
D.I.Kazakov, D. V .Sbirkov 

:;6 1 _ r 
SINGULAR SOLUTIONS 

OF RENORMALIZATION GROUP EQUATIONS 
AND THE SYMMETRY 

OF THE LAGRANGIAN 



E2 - 8974 

D.I.Kazakov, D. V .Sbirkov 

SINGULAR SOLUTIONS 
OF RENORMALIZATION GROUP EQUATIONS 

AND THE SYMMETRY 

OF THE LAGRANGIAN 



A b s t r a c t 

On the basis of solution of the differential renormalization 

group equations the method is proposed for finding out the Lagran­

gians possessing some kind of internal symmetry.It is shown that 

in the phase space of the invariant charges the internal symmetr,y 

corresponds to the straight-line singular solution of these equati­

ons re~ining straight-line when taking into account the higher 

order corrections. We have studied the model of scalar fields 

with quartic couplings , as well as the set of models containing 

scalar, pseudoscalar and spinor fields with Yukawa and quartic 

interactions. Straight-line singular solutions in the first case 

correspond to isotopical symmetry only. For the second case they 

correspond to supersymmetr,y. No other symmetries have been disco­

vered. For the model containing the gauge fields the solution 

corresponding to supersymmetry is obtained and it is shown that 

this is also the only symmetr,y that can be realized in the given 

set of fields. 

1. In t r o d u c t i o n 

In recent years the asymptotical properties of renormalizable 

quantum field theory models have been studied intensively, which 

was to a certain extent stimulated by the experimentally disco­

vered scaling phenomenon of strong interactions and theoretically 

discovered property of asymptotical freedom (AF). As a result the­

re arised an impression about the exhaustive character of these 

investigations. Thus, for instance, the attempt to construct a 

simple gauge asymptotically free model including scalar particles 

was not crowned with success. These particles inevitably possess 

quartic selfinteraction which destroys AF of the theory. 

From this point of view new unexpected possibilities arised 

in the framework of renormalizable supersymmetry models. The simp­

lest supersymmetry model by Wess and Zumino/1/ ( v:z model) con­

tains three fields: scalar, pseudoscalar and Majorana spinor (see 

eq. (11) below) with the interaction of the quartic and Yukawa type. 

The coupling constants of these interactions are linked by 

simple algebraical relations which are not destroyed by radiative 

corr·ections due to the \'iard-Takahashi identities following fr·om 

the sypersymmetry. 

The second renormali~able supersymmetry gauge-invariant mo­

del proposed oy :::;alam, :'tr·athdee/2/ and Ferrara, Zumino/31 (SSFZ 

model) contains a set ~f scalar , pseudoscalar and :~ajorana spinor 

fields and also Yang-:.lills field (see eqs. (18), (19) below). The 

interaction Lagrangian includes minimal gauge, Yukawa and quartic 

interactions with the coupL.ng constants connected by simple 

relations (18). 

The models of such a type, when the number of matter fields 
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(scalar, pseudoscalar and spinor) is small enoug~, possess AF 

with respect to all couplings. 

The essential element here is the presence of supersymmetry 

''.ard identities which lead to the strict relations between the 

coupling constants of Yukawa, quartic and Yang-Mills interactions. 

If now we "unhook" the constants of these interactions from 

one another (i,e. consider them as independent)in such supersym­

metry models, we obtain the models with various coupling constants 

just like the ones we spoke above. It is evident that they in­

clude the corresponding supersymmetry models as a particular 

(or limiting) case. The question is: Whether it is possible to see 

these particular cases without knowing the symmetry beforehand. 

This formulation can be naturally generalized: 

Let the Lagrangian be given with a certain number and type of 

fields and interactions. It needs to find the particular cases 

possessing the unknown, beforehand, internal sy~etry. 

It is the very problem we shall consider in the present paper. 

\·:e would like to emphasize that we are not going to search 

for the symmetry itself. The discovery of supersymmetry shows us 

that this direct way may be very complicated. We want to indicate 

the method for finding out indirect manifestation of internal 

(maybe, still unknown) symmetries. 

The analysis of ultraviolet asymptotics with the help of 

the renormalization group (RG) gives us such a method. In phase 

space of invariant coupling constants internal sy~etries corres­

pond to the singular solutions passing through the origin. Such 

singular solutions m the one-loop approximation are well lmown141 

and are typical for a wide class of the Lagrangians with seve­

ral coupling constants which do not possess any internal symmetry. 

In the presence of internal symmetry singular solutions in the 

4 

space of appropriately determined invariant charges (IC) are 

straight lines and this straightness retains v1hen taking into 

consideration the higher (multiloop) contributions. 

Thus, the proposed method of detecting the "candidates for 

internal symmetry" consists in the follov;ing: For a given Lagran­

gian with several coupling constants the phase space of invariant 

charges is constructed. Then you search for the singular solution 

passing through the origin and remaining straight in a two-loop 

approximation. 

It is necessary to note that as the theory contains diver­

gences it is not determined completely by the Lagrangian but 

depends also on the choice of regularization and the accepted 

renormalization procedure. The cases are known when the regula­

rization destroys the initial symmetry of the Lagrangian. As far 

as we are searching for the internal symmetry on the basis of 

investigation of renormalized expressions 1 it is very important 

that the regularization-renormalization procedure should not 

break any possible symmetry. 

':.'e use two methods of renormalization: Bogolubov• s R-opera­

tion and t'Hooft's renormalization method/51. In the first case the 

counterterms in the Lagrangian and hence the Gall-Mann-Low­

function of Lie equation can depend on the choice of normalization 

points of three- and four - vertices. That is why in perturbation 

theory for the validity of the \'lard identities dictated by possible 

symmetry, it is necessary to choose the normalization of vertices 

in concord. However, since we consider lower approximations such 

a dependence may not appear. Thus, in the two-loop approximation 

(see eqs. (2) and (21)) it is not present and though it is 

available in the three-loop one (see eq. (A1)), it does not affect 
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the final results. 

In the case of t'Hooft's method it turns to be easier to 

work not with the ~ -function of the Lie equation but with the 

p -function of the OVsiannikov-Gallan-Simanzik one. This function 

does not depend on the choice of external momenta of the vertex 

and is distinguished from the cp -function beginning from the 

second order of perturbation theoryi61. Since the dimensional re­

gularization apparently preserves initial symmetry of the theory, 

the p -function of 0-C-S equation is usefull for finding out the 

internal symmetry of the Lagrangian in the proposed method. 

If there is an internal symmetry in the theory then the 

Lie equations and the Ovsiannikov ones have the straight singular 

solutions retaining in higher orders. These singular solutions 

coincide as they are already found in the one-loop approximation, 

and in this approximation the functions c.p and )-> are equal. 

2. Models with Scalar Fields 

Consider first the scalar theory with quartic couplings. 

Though such a theory is not interesting for application , it 

can serve as a good illustration of the proposed method and 

is the simplest theory for calculations. We choose the Lagrangian 

in the form 

2 
'-P _ .i('i'J •0 \ _ _ll .. ro .n di dl 
d.- - 2. r '1" I ) I, 1 n 'J K t "1 < "f'j 't J'. "f" e , ',J.",e= i,2, . ._. (1) 

The mass terms hereafter are neglected due to the 

reasons which will be discussed below. The RG equations f~ the 

invariant charges on the two-loop level are: 

6 

dh.,~t _ 1 o(l ) _ ....!_ .Ll~-- h +h I ,_1 1 1 
dL - I lt,J·Ke - ''1i" 2. 'J""'"' WI"""{ ,\o(,.......,"'"'""'""Jt h,e"'"~ \Mo"'JK.J 

--
1 j_\h h.1 +h - h - - -

(u,11 •)
2 

2 L ,.,.j, ""J"~ ~.;!.e i"'""' h..,;~~ ~·-~>l + hJ •. b~ h..,e.n h""·'• -r 

+ hiabM hMJ("'h"•b• + h.~b,_.h,_J'nh,..~.e + hj,,b...,.h-,e~ h.,,,/..., J + (2) 

+ <:H~')' f.;- L h,)•<~1 •. b,,Jh-.&i + 1.J tJ 1 ... ,.~ t.<. +I,.e)., .. th,.,<
5 
+hJ' 1 ,1l~x.: L.,, j 

' 
where L =: f-n IS..'" L" - { ( h 1 ) 

~l. , n 'i"'e - n 'J·"~ 'JirC.t ., Lt • 

Further we shall confine ourselves only to selfinteraction 

and binar interactions. The analysis of eq.(2) in ~his case is 

considerably simplified and reduces to the analysis on a plane 

of the variables of two types: h"" and h"JJ "' h•i•J ; h,)J, "' 

: h "h = h, , where '·J· = 1,2., .... 11. • The RG equations for J <J I 'jj H J ") , ' 

these two types of variables can be quickly obtained from eq.(2). 

Now we shall search for the singular solutions passing 

through the origin of the phase space. Consider first the one­

loop approximation. There arise 3 types of singular solutions: 

1) h,-1, .. -independent, h,·,J·J = 0 > I >J: i 2 11 n ::- J ,2) .. , 
' ' > 

h .. JJ 
I ~ 

2) h, .. , :: h = jh I 
1

) : J.., 2 ~ h 'tl = 2.) .; " . '' > I 

3) ~,,,,, ::::. h - I -
h ~ -h ', J :: J ,2 ) . ,11 11 c ;>' ~ ' "JJ 11-.1 J 

There are also possible different combinations of these solutions 

when n1 fields are independent with the couplings corresponding 

to the first solution, n 2 fields are interacting hith the couplings 

corresponding to the second solution and n 3 fields are inte­

racting with the coupllngs corresponding to the third solution. 

7 



To answer the question whether these soluti<Ons really 

correspond to some sy~etry of the Lagrangian, we shall consider 

the two-loop approximation in eq. (2) and look whether any of 

these singular solutions retain straight in the phase space. 

The analysis shows that the solutions of the first and 

the second type retain straight and the solution of the third 

type retains straight only for n = 2 • l','e have performed also 

three-loop calculations for n~2 and·have been' convinced that all 

the solutions retain straight. The Gell-Mann-Low functions in 

this case are given in Appendix. The behaviour of phase curres 

for n=2 is demonstrated on the phase plane of variables f "h, 
and h,, = h ,, 

5. 

(see Fig.1) 

h,~h, 

2. i. 

l''ig. 1. 

i. 1. 

3. 

Arrows show the dirrecti.on of increasing ar·gument 

h,l = hl\ 

L = In;:.,_ 
Thus, we have two types of the Lagrangians "suspicious on inter­

nal symmetry". (The solution 1 is trivial as it corr-esponds to the 

system of fields noninteracting with each other): 

8 

Vl 2 ) 1 2- I 
2 

c/.., = 2. ( ·?J,. <f, ) - i;! h ( 'f. <f. ) 1 = J.,::?..,. ,n 

3) J. ( 2 1.. ( , r '\ "- 1 ( + > , ::. ., • ) 'j_ = 2. ?()!' <f '- ) + 2. '} '1 2.) - J;! h <f' i + (, lf J. 'fa + 1h · 

The Lagrangian ~ 4) possesses the well known global isotopical 

symmetry. Singular solution 2 is unstable for h :> o and stable 

h ~~ for < 0 • The Lagrangian cJ. at first sight does not corres-

pond to any simple symmetry. However, under the transformation of 
<fl' (jl' I I 

the fields <.p1 = ~· ~ = <Pj-4lz it is diagonalized and coin-
12 ' 2 V2 

cideswith the Lagrangian corresponding to the first solution. 

Thus, in a pure scalar theory the proposed method allows 

us to detect the isotopical symmetry which is realized as a 

singular solution of the RG equations passing through the origin 

of phase space. No other such symmetries exist in these models. 

3. The Yukawa Type Interactions 

Consider the simplest system consisting of scalar and 

spinor fields with the Yukawa type interaction. The Lagrangian 

is chosen in the fora: 

2 - ' tjJ - , I, h ~ ';£-=- t(ClrA)+\.);,Jl''il 'il+T'·i',JJA'f,Jl-;,!A, jol,-~ ... ~ (3) 

In this section we use the t' Hooft' s renormalization method. 

The RG equations for the IC's here are written down in the 

Ovsiannikov-Callan-simanzik form: 

The 

tion 

( 
L '<J ;>, 'C '\) ) - 2 ( ((L r -:O!> -t 11 ·u> ~ J"hri"h ~ ? J.,_ h)-=0 

) 7 

( ,_ :l._ 1 ,, ''b ) -~ ( £. t h ) = () r ··r· + /'>-ol',. /'h-1,1, 1. r', ~' 
(4) 

t- functions for· .the Lagrangian (3) in the two-loop approxima­

are/7/: 

fl.. 2 I ~ i 2l ( ' J ~ 21 ;-:1.(~ ,h):= -,_(~•2k)2 _. -,~- -•/2KJ..-2.~n 
{'" (HJr') '1 

b.'-
+ , 1 

I~ ' 

f' .. ( 1. I ) - I [ ' I, ) ... , ~J ...L [ ~f 3 'h' 1. >' - -, j_" +t.,K]. 1 - 2lJ J< :L + I ,> - 7 h - b~]. "t 
ib:r. ( ~Jl·J ' . 

+ H"-hl~ +-192~<-l" J 
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It should be noted, that in the case when the spinors in 

the Lagrangian (3) are chosen in the Majorana representation 

the eqs. (5) remain unchanged if we replace :z- 2:. 
2. in the 

Lagrangian and put k. ~ ~ , where n is the number of 

Majorana spinors. That is why we shall search for the singular 

solutions of eq. (4) for k being integer or halfinteger. 

The analysis of eqs. (5) shows that in one-loop approxima-
- _2 tlon there arise 2 singular solutions of the type It = oi :1. 

However, when tak.i.ng into account the two-loop contributions, 

none of these solutions retain straight for any k 

::::onsider now the Lagrangian possessing .SU (2) symmetry: 

'i i "" ,, "" - . ~ j, ,;; '"' .... ,j, h .. ,, 2 
,;. (ctfi) • 1/',/lto't'rj'J. 1.'1',1-;T fl T1J.)- ,1 (A fl ) 

(6) 

j = 1, 2; f< Q. ~ 1,:2 , T - the generator of ,SUrz)group. 

Hereafter we shall put i< integer or halfinte.ger supposing 

that same of the spinors may be taken in the Majorana re1-·resenta tion. 

~he two-loop calculations lead to the following results: 

I Z }->2 ""n-s!(!>T-2+2:h.) 2~ I >.[ ( 9 •" '-J T -, -~ - - (T ) + 12 7 T K - bt K-
u~ .. ·r ~ 

't L '2.. z. b~ l.J -2._) ~ - ( 2 T - ~) 1. h + ~ h 
) 

j__L!_I_h'- /.1 .,'-1 2~{~1·-~)tl< ~J I l2.3,~ fl, = ... •rl< _,_ h - :1 + - - -" _ 
I ' t£JJ" " ,. (t6JT')"' 6 

(?) 

2.2.1 '-1' ~ ( ,,_., 1A f1 .I,Y,h,( , > -)· "J - '3'tK~I\.,. 2-,;1< :;t-:;).J..rr+- ~ 12(T';-/1;T-r') :1 
) 

where T = T"'T'' 
'- ,,h s ·- I, 

t-'5 -=·p''· 

10 

We have analysed these equations for the spinor fields 

in adjoint and fundamental representations of ,S tf (2). On the one-
- -2 

loop -level there exist 2 singular solutions h = d. .l • However, when 

taking into account the two-loop contributions all singularsolu­

tions are distorted for any value of k 

Thu•, in a system consisting of an arbitrary number of spi­

nor (possibly Majorana) fields and a scalar field (or triplet 

of scalar fields), any symmetry linearly connecting the constants 

of the Yukawa and quartic interactions cannot be realized. 

Consider more complex system consisting of scalar, pseudo­

scalar and spinor fields. The Lagrangian is: 
I z. I 2. - .~ ,/. -'J = ?: (ror A) + ;: (r;r B) + ..P,J> 'o "''J> • ~A "''J> A +,1> • 

- :; ~ ~... 4 1,, ~ ).,-'13 2 2 

~ .J., 'j), f> t .b r i J - 4! A - ; & - ;: A 5 
(8) 

J = j 1 K. 

~here arise 5 res and the corresponding functions have 

the form: 

f'lA = 1~11~ 2: L 2~(~-r2K)-~j +(It:')< J~ [1: (- ~ + 121<). ;~~ ( :;_·- !<.) 

2 ... 

+ l~(t+l<')- .?.2;hA- 2.~1,_..~ + ~+ "'""J ,.._ 4 

~ ~ -= r .lA c A ~, £,) , 

~ 

~"'~ = 1,,, L :?l..?+lhl 
2.. .. .?: lf1!, 

1 > I '· J ~ 1 ~; 1 1- II< :J.. hA - JJu~~ 4 - - ~ h -
I' (f,n·': r, ' 

5 L I ' { . ,, 2 < ].< I J. I + 2 f ~ ' ~ L 
- - I I - (: •.. - bk r A l - (o J{ ~ • .; ., I<. h,. 1 - I< hl' . ..,. -,., -:'1: h~ kA ~ A ""'} n ---;. 

-24<./,~~:~ • f92.~.1f J 

r') h~ r ",. c ,._ .,..... p, ) 

II 

(9) 



r> = __i_ 1 • .L j,.;. h& ' " _ < L J __!_ [- 2 '> h 1 , 2h,., + - !-,., t-2tl,,.,(l,~~,) :!>•~Ala +• c'- 2 f.,. 
.., '" ;?, (f'Jr J 

-3~...,Ch. ·~,.) -f£-h.,,(l,:d,~)-l,xh~(:L,'"+.1;) -2~<~,.(h~.:Z,."-+J,.~:)-

-d.,.,(~," .:1:) + :»od,,.,., .J,.·~~ -ltk(h,., h,.)~;.~ ~~2-..:l,'J...'(:J,.>.li )J. 
On the one-loop level these equations lead to the existence of 4 

pairs of nontrivial singular aolutions: 
-... -J_ -2. 

:J..A o lll = ..1 J:lt~ 1a = a~..i."" /;,.,= t3."' 
"-)«~3j'> 30-><)t -~> ?-,v~ 

J 

b) -1~!,, 0 3 (o-K)-Jcl-•}'-~~~;l 
5 

r--~-~ 

(10) 

4(t-l'..\ • 3(t-l(.)"t~(_l•l(.)-a.t=f2'i' /\ Jr(t-lc .. .) ~(1-"K)-v'('-lt..'rt~~ c:..))'~ ~-~I~- J <") ('" ---:~-J. «~ 
3 

TakLng into account the two-loop contributions in (9) we obtain 
i 

that solution (10a) remains unchanged for K: :I 1 ~ = 3 I' = 3 · 

All other trajectories are distorted for any K • The obtained 

singular solution is the unstable singular solution of the system 

of differential RG equations. The behaviour of the phase curves in 
I 

the one-loop approximation for II.= ; 

cL. 

b. 

Fig. 2. 
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is demonstrated on Fig.2. 

<.. 

Q. 

h,.n:; ... ) 

l 

Thus, for k = f (one Majorana spinor) we obtain the Lagrangian 

"suspicious of internal symmetry". It has the form: 

l 2 1 ( 2 I '7 " 'L ~ ~- ' .It ~ L • 2 
1_=z("'trA) +2 "lrB:.) +~'fi'"'t ~ ;a'f'(AqB)T- -g{A-t-1'/), (11) 

Indeed, Lagrangian (11) is that of supersymmetry VIZ model/1/ 

up to the mass terms. The supersymmetry in a given set of 

fields is realized as unstable singular solution of the RG equa­

tions. Since all other solutions (10) do not retain straight on the 

two-loop level, there exist no other symmetry linearly connecting 

the constants of the Yukawa and quartic interactions in the given 

set of fields. 

Consider the same system of fields with SU12) symmetry: 

'1. = tr<l,.. A"'):a + 1 r-ar e,~'f + q;'il;; ~'J) + ~A ~'JJ To..f1"'~'P T 
(12) 

:1.'. T~r> il. ... · 1· . - ~ (A"A~)2.- ~ (e,"e,"~z- h~ ~~·A·s'e."- b_,.,~,, "-''' • 'rlil.' + J.s 'f''J) lJ 1,) 't'rJ) ~, ~ 1 4 ,., lj ~ " ft B A 

There exist 6 IC' s. The corresponding ,0- functions are 

given in Appendix (A2). We have analysed the equations (A2) for 

the apinor fields in adjoint and fundamental representation of 

$UC2). On the one-loop level there exist some singular solutions, 

but on the two-loop one all the lines are distorted for any k • 

Thus, there exist no symmetry linearly connecting the coupling 

constants in this set of fields. 

4. The Model Including Yang-Mills Fields 

Consider, at last, a more complete situation including spinor, 

scalar, pseudoscalar fielUs and the Yang-Mills field with various 

interactions. The gauge-invariant Lagrangian has the forms 
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:t I - "- - "- - "- , /, 1 2- 1 "\ '-= - ;: 1-: 1- t I 'f' rr -1-'f, T + ' (.]) A~' + ::- LD B ) t-, r- r' ~ ~ r ) L. r 

_]_~' t -( A·-+ -+ .1., ~ 1 ''( B ~ 'f - -{ (A , P.> ) . 
(13) 

Here, as usual, i='r~ ~ 'Vt-rJ,~-'~vT.fro. t-~-r><U,.."TJ,<, Drfi': }ti''t- 1-\-c.><vr'f\: 

etc. The fields i.f, A"', i':lorealize adjoint representation of .S'UrN) 

group, spinors f are transformed according to the arbitrary 

representation. 1f(A,A) is a gauge invariant potential of self­

interaction of scalar fields. V'e shall suppose it to be renorma­

lizable. 

it 

Under the assumption that V (A, IS) "' ~ "- ~ ~~ .~ ~'­

turns out that the differential RG equation for ICs -2 _'1.. __ 2. 

8 ,J,..,~in 
the one-loop approximation are independent of lfrA,B) and can be 

written in a compact way: 

i r t J (i'- lp _, -'- - '-
b:ll ~- ( q 1 ~ dL- % \J I A) q, 

-~ 
)=-C~ t 

l. J.i1. z.. "1.. l -~ _'1._1.. . _'1._1.. 

1{,JI dL"= '-P~A(~,~>J,., .. )=!J.l;,- b.J.A~ +d.::t,.~->···, 

I f-::r.' ,1 :J..' 
d.L 

, n L _.,_ - ... -If -~ - ~ 1 • • 
'f.J,. ( ~ , ~ , ~a , , ) -= Cl ~ - b J.,.. ~ -+ c J_A ~ ~ 

('J4a) 

(14b) 

(14c) 

where the coefficient in the r.h.s. of (14) are determined by: 

c = !ic2.- ~-t .. - i .. ~a _z. .l l. c _'L "2.. 

C\=-:>.•+-C+2T_., b=b(l-.'-\~!>•,~ d=C-T~ 
' l. ) "f ,?_ ) "'•"' ) 2. I 

Here C.<?. is the value of the quadratic 0asimir operator of the 

group for the .SUCN) group equals 
; . ''- ,. . ,\bc_c 

( 2 =1~>/T,Tjc,-\ I 

T 2 =1"'1"', :Sri/~'-= -1: ))"b • In adjoint representation of spi-

nor fields we have: 1'-(aelJ'>"' J( > t (aA1 ):;: )'{ , In this 

case C -=- 2 N a. =- 4 r./ , .b =- f N cL .: 0 

14 

Except for trivial zero solutions the system of eqs. (14) possesses 

one singular solution, namely: 

-2. .-2.. 

J_ll -= J_8 =-
b- c _2. 
-q 
C\.. Q 

for any group .,3 U ( Jl{) . 

_2.. 

~ (15) 

Generally speaking, there exists the solution when one of 

the Yukawa coupling equals zero and the other is proportional 

to ~ • However, this solution does not lead to any simple sym­

metry and further we shall not consider it. The situation is 
-2.. -2 

illustrated on the phase plane of varia~les g and l on Fig.3. 
:12. 

-2. b-C Q2. 
~.:. ~ 4 

u 
-2. 
~ 

Fig. 3• 

The obtained singular solution turns out to be unstable 

asymptotically free solution. The existence of this solution is 

defined by the difference b-C (15) and is possible only when 

b>C , which in its turn limits the possible number of spi­

nor and scalar fields in the Lagrangian and their representa­

tion/81, 

Consider now the scalar interactions. Confining ourselves, 

for simplicity, to SL5C2) group, we choose the potential in the 

form: 
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- 2. z. t. b :lx. C>~" b ~ ,( e 
y(A,&)= ~ ... cA4A~)+J,.(I~;en +2t.~IA.A'·)r&s) .. \,t: t- ABAS. <16> 

There arise 4 IC's and the corresponding RG equations in 

the one-loop approximation are: 

,di:. • . r -2 ~~2 -- -~ -~ ~-'t ->-- -l-
l6Jl elL = 'fhA= -'flfj,_,. + fLh.,_+&h....,h +2h -2~A-+2.'~ +31;o.hA-/2~ kA, 

,J"f:, ,D -> -l -- Tl -~ l-'f ->1 
2

-7h-
1(,J1 - = '1~ ~L,J,J,, +12h." +2J,,...,h+2" -2:113 +;rQ +.&-le,~&-1 ,, ~, 

eLL ~ 4 <1 

(17) 

H:~/Jh.,,= cph -= _,c;~:, ,2L2 ·20c~-• .~~ .. sr.., ... l;(~,i:.·)"h-2~~ .. i~"-t 
vtL "" 

+ 4(:\+~)k.,, -12fh.,_' 

, J h " ,.,_ - - - - - ~ -~ - '-
/(Ji .iT :0 l4" = 6h + H.~.,_\, + ~ (h"~ ~~)~ -I~ + ~f.(+~')h -12 ~ h. 

The solutions of the system (17) essentially depend on the be-
-! -2. - 2. 

haviour of IC' a ~ , :1"' and J.e. • The solutions from the top 

sector of Fig. ). lead to the rapidly vanishing Yang-Mills constant 

what is qualitatively equivalent to the situation considered in 

the previous section. When the solution is chosen in the bottom 

sector of Fig.3 the system (17) has no untrivial singular solutions. 
- 2: -2 

And only when on the plane ( ~ 1 ~ ) we choose the unstable singular 

solution (15), the system (17) has 4 untrivial singular solutions: 

1) ~. =-h" =h.,. =-o - " _2. 
h = z:. J ... -2 

l: d I 
- - - - l -2 

2) 1,~ ~ ko: h.,. :0 I h '- 2 2 2'1.= 21> (18) 

- - - - j_ (I'_, - - ~ 'i -· ]_' ~ q 
3) ~~ = hs · h"' -= 1 ~ 1 ~~ ~ , h - 2. ~ 1~ ~ cr ' 

- - A r7 -> - 3 (i' -t -'= ti 1 
4) h.A = ~.: h"!J = -1-;;,~ ~ , h=-z,=n(J, ::J.. <l. 
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The situation on the phase plane of variables h, 

is illustrated on Fig.4. 

hA = k~ ~ 1,., 
3. 

;:;-

-tJ '·' f 

r. 
Fig. 4. 

-2. 
and 3 

l 

-'>. 

r· 
"· 

.?., 

The obtained singular solutions are remarkable due to the 

fact that they lead to AF in all the coupling constants. AF' in 

such a theory is closely connected with the existence of unstable 

singular solutions of the RG equations and is possible on these 

solutions only. In this respect it would be very usefull if there 

existed some kind of symmetry strictly keeping us to unstable 

singular solution. Consider from this point of view the Lagran­

gians corresponding to the singular solutions (18): 

i 

V) 2 i F " ~ ~ :T . ,, ~ "' ' ~ ... .,_ 
c~-- = - 4 r· 1-f" • 1 -r :q. 0 r 1 + 2 (J:j~ A ~ + 2 (])r B j -t- (19) 

+ d ~ 1: c i'~ t e:·) i' ~ i ~, ~" 'x. E:O_<l~ A .. e,~ ;/ r:, €-' 

~ 

~Jf 4 -"'-"' • - .1. ... .,_ 
dv = -4+-r"trv + 1--f'.Dr~r' +fC1).A''j + fCJ::t.~".)-+ (20) 

- - ,, ,!'> "' ,\, j ri , 0 " ... ~ \2. ;. 1:1 ~·( o.h • c ,j e 
-+'J*'+(A+o~)~~,4 j~rrAI\t&il.>J+:i-:~-c t- 1\tsf\.&. 
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~ 

The Lagrangian ~ coincides with the supersymmetrical one of 

the SSFZ model/2 ,3/ up to the mass terms. Thus, we again obtain 

that supersymmetry in a given set of fields is realized as un­

stable singular solution of the RG equations~). As for Lagrangians 
2 3 "f 1 

't_ , "1 and g(_ one does not know any symmetry with respect to 

which they are invariant and more over it is not clear if there 

is such a symmetry at all.T~ clear up this question we are to exa­

mine if any of these solutions retain straight on the two -loop 

level. It should be noted that in this approximation the function 

~3 of eq. (14a) is independent of scalar couplings, while the 

corresponding functions ~~ of eqs. (14b) and (14c) depend on 

them. It is evident that the singular solution (15) holds when 

the functions 'f:J. and ~ coincide with each other. Due to the 

fact that ~ is independent of A; this may be realized only 

for certain values of A11 , h8 , J.~ and h • Consider the contri-

bution of scalar interactions to the f:J.,. function in the second 

approximation: 

,n ch) - "( !"\T" , T 2 _'L - - - _., - ,_ ,_) 

T~ = .J. 2>un~ + "1£.~~ + 12h ~~2~01.h -)!.()1,4 ],. -4~~ ... \.-.1~h~ (21) 
~A A I 

We use the fact that 

~~= ~J,.= 'P~ (22) 
(h\ . 

for ~=~=.:I,., h.=l.l!od,~,-=o, h=l~" . Then lf:J-4 ='-f~=-5~·· 
Consider other solutions (18), From (21) it follows that equality 

(22) is broken down. 

Thus only the first solution of four singular solutions (18) 

retains straight if one takes into account higher corrections of 

perturbatuion theory, and realizes the supersymmetry in the given 

system of fields. The other trajectories on Fig.4 are distorted and 

•) This fact for the SSFZ model was for the first time noted 
by M.Suzuki /9/. 
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do not lead to such a kind of symmetry. Therefore there exist 

no other symmetry linearly connecting the coupling constants in 

the given set of fields. 

5· C o n c 1 u s l o n 

So, the considered different models and types of interac­

tions confirm the efficiency of the proposed method. In all the 

cases when some kind of the known symmetry (isotopical, super­

symmetry)can be realized in the theory, this symmetry was revea­

led on the phase plane and the corresponding symmetrical Lagran­

gians were "reconstructed", 

It also follows that the accepted regularization-renorma­

lization procedure in all the cases does not destroy the initial 

symmetry of the Lagrangian. 

Unfortunately, in the models under consideration we have 

not succeeded in obtaining any new symmetry, except for already 

known isotopical one ( § 2) and supersymmetry <§~3,4). There 

exist no other symmetries linearly connect~g the coupling 

constants in the considered sets of fields. Ho;1ever, <lhile the 

scalar and Yukawa couplings have been considered rather comple­

tely, the incorporation of gauge fields contains wide possibilities. 

A general property of arising sy,JIIlletries is that all of 

them are realized on unstable singular solutions of the RG equati-

one. The exception forms only scalar interaction (1) with ~.J·., < o 

(see Fig.1). However, such a theory is usually considered to be 

unacceptable as it has no ground state in the quasi-classical li-

mit. 

In all the Lagrangians under consideration we have not 
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written down the mass terms. This is explained, ~irstly, by 

the fact that in 1ogarithmical theories all the masses always 

become dimensionless by the powers of momenta and vanish in 

ultra-violet region and, secondly, by the fact that in such 

theories the renormalization procedure can be formulated and 

is really formulated in such a way, that the counter terms in a 

Lagrangian are independent of masses. Therefore, to the obtained 

Lagrangians we can always add the mass terms which are symmetri­

cal or softly breaking the symmetry. They will not lead to the 

distortion of the phase trajectories and will not break the 

symmetry of the interaction Lagrangian. 

We are grateful to A.A.Slavnov, B.L.Voronov, I.V.Tjutin, 

A.A.Vladimirov, A.V.Efremov and V.V.Belokurov for many helpful 

discussions. 

Appendix 

1. Here we represent the expression for the Gell-Mann-Low 

functions of eq. (2) for the binar interactions, when tl: 2. • 

The Lagrangian (1) in this case looks like: 

\..11 .1 o2.i( ,r 2 h.~-~.t~-~!.f 2tfz. o.. = 2. l'Or~.) • 2 ror'~z.)- ;;; lf1 4 ! '1, "~ , , 

The <-p -functions in the three-loop approximation are•) : 

•) The details of calculations see in /8/. 
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In j ; ( L t..) I ( ,;. , 0- l ~I) \ c • "'" =,--;.; 1.,+1.,, - -L -;-l,·,,t.,.z.tlo ,, +- ·L((,<t<) -"-r~ 
c'' <(,; -- (1<.,') ~ ' - (lc;;'')' ( ' 2. 

+ ~ - ~ l ~ '!," + ( ~ _ ~ I - 2 L ~ ) I. 7 h,~ • ( 1 t ~ r;) - >; r • 'JJ _ "L l 1 ~. ', -
2 4 '?)\ L! ?. '" f - 4 'I 'I] 

- • ~-~ill,,<'-(''"< l' 
r(24-ifJ) tbl•,'r)~,l. .. t(_li-i;·LJ~'y)01h2 f- .:;-',i:)l,,~Lh•l. t-121,,1,,, J, 

lf ~ ,,. ( 1 _, 2. \, 
h2. I '-'1. ) ' 

(A.1) 
n I_ · ( ~.•'-L) j I (~I!. ) · l '\ ·) l\ h .=. - L~,t_ Zh.:.z._ + ~ - -lh\t. ;-t-, 12• -r-

2 
(~, +~t.) ...-.~h,L(h,+ht) t-

Il.- -f ~Ji -- (.fi;,.Jt) '"- 1 

I I L .3. ( - . J ~ ) 2. ( I ) ( ·- - >,y· ~ ' l) + -,v.,l. h,. 12_~fl)-1~1 ~l,lt't-oy +l.,IL \.,,t.L .12~fS)-':l.l t~--•;;t.,- t 

(Hll") ' ' ~ 

H,,_(l-~ t-1.~) (C,il~) -H +-¥ +- ~q) + h,t.,,h,,_ c+-'I) r 

+ (I.,~~ l.,~ )( ~= t- 0• \ J 
I 2- ) ' 

where ) (~) "'.i.2. , T ::: '!>f'l. 

2. The f-> -functions of the Ovsiannikov equations for the 

Lagrangian (12) on the two-loop level are: 

~~ L '- ' + \ r • \ l :1 .: l • ( '• . f-> :1 = - lA ( .0 T - 2 t 2. I< ) +- :L ~ ( 2 · T ) + -'-., J. A - ~ ll') ~ _o -
A n~· (tr.,:c'). 

I '- t \ ' L ( 1'> z. , ! '"+ ., ' "(} (T' ' - 12' 1<. T -r t. "'- J • ::r., ~ 2 ( r•' - ..,_ 0 r - 1 K- .d K • ! <-) + ~" if ' -

- Ln".,. .,.'h- -4h +;'. \ _ J..~h. 12J- -~) -~:!.,.., c(r\i)- L1~/, .. 

+i:,2. ~~.l ~1..., 
?,(. \., ~ + ~ """ +- [,.,, ~. + y h J 

( A.2) 

\:>2, = ~J.A ( A ~ P.>) , 

~-" 
j_ L..., " 

f{,.j;l "i k~ 
• ') I L ' ' .... i ""'' +-(~,-~,"~ ~~~. +l,J..~h*tK- z.c,t:<.(~<-1'l," l 

~ -A j 1 
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I I 2. ~ I "' i 5 2 h 1 ~ I =- ~~ • 2_ > -r:;Gn"/L- z-""- ~h% ,,- ,...,.,-1Dh.\e,hh,- -zhh:-36J,..,h-42h,.8h-

- 15).. ~- ~.: h
2

~ 2; fK - 1 2>h~, ~2~ iK - .:?H.w,h ~~ fK - 12 h
2 ~~ h -1 2 l: hA -h. • 

( 1 ~ 2 1!) 2 ;>_ 2 · + ' L 1 • 5 r - -5 - 2 ~- ~~ /,,.-h.. ( T t l ) ·- .2 'f ~~ ]_~ ~ '"~ K ( T - ~) - 2 h~2 J;, h K 

• ( ~2.- ~) + 
4 ~h< ( 1?. c-r-.,_)2 - oo'-+ s)~: + 4~i"-c2.T2+.i )~: .:z.:- J 

., ~ :> ? ' 

r--.k = P:,h ( A ..._. & ) r- t:. J- A , 

I i I ~ 5 ( I ) I I,.+~. I ~ .,_ 
(l,h :::: -2 Lh!t& ~ h h,+"s 1~-+ -~ '1 + n + 2fk(2A tl~ )h..,.-,_. '" {(,JI 

- ~ -t n 3> T,- 1 ) 2 2 J ~ [ II 13 - ~ ) 2. 1-7 ( 2 l 
. '> ~AJ..;, + (l(,nt)· C 2"1H!>- !.>/,_Ab (I..\+ he - 2h,., h -~1,,., h,•~,) 

- 2. h ( ::t L }f Z 2.5 2 ' I 2 ( ' ') <3 h,+h~)-41,..,~-t(I,A+h,.)-_sh(h,+~,)-2~11-Bh-51, -.lrtkh_.,J,.+J8 

- 2-tK~'-(.:J,.,2 t-~)- ~il'-l,~(t,,J.,~~h .. ~)- 't-h.lt(~J,;'-+I,a~')-

-(~:+.:r-:)k""'t"'C''-+2)-+ (:l:-+~4 )hh(~T2 -~)-(h~t~~).:z,"-~tk· 

•/5 (11T
2

-"f)-+ ),~..1,.,2~fk ('¥'T 2 -~) -h~J.!-h ~(2T2-lfJ-f­

+ lt~iK( 2tr>-)
2

-2Tl+ .i) :1!~~ (~+:1112 )] 
' 

(2, ~ f 5h2 "h h ~.+he L 
J ~ == 1f:;:c L 2 ..,. c. 1'<1, + -

3
-h + 2tl< C:Z:+l" )h 1btK 2 2 2] 

+ 5 ( T- 2) :1,\ ~~ t 

+ 1~\2. \- i/'- J~\..2 h., - ±h1 Ct-·~-~-~ .• )- 1__5(, ~,.,,h(h.+~~) _;u~:,_h-J~J L ~ 

/3 0. 2.) ~ ( 2 l t ( ' 2) t 4 1 I ( 1 ~ t - 3b~(h,+l-,~ - 3h ~-~-.:r,;) ~: -4h,.,h .:~,;+.:z,: K -sw" "•""' 

+~&~) + ~ (~+:1./: )-h. ~(T>.t-2)- h ~~Lh(¥ ;'--~ )- ),.,.~~~t"-' 

'fC2.T'--'12)+(h,.+kG)~~; 1n.,_..-i) - 16;"(7_(1'-)2 
.. ! 2-2)~~[_:(+~). 
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