matrix element

o= (P i, 2D > = (12)
l 1l L}
i 3%p -p,) +i(p -p )x, ,
=2 e 2 7 PR v, (0 - ) § (0 -p)
onto the matrix element of a 2-Poincaré gcalar current S(gg) ’
x = (x°, ?24_)1 between 2-Poincaré states ‘m,,u. ’ l~c> and ‘m',/u', };'}

A Vs
of "masga" %[(m’w,ufc")] “ana %{(m"‘ + _u."‘c.’”)], respectively:

L I ) P

ix(k'- x )

= g ~'~

(13)
’(MF(m' m' s M r,"‘-;;(lf - 15' )?- ).

Without repeating the argumentation, we cite the mapping of (12)
onto (13), established in ref. 3. The current 5(x) is related
o J(T, x)) vy

8(x) = j(ﬁ x° X ).
The state (m,H, 5) is a spinless momentum eigenstate in that
subspace of the irreducible 3-Poincaré representation spa(ce of

mass m, which corresponds to the "magg"

(Rkr - Ky = L (m* +pic* )

k'=
k = ot £, o

]I+
orp-'

for +the 2-Poincaré group generated by the operators (1). The
mapping between the 3-Poincaré and 2-Poincaré momenta is defined

as follows:
s
2lc p_=pc +[m’L +,ulc‘] s (14)
oot a1 P S o
2Ac p. =pnc + T riotm +M°L (}f ;‘Fl, (15)
2 (m* + pe* >

(P-p)e(kK-k) = (K=-n)e*, (16)
kK, =p , k =p . an

Pinally, the form factors" !'m'. and P are related in the follo-
wing manner:

. N (18)
Pl (@ 0y my w50k - k') = 2T F(m, o' 5(p - p')*)E(p_-p').

This mapping is a generalization of the usual formulas corres—



ponding to 2-Galilean symmetry in the INF /l/. It is easy to ve-~

rify that the Galilean formulas are reproduced by egs. (14-18) in

the limit c—»> o,

A
Now we tramsform the quantity W into the INF, that is,

N

A N
we map ¥ onto W 4., W being given in terms of 2-Poincaré co-~

M
variant quantities. In order to make our formulas plausible we
repeat the recipe for finding out the mapping (12-18). First,
one considers (12) in that special case, when p = o, i);_ =(0, f)i
In this case egs. (13-18) follow simply from the definitions
(1-4). Then one applies a 2-Poincaré transformation

A = oiOhs %K TR ,

_—

which gives the three-momenta k = ( c/m? +ptet + ki, 1511_ Y

kK = ( fm'* ot o+ k'* k' ), when applied to the omes
k o= (efm™ +pe™ + K*, kK )y PP

¥ e T T . e <,

,IS = ( cme +piet 91.)’ ],‘, = ( c(m.L "',"“Lcl + Py o, b, Y.

A
Applying this recipe to W one obtains:

e = 22 (o128 oy ]GOS\, ¥ ) 0’ 19
where
1
2\ep_ =pec + (m* e, (20)
2 >\cpl =pc + (m* 1»}A“c‘)‘/L ’ (21)
2 Lt ‘n
E =p k":h‘—t&“%] D, (22)
-l S =L m- + 4 C
. o 1
9,:{}3 ’ g:(an,c_lx)‘ . (2})

The 2-Lorentz transformation {\ in (23)

A = o-iON, 1% Ka

~

is determined by the equation

5:4\% . L:;: ( c{m"f,ﬁc" , 0, ) .

Inserting a complete set of states between the two currents

tin (19),

oo 0 hd de
2 " 2 . B N B
f o gdf* Sc‘ 2k, s, kD CE W,

< - 00 e

where M is the 3-Poincaré mass of the states, one can analyse

W e with the help of the matrix elements Ml .. The calculation

(mast conveniently performed in a reference frame, where ]_:_L-: 0)
is, actually, integration by making use of Dirac-delta functions.

The result is:

Wi = 2N (s ) SQpmp) Wiy ey 0F 4 B, (24)
where
& om gk (ap)” _ (25)
~ (./.Lc- + m )
glf:qp(li»—-;.&-gt—)du (26)
m* +pMct

By comparison of (9) and (24) we can make the following identi-
fications

w(g* , pa) = ﬁ(c,}k, gl, kq ). (27)
So far the only consequence of assuming that a two-dimensional
framework is proper to calculate W(q* , pq) has been eq. (27),

which. says that W depends on q° and pq only wia the combinations



(25), (26). By expanding into series in powers of %lone obtains:

2 o
1 (pg) F(Me, g,2PA)

~ 2 1
Wla*y pa) = £y, a", pa) +

e 4o oq* (28)
z iy Lo = A
. l’(pq) n o fi{kaq, ir%) _ 1 o ?((#u,%, 1Fq)
ot 4 ps 2(rq) et 4p op.

1 z 1 .
tor 8liy @y T Pa) Feeiniin.,

where

1
P T T g

ks
m
and the notations

N(cv}"r gl ’ "l'(g)/c— Ef(}’& y 4 '2'Pq)\ ’

D W(e g by
(, ] i %A) / Eg()lu Q“ %Pq)
C);F) fez o

are introduced, and it is assumed that there are no terms of or—
der -:(L;., Obviously, the function £(u,, q*, -;'pq)‘ coincides with
W(g*, pa) if the 2-Galilei group is chosen as the syﬁmetry group
in the In¥. It is, by assumption,independent of‘) y consequently,
it does not depend on M. « Now we assume, that the proton is a
composite object of some elementary constituents which transform
with respect to the irreducible representations of the 2-Poincaré
group. koreover, we assume that in the limit ¢ 3o the dynamical
properties of this composite system coincide with those of the
Galilean parton model as formulated, e. g., by Kogut and Susskind

in ref. l. It follows that, wheniqlfbm‘,qu)§>m‘, for the function

£( My a7, % pg) an approximation
Pq

e (29)

Fpoy 0%y F02) & 2, “ =

is valid. Among the terms of order %1 we find g(M., g7, %pq).
For this function the Galilean model says nothing, it can be pre-
dicted only if more detailed properties of the 2-Poincaré cova-
riant model are gspecified. Nevertheless, a reasonable approxima-
tion can be obtained from the requirement that also the terms of
order %1 must give a contribution independent of A « It seems
natural to assume that by an appropriate choice of u, the term
containing g can be made negligible in comparison with the other
ones of order %L.These assumptions yield the following approxi-

mate relation for W(q*, pq):

1 3 ( ) ¥
W(g*, pa) = £(w ) + -’;Ll- wf(w)-z—f-iq wE (W) + ... (30)

In this formula the quantity Mzmust be phenomenologically deter—

mined. It certainly depends on q* and pq. Obwiously, eg. (30)

has some phenomenological value only if this dependence is weak.
The ideas we presented in this paper serve only as an il-

lustration for what happens when one property, the 2-Galilean sym-

metry, of the parton models is changed. Obviously, in order to

obtain more definite Yesults a more detailed model must be for-

mulated.
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