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Cl&ssification of Domains of Closed Operators 

The structure of domains of closed operators in Hil
bert space is investigated by means of sequence spaces. 
A complete classification leads to three classes of 
domains. We obtained necessary and sufficient conditions 
for the unitary equivalence of domains expressed by the 
equivalence of appropriate sequences of naturals. A con
nection with perturbation theory is mentioned. 

The investigation has been performed at the Labora
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INTRODUCTION 

In this paper a complete survey is given 
about the structure of domains of closed 
operators in Hilbert space H.Thereby we sup
pose that the structure of such a domain D 
is sufficiently clear described, if there is 
a space of sequences contained in r 2 which is 
isomorphic to D. 

A sequence of naturals which determines 
the space of sequences is assigned to any 
domain in a natural way. 

The given classification leads in effect 
to three types of domains of closed opera
tors. It is naturally to regard, instead of 
single domains, classes of unitarily equiva
lent domains (cf. Def. 3). Then, a class of 
equivalent sequences of naturals, is assign
ed to any class of unitarily equivalent do
mains where for the different types of domains 
different notions of equivalence of sequen
ces are used. In this way one also gets ne
cessary and sufficient conditions for the 
unitary equivalence of domains of closed 
operators. This classification is closely 
connected with perturbation theory and a pro
position is obtained which seems to be new. 

When our investigations were finished we 
found by accident two papers of Dixmier/2, 3/ 

which are almost completely fallen into ob
livion and to which no reference is in the 
appropriate literature. 

3 



Our results have partly coincided in de
tail with the classification ~f Dixmier and 
in the present paper our notions and nota
tions are closely related to his ones. 

In these papers of Dixmier the much more 
complicated class III of domains is not 
investigated further. 

1. PRELIMINARIES 

By N ,R, C we denote the set of naturals, 
·real and complex numbers resp. Let H be 

a separable Hilbert space, D c H a dense 
linear manifold, the domain of a closed ope
rator. Obviously, this is equivalent to: 
D = O(A), A= A*.:<: I, where I is the identity ope
rator on H.From the spectral theorem it fol
lows that on any such a domain there exists 
a diagonal operator S=S!(s 0 ) ,(¢

0
) l that is 

2 2 
D= ! ¢ = ~ x

0 
¢

0
: ~I x

0 
I ( s 

0
) < "' I , 

where ( ¢
0

) is an orthonormal basis of H con
tained in c ( s 0 ) a sequence of real numbers 
unbounded if D f, H. 
Remark 1: ~) Obviously, for any given diago
nal operator A=AI(a

0
),(¢

0
)1 one can find 

a diagonal operator A'=A'!(a~) ,(¢ 0 ) I such that 
a~ > 1 naturals and L( A)= D(A'). ii) Clearly, 
O(A) =D(A'), where A=A!(a

0
,(¢

0
)1, 

A'=A'I(a~),(¢ 0 )1 and(a~) is obtained from 
(a

0
) by a finite number of changes. In what 

follows we need some notions about such 
sequences. 
Definition 1: Let (a) ,(b ) be two sequences of 

n n 
positive numbers Ci suitable positive constant 
then ( a

0
) ,( b 

0
) are said to be 

4 

i) comparable, if there is a permutation rr 

of N such that 

an 
c1~ :::; c2, 

b " ( n) 

ii) equivalent(-) if 

an 
C<---<C. 

3- b - 4 
n 

(1) 

(2) 

iii) essentially equivalent (f), if there are 
k, e r; N such that ( ak, ak + 1, ... ) and 
(be, be+ 1, ... ) are equivalent, that is, 

ak . 
C 5 ~ b+• ~C 6 for i=1,2, ... (3) 

e + i 
i v) weakly equivalent (; ) A if there ~re 

equivalent sequences (a 0 ) =(a~), (b 0 ) =(bit) 
obtained from (an) , ( b 

0
) resp. ; in the fol

lowing way: let a,r resp. be monotone 
mp.ppings from N onto N, then (~ 0 ) =(a~) =(aa(n~, 
( b n ) = ( b ~) = ( b T( n)> resp. For example, (an ) 
could be: (a 1, a1 , a2 , a3 , a3 • a 3 , a 4 , ... ) • 

v) partially equivalent ( p ) if there are 
equivalent subsequences(ak )and(be )Of 
(a

0
),(b

0
) resp. · n ° 

Definition 2 
i) Let(s0 ) be a sequence and (tn) a subse

quence of ( s0 ) ,( t 0 )C(sn)then we denote by 
(an) =( s n>- ( t 0 ) the subsequence of ( s 0 ) 

which we obtain from (s
0

) by cancelling the 
elements (t 0 ) .. we also write (sn)=(t 0 ) u(a 0 ). 

ii) Let (an) be a sequence of naturals, then 
by(an)' we denote the set of accumula
tion points of (an) and by (a~) we mean 
the sequence (a 

0
) '-I oo l such that a'1-s.a2 -:;,. ... 
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De.finition 3: 
i) Two operators A,B are called equivalent, 

if A=KBL with K,L,K-1 ,L -1 bounded; they 
are called unitarily equivalent, if A= UBu-1, 

lJ a unitary operator. 
ii) Two linear manifolds 0 1 ,0 2 are called 

linearly equivalent, if 0 2 = K0
1

, K,K - 1 

bounded; 
unitarily equivalent, if 0

2
= U 0

1 
, U 

unitary. 
Because linearly equivalent domains of closed 
operators are unitarily equivalent, too hi, 
we use in this case only the notion "equi
valent". 

In what follows we make essential use 
of the following theorem of Kothe /4/: 
Theorem: Two bounded operators A=AI(a

0
),(¢

0
) 

and B = HI( b 0 ) ,( 1/1 0 ) I are equivalent 
iff the sequences(a) and(b) are 

n n comparable. 
A domain 0 of a closed operator can be 
equipped with a natural topology t given by 
the scalar product 

<¢, 1/' >T = <¢, 1/1" + <T¢, Tlj1 > , c,6,1j!.;O, 

where<,> is the scalar product of H and D=O(T),T 
a closed operator. The associated norm we 
denote by II liT .Equipped with this topology 
O[t] is a Hilbert space. From the closed 
graph theorem it easily follows that the 
topology t is independent of the choice of 

I I the closed operator T on 0 1 21. 

2. CLASSIFICATION OF DOMAINS OF CLOSED 
OPERATORS 

We start with a classification of sequen-
ces (s 0 ), s 0 ~ 1 naturals. Thereby we are 
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only ±nterested in sequences(s
0

) with sup s
0

= 
=~. Then we give a classification of dia
gonal operators which is the basis of the 
classification of domains. 

Cl: Classification of sequences 
Let(s 0 ) be a sequence of naturals, as 

mentioned above, and 

M =Is. ~(sk):s.=nl 
n J J 

( s 0 ) is said to be of 
Class I: if all M0 are finite or empty 

sets, i.e. , lim s 0 = "" or ( s 
0

) '=I oo l 

Class II: 

Class III: 

( c f . De f . 2) , 

if there is a finite number of 
infinite sets ~k ,Mk , ... ,~k , i.e., 

. I 2 
1

s (s rcontalns except 00 at east 
one finite point. Therefore we 
have the following (non-unique) 
decomposition: (s

0
) =(s~).; (s;;') 

where(s~)is a bounded sequence 
and lirns';= "", i.e., (s;;') is of 
class I. 
Example: (sn)= ( 1,2, 1,3,2,4, 1,2,5, 1,2,6, 1 ,2,7 , ... ). 
Now we have: ( s

0
) '= l 1, 2, oo I , , ( s

0
b) = 

=( 1,2, 1,2, 1,2, ... ) ~ ( s:) = ( 3,4,5,6, ... ), 

if there is an infinite number 
of infinite sets Mk. , j = 1, 2, ... 
i.e., (s0 ) 'is infini\:e and 
lim s' ="" . So, to ( s ) we can 

P n 
ass1gn two sequences: ( s') and 
(so),where (so) is obtain~d from n • n 
( s 0 ) by cancelling all numbers 
s~. We arrange ( sJI) such that 
s~::;s~:S .... 

Example: By the well-known diago
nal procedure we form(s

0
)from 
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the following sequences: 
( 2, 4,6, ... ), ( 1, 1, ... ), (3,3, ... ), .... Then we 
have: (s~) =(1,3,5, .... ) and 

(s~) =(2,4,6, ... ). 

We use also the notation ( s
0

) ~ I and so on. 
It is clear that this classification is 
complete and disjoint. 

~2 : Classification of (unbounded) diagonal 
2.12erators 

Let 8= Sl(s0 ) ,(¢0 )1 be an unbounded diagonal 
operator. S is said to be of 
Class I iff ( s

0
) c;. I 

Class II iff ( s
0

) c;. II 
Class III iff ( s

0
) ~ Ill 

According to Remark 1 without loss of genera
lity we restrict ourselves, in this classi
fication, to the cases~ 1 naturals. As 
above, we use the notation Sc;. I and so on. 

~3 : Classification of domains of closed 
operators 

Let D be the domain of a closed operator. 
D is a said to be of 
Class I iff on D there exists a diagonal 

opera tor S .; I 
Class II iff on D there exists a diagonal 

opera tor S .; II 
Class III iff on D there exists a diagonal 

opera tor S ~;.Ill. 
Here the same notation as above is used: 

D .; I, and so on. Obviously, this classifica
tion has to be justified, i.e., we have to 
show that the classification is independent 
of the choice of the diagonal operator s 
on D.In the following usefull remark we 
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give a first justification based on the 
Theorem of K5the (see alsoh/). Later a se
cond justification based on a perturbation 
Theorem is given. 

Remark 2: Let S,T be two diagonal operators 
on D=D(S)=D(1).Then it is easy to see that S 
and T are equivalent. Therefore, s- 1 and 
T-

1 
are equivalent, too. By the Theorem of 

Kothe their sequences (s~ 1 ) and(t~1 ) are 
comparable and, consequently, ( s

0
) and ( t 

0
) 

are comparable,too. Now it is easy to show 
that S and Tare of the same class, because 
comparable sequences must be of the same 
class (the proof is easy and omitted). Next 
we give some consequences from the classifi
cation·which give us some information about 
the geometry of such domains (for class I and 
II see also /2/ ) • 
Proposition 1 
i) D.; I iff S - 1 is completely continuous 

for any invertible closed operator S 
on D. 

ii) D c;. I iff the imbeddingD[t] ... His comp
letely continuous. 

Proof: 
i) it is valid obviously for any·diagonal 

opera tor. and· there.fore for any closed 
invertible operator on D. 

iif By using i) one shows that 
ET= 1¢ (;; D: I!T¢11 ~ 1, T>l, D(T) = D I 
is a compact set of H which proves ii) • 

For class II as·an immediate consequence of 
the definition, we obtain the following 
proposition: 
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Proposition 2 
D ~II if and only if D = H0 e D0 , H 0 infinite

ly dimensional and II 11-closed and Do ~ I. 
Now we go on to class III which is much 

more interesting and complicated. Let 
S=SI(sn),(¢n)lbe a diagonal operator onD~III. 
As in the classification C1 we consider the 
two sequences {s~ and(s:)which leads to the 
following decomposition of D: 

D = ~ e H e Do 
( s ') n 

H" are the infinitely dimensional eigen
spaces of the eigenvalues s~ resp., and ~ (s') 
means: n 

~(s'~ Hn= 1¢=2.¢" :cpn~Hn, ~(s~)2lic,6nl12< ""I 
n 

further 

D0 = l¢=~x ¢ 0 :2.1x i2(s 0
) 2 <""I, n n n n 

where ¢: is the eigenvector for the eigen
value s~. If the sequence ( s :> is infinite, 
then we h~ve D0 ~; I. ~ve also will use the no
tation D 0 =(s~.These considerations give us 
the following proposition: 
Proposition 3 
D ~III iff D = !(s')Ef>Hn 19 Do, dimDo< oc or Do.; I. 
Remark 3: With r~spect to Remark 1, ii) we 
always may exclude the case in which D0 is 
finite dimensional, i.e., the case, where 
we have only finite eigenvalues with finite 
multiplicity. In what follows we need some 
notions. Let 

D = 2. ( t ) 19 H n 19 D 0 , D0 : ( an) . 
n 

We say that Do can be reduced, if there is an 
infinite subsequence (bn) C(an) such that 
from 
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D =· ~ ( t ) ED H n ED Dt E9 D2 , D 1: ( bn), ~: ( an) - ( b n) 
n " 

it follows: D = ~.< ti:l H" E9 D2 

withHnc H"' dim(Hng Hn) < oofor all n (Clearly, 
a "finite reduction", i.e., (bn) is a 
finite subsequence, is always possible). We 
say that Do can be maximal reduced, if there 
is such a reduction of D0 that 

" 
D = ~ < tn > ED H n E9 D 2 

and D 2 cannot be reduced further. We say 
that Do can be completely reduced, if there 
is a reduction of D0 such that 

" 
D = ~< t > E9 H n i . e . , D 2 = ( 0) . 

n 

By using these notions we are able to give 
a complete description of class III: 
Let D;;:,: III, , D ~ ~< s~ > E9 Hn ED D 0• Do: ( sg). 
Then the following three..,classes can arise: 
classiii if D=~<'>Et>H,, i.e.,D 0 ---------A sn n can be comp-

letely redu-
" ced. 

Class IIIB if D= ~<s'>ED Hn E9 D1 , 0 1 ,: (an) 
" and cannot be 

reduced further, i.e., D0 can 
be maximal reduced. 

Class IIIC if for any reduction of D 0 which 
leads to " 
D = ~ , E9 H ffi D , D ~ ( b ) , 

(s ) n 2 2 n 
D2 can"be further reduced, i.e., 
Do cannot be maximal reduced. 

As usual we write D ~ IliA, and so on. 
Again we have to give a justification, 

i.e., it must be- shown that the class of Dis 
independent of the regarded diagonal opera
tor. Before doing this we give a simple 
condition under which Do can be reduced, 
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and then follow some examples. For the fol
lowing simple Lemma we omit the proof. 
Lemma 1 

Let D = I< tn)@ H n@ Do , Do~ (an ) . 
Do can be reduced iff there are subsequences 
( bn) C (an ) and ( s n> C ( t n> such that ( s n> - ( b 

0
), 

( c f . De f . 1 , i v) w 

From this Lemma we obtain immediately the 
following 
Conclusion 
i) D0 can be completely reduced iff there 

ii) 

is a subsequence ( sn) c( tn) such that 
(sn);(an). 
D0 can be maximal reduced iff we have 

a decomposition ( a0 ) =( bn) u (en) such that 
{bn) is weakly equivalent to a suitable 
subsequence(sn) of (t

0
) and there is 

no subsequence{dn) of(en) which is 
weakly equivalent to a further subse
quence of ( tn) . 

iii) D 0 cannot be maximal reduced iff for 
any decomposition {an) =(b

0
) u (en) 

such that{bn)- {sn) for a suitable sub
sequence ( sn) ol ( t n> there is a further 
decomposition ( e ) =( d

0
) u (en) such that 

( dn) w ( u 0 ) for {another) subsequence 
( U0 ) 0 f ( t o) · 

Now we give some examples to illustrate these 
classes. 
1. Class IIIA: 
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If {s 0°) ={n ),(s~) =(n 2 ), then 
D ~III A because ( n ) w ( n 2 ) • To 
see this, regard the equiva
lent sequences: 

A 

( s~) =( 1, 4, 4, 4,9 ,9 ,9 ,9 ,9, 16, 16, 16, 16, 16, 16, 16, ... ) 

(so) =( 1, 2, 3, 4, 5, 6, 7,8 ,9, 10, 11, 12, 13, 14, 15, 16, ... ). n 

2. Class IIIB: 

3. Class IIIC: 

Now we choose ( s;> such that 
lim ( s~ + 1 /s~) = oo, for example 
s~= n!. Let ( * ) an= ~ ( s~ + 1 + s'n) , 
then lim( an Is~) = oo • Now we 
re~ard ,the fol~owing sequence 
{s 0 ) ={s 1 + 1, a1 , s 2 + 1, a 2 , ... ). 

Obviously, we have ( s;J - ( s~+ 1), 
and because of(* ) the domain 
D1 corresponding to{a 0 ) can
not be reduced further, i.e., 
D 0 ~(s~) can be maximal redu-
ced. 
To give an example for class 
IIIc we choose: 

{s~)=(n!), {s~)=(n). 
By considerations like in 2 
it is easy to see that D0 ~(n) 
cannot be completely reduced. 
To see that D0 cannot be ma
ximal reduced we remark the 
following. 
Suppose we have 

" s' 
nj 

C 1 :;;.-k-.-~c 2 , (kJ) c(n) 
l . 

it is not difficult to see 
that we can find an infinite 
subsequence 
Ui) c [(n) -{k j)] such that 

"' sn 
1..c 1 ~--i-.:::: 2C 2 . ThereforeD 0 2 ej 
cannot be maximal reduced. 

By the following ·proposition we give the 
mentioned above justification of the nota
tion D ~III A• and so on. 
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Proposition 4 
If D ~ IliA (III 8 , IIIcresp.) with respect to the 

diagonal operator S = S l( s 0 ), ( ¢ 0 } l, then 
D ~ III A) (III 8 , IIIc resp. ) with respect to any 
other diagonal operator T = T l ( t

0
), ( t/1

0
) l 

with D(T) =D(S) =D i.e., the classification 
of class III is independent of the choice 
of the operator. 
Proof: 

1. Let S <;-IliA, then D = I<s') @ H
0

• 

. n 
Suppose T <;- III 8 , then regard besides ( t

0
) the 

associated sequences(t') and (to). By the 
., n n 

Theorem of Kothe there is a permutation rr 

of N such that 

- s n , 
( 1 '- --- '- c 2 , - t -

rr ( n ) 

Especially. 
sn. 

tn 
D 1 :S ----- :::; D 2 , resp . ( 1 ) 

s 
rr- 1(n) 

C 1 s-;- .s C 2 , (2) 
tj 

Because limt~= oo, we have [(s 0)-(s
0
.)]'=(s

0
)' 

(regarded as sets!), i.e., by (2) ndne of 
the eigenvalues of S with infinite multipli
city is exhausted. Therefore we can find 
a further subsequence(sk.)C[(s 0 ) -(s 0 .)] with 
s = s for all j. B/ (1) it folf.ows that 

k j nj 

sk c < __ i __ 
1 - t 

rr(kj) 

< c . - 2 (3) 

By ( 2 ) it f 011 ows that ( t rr (k . ) ) C [ ( t 0) - ( t : ) 1 
J 

and because we can suppose that (sk.) is mo-
J ,., 

notonly increasing, we see that ( t rr (k .>) = (t{). 
J J 
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1 
~ 

But (2) and (3) give now the equivalence of 
( t f) and (ft. ) which means D ( T) ~IliA. The same 
proof giv~s us that it is impossible that 
D(T)~IIIc. 

2. By a slight modification of the consi
derations above we may prove that from 
D(S)G lllc and D(S)=D(T) it follows that 
D ( T) ~ III c. Because these are, in principle, 
the same considerations we omit an explicit 
proof. 

Now we go on with an interesting lem
ma of perturbation theory which gives us 
a second proof that the classification is 
correct. 
Lemma 2 

Let D ~ II , A a closed operator on D such 
that A-1 exists and is bounded; further let 
(A 0 ) be a sequence of the spectrum a{A) 
of A such that A 0 . A , lA 0 I, i A I sufficiently 
large. If we suppose that there is a se
quence(¢0) c D with ll<Pnll = 1 and A¢ 0 -A 0cp

0
--.0, 

then (¢ 0 ) c9ntains a strongly convergent sub
sequence ( ¢ 0 ) . 
Proof: 

From D c;.ll there follow the decompositions 
H = H0 @ H 1 , 1 D = H6 @ D 1 , 

1 
D 

1 
= D n H 

1 
,, 

D1 of type I, ¢ 0 = ¢R @¢J and for the iden-
tity I we have I= P0 @ P 1 , P

0 
,P

1 
-pro-

jections. Further, A has the representation 

A = (A I r;) A 1, T 1, T}-bounded 
with 

T1 81 
B 1- unbounded. 

Therefore we obtain A= B + T with the ope-
rators 

0 0 A T* B = ( B) and T = ( 1 1) 
0 1 T1 0 

15 



s;1 
exists and is compact. From 

(A -An)¢n-(B+T-An)¢n-. 0 

multiplying by P1 , P 0 resp., one has 

1 
B 1¢ n + p 1( T - An) ¢ n-> O ' 

P0 ( T - A ) ¢ ... 0 . 
n n 

From (5) multiplying by s;1 we obtain 

¢!+ B~IPI(T- An)¢n-. 0. 

(4) 

( 5) 

(6) 

( 7) 

The boundedness of (¢n) gives the bounded
ness of ( T -An)¢ n and P1 ( T- An) ¢n. Because 
B}

1 
is compact, we can find a convergent 

subsequence J:n = B}1 P 1 (T-An) ¢~of the compact 
s~t BJ:

1
P1 (T-An) ¢n . This and (7) give that 

(¢~) is convergent. From (6) we obtain 

P
0 

( T - A ) ¢-o + P
0

( T _ A ) ¢t , o , n n n n 
- -1 and, consequently, the convergence of P0 (T-Ar)¢ n 

aEtd P0 ( T-An)¢~· For sufficiently l~rge 
/Ani the bounded inverse of P0 (T -An) 
exists, which gives the convergence of the 
sequence ( ¢ :> . Thus, we have proved the 
existence of a convergent subsequence 

- - 0 -. ( ¢ n = ¢ n + ¢ n) of ( ¢ n) · 
Q.E.D. 

Conclusion 

Let D ~ II and A a eloped opera tor on D 
with bounded inverse A- . If A ~ a (A) and 
/AI sufficiently large, then A is an eigen
value of A. 
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Proof: 
From A.;: a (A) there follows the existence 

of a sequence ( ¢n).;: D (A) such that 11¢n11 = 1, 
A¢n - A¢n -. 0. The Lemma gives now the 
existence of a strongly convergent subse
quence ( ¢-n) , i.e., ¢: ... ¢ . But this means 
that A is an eigenvalue of N. Now we are able 
to prove the following 
Theorem 1 

The classification C 3 of domains of clo
sed operators is correct, i.e., the classes 
I, II, IIIA' IIIB and IIIC are disjoint. 
Proof: 

It is trivial that class I and class II, 
III resp. are disjoint. The disjointness of 
the classes IIIA, IIIB and IIIC has been 

proved in Proposition 4. Thus, it remains 
to show that classes II and III are disjoint. 
But if D ~II and D = D (A), then for suffici--~ 
ently large !A I I A~ a( A) ' A is an eigenvalue 
of A with finite miltiplicity, that fol-
lows from the Conclusion. Similar considera
tions give that for sufficiently large /AI 
this A cannot be an accumulation point of 
eigenvalues. This shows thatDQI with respect 
to an arbitrary closed operator .A. 

As a consequence of this classification 
one gets a remarkable perturbation theorem: 
Theorem 

LetT be an unbounded, positive selfadjoint 
operator which ?as, outside of a bounded 
interval (O,N) only eigenvalues A 1 -:;,A 2~ ... with 
finite multiplicity. Any perturbation T+S 
with a bounded selfadjoint operator S is of 
the same type. 

Let 11 1 :s 11 2 s_ ... the eigenvalues of 
with finite multiplicity, then 
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< c 2 Ct:; -
Ilk+ m 

for all k with some positive numbers C 1, C 2 
and suitable integers£ and m. 

In other words, the eigenvalues of the 
two operators T and T + S have the same asymp
totic behaviour at infinity. We remark that, 
of course, we can replace the operator S 
by an semibounded operator such that on 
D = D ( T) the perturbation T + s is semiboun
ded from below and selfadjoint. By the Theo
rem of Kothe we arrive now at a complete 
characterisation of the equivalence of do
mains of closed operators by equivalence 
classes of sequences (for classes I,II cf~2 /). 
In what follows, D and D' are domains of 
closed operators. 
Theorem 2 
i) Let D,D'~I then D and 0' are equivalent 

iff there are two diagonal operators 
S=Sl(s 0 ),(¢ 0 )l, D(S)=D and T=Tl(t

0
).(t/1

0
)l 

D'=O(T)such that the sequence ( s
0

) ,( t
0

) 

are equivalent, i.e., 
D-D' iff (s 0 )-(t 0

). 

ii) Let 0,0'~11. then D and D' are equiva
lent iff there are two diagonal opera
tors S=Sl(s 0 ) ,(¢Jl,O(S)=0, and T= Tl(t

0
) ,(t/J

0
) l 

D'=D(T) such that for the decomposed 
sequences (s 0 } =(S:)u (s;) and(t0 )=(t~)~(t;) 
we have that ( s "") and (too) are essen-

n n 
tially equivalent, i.e., 

D-D' iff(s;') e(t;). 
The proof is, for example, contained 1n 121 
and therefore omitted here. The next Theorem 
characterizes class III. 
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I 

Theorem 3 
Let D, D'~ III, D and D' are equivalent if 

and only if there are diagonal operators 
S=Sl(s~,(¢ 0) l and T=Tl(t~,(t/10 )1 such that 

we have the decompositions 

,. 0 D = D( S) = ! < s, ) IB H0 e D 0 , D 0 = ( s n ) 
n ,. 

D '= D ( T) = ! < t, ) IB H n IB D 0 , D0 ~ ( t! ) , 
n 

and for the following classes there holds 
that 

lilA: ( s~) , ( t 'r) are weakly equivalent 

llln: (s~),(t~) are weakly equivalent 

( s!> , ( t !> are essentially equiva-

lllc: 
lent 

( s'), ( t') are weakly equivalent n n 
and there are decompositions 

( s~) = ( a
0

) u ( b
0

) , 

(t!) =(c
0
)u(d

0
), 

and subsequences 
(u 0 )-:::(s~). (v 0)':(t~) 

and suitable monotone mappings a,r 

of N onto N such that 
( a ) . ( c: ) are equivalent n n 

fb ),(u") =(~ ) are equivalent ~ n n n 

(d ),(v') =(v) are equivalent. 
n • n n 

Before this Theorem will be proved we state 
the following remark. 
Remark 4: i) The condition for case IIIC 
is much more complicated because of the 
following fact: though we have the same 
simple situation as in case IIIB we can 
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obtain the associated conditio~ only after 
a sui table reduction of Do and ..Do. This is 
the reason for the mentioned decomposition 
and for the choice of the subsequences (u ) 

n and (v) .ii) Theorems 2 and 3 give us now n . 
(in case D = D' ) a complete description 
of the structure of domains of closed ope
rators by certain equivalence classes of se
quences of naturals. 
Proof of Theorem 3: 

The weak equivalence of(s') and (t') will 
n n 

be proved at the end. We remark further that 
it is enough to prove the theorem only for 
the case D = D', because the general case can 
easily be obtained from this one. 

As usual, we regard the sequences (s ) , 
(s'0 ) ··' (s~)- and (t 0 ) , (t'0 ), (t~) .The The~rem 
of Kothe gives 

s 
cl~ n ~c2 

trr{n) 
( *) 

IIIB: 

IIIC: 
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If in the numerator of (*) the ele
ments (s~) stand then we have only 
a finite number of the ~lements (t~ 
in the denomi'nator and conversely~ 
if in '!;he numerator the elements ( s~) 
stand, then in the denominator we 
have only a finite number of the ele
ments (t~) because otherwise we would 
obtain a contradiction with the 
assumption that D0 is maximal re
duced. But these considerations lead 
immediately to the essential equi
valence of the sequences ( s ~) and ( t~) 
If in the numerator of ( *) there 
stand the( s~l, then not only elements 
of ( t-;..) , can be in the denominator 

because from this we would obtain that 
D0 could be completely reduced. There
fore we have the following decompo
sition of ( s:>: {s:> =(arJu(b 0 ) such that 
the{a0 ) correspond to the elements of 
(s:) which stand in(*) together with 
elements of ( t~). The ( b

0
) correspond to 

those elements of(sg) which stand in 
( *) together with elements of ( t~). 
Thus, the decomposition of(sg) indu
ces a corresponding decomposition of 
( t 

0
): ( t

0
) = ( c ) u ( d ) in a similar n n n n 

way. Repeating some considerations of 
the proof of Proposition 4 we arrive 
at the desired result:(a 0 )and (c

0
) 

are equivalent and (b 0 ),(d 0 ) are equi
valent to suitable sequences (uri) , 
(v.j) resp. with (u 0 ) c (s'

0
) ,(v

0
) c(t~). 

Now we come to the proof of IIIA: 

Let M n = I s i : s i = n I , N0 = I ti : ti = n I . 

Again, by the Theorem of Kothe we have 

sn 
ct.,;_ ~c2, 

t 
1T (D) 

tn 
Dl ~ ~ D2. 

s 
rr-1( n) 

Hence it follows that 
kn 

s i ~ M0 , • then t 17 (i) ~ u N j, k 0 < "", 
j=l 

fn 

ti f: N n ' then s 
1 

f: u Mi, f < "". 
rr-(i) j=l 0 

{1) 

(2) 
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This can be expressed as follows: to anysj 
there corresponds an index-set Ai such that, 
by the multivalued mapping, whlch is indu
ced from (1) (i.e., sn __, t7T(n) ) to (si) .... (ti), 
to the element sk there correspond the 
elements t j with j ~;: A k (Analogously, we 
could regard the inverse mapping ( t'i) __, ( s'i ) ) . 
By using these notations we construct by 
induction the desired equivalent sequence 
(s'i) and(t'i) as follows: Let kt-=maxA 1 . 
Then the first k 1 elements of ( t j) are all 
equal tot; and the first k 1 elements of 
( " ' ) ' ' s i are: s 1 , ... , s k 

1 
• A " 

Now suppose that the sequences (sj),(tj) 
are constructed up to the index N and let 

8' =s', i'==t'. 
N j N m 

Now we regard sj+ 1 and Ai+ 1. If we put 
k i + 1 =max A i+ 1 then there can arise three cases: 

1) ki+1 ~ m, 2) kj+ 1 = m, 3) kj+t>m. 

In these cases one continues the sequences 
in the following way: (~'i), (t;) 

ad 1) ~~ + 1 = sj + 1 , 

ad 2) ~~ + 1= sj + 1, 

" t , = t' 
N + 1 m 

t~ + 1 = t ~ 
ad 3) .A, , A, , 

s N + 1 = 8 
j + I ' "' ' s N + (k. - m ) = 8 j + 1 ' 

J +I 
t N + 1 = t~+ t• .. · , t N + { k . m > = t i. . · 

J+l J + 1 

Now we show that by means of such a defini
tion we obtain equivalent sequences with 
the same constants as in (1) and this will 
complete the proof. We prove this according 
to the three cases. 
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ad 1. :{f kj + 1 < m, then by definition of A J + 1 
it follows that 

C < sj + 1 < C . 
1- t' - 2 

k j + 1 

Consequently, because ( t~) 
increasing, 

s; + 1 
__::....__ < c 2· 

t'm -

is monotone 

On the other hand, there must be an s'h with 
h < j + 1 such that 

C / 
8 h I"" -t-, . and therefore also C 1 ~ 

s: 
_1_±1 

t' m 

ad 2. Immediately from the definition of 
A J + 1 Jt follows that 

( . .· j + I / (' 
I .::.. t' .::.. · 2 · 

m 

m 

ad 3. Let kj+ 1>m. At first we remark that 
therefore 

C I S 
sj + I 

:::: c2 
t k. I 

J + 
sj +I But this means that c1::: for all 

t '. 
1 

2: kj+ I . i.e. , 

Ct:.:: 
sj + I 

' .... (l :: 
sj + I 

t' m + 1 t' 
k j + 1 

To prove the other inequality (i.e., ~ C 2 ) 
we remark that for the elements t~ with 
m < n:::: k j + 1 two· cases are possible: a) n ~;:Ai+I> 
then there is nothing to prove. b)n~Aq 

s' 
but then we have _q_ < C 2 , 

, t' -s. 1 n 
and consequently 1 ~ ~ C2 

t n 

with q > j + 

q > j + 1 as 

desired. 
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Obviously, the case n ~ Ap , p <j + 1 is 
excluded by construction. By tpis the proof 
of the Theorem is completed. The other part 
of the proof is simple therefore omittedQ.E.D. 

From Theorems 2 and 3 we see that in any 
class I, ..• ,IIIC each class D of equivalent 
domains of closed operators is characterized 
by one (class I,II,IIIA) or two (class IIIB, 
IIIc) classes of sequences. Only for diffe
rent classes there are used different notions 
of equivalence. 

Therefore we can write more precisely: 

D ~ Ia, 

i5 ~ nf3, 
~A -...A -...A 

D = IliA , D = III 8 s:- c, D = III c h f.L' resp. ,,y 'u,~ ' ' resp. 

and the indices a, {3, y and so on stand for 
equivalence classes of sequences of naturals 
described in Theorems 2 and 3. We also write 
as usual Dr;;; Ia and so on. 
Remark 5: In the set of equivalence classes 
jj a semi-order ca_!l be intr<2duced: D 1 ~ jj 2 
iff there are D 1~ D1 , D 2 ~ D2 with D 1 c D2 . 

By applying this semi-order we can obtain 
much more information about the structure 
of domains and also about some "pathologies" 
of classes II and III. Because of shortage of 
place we do not give details of these con
siderations (cf ./6 I ) . 

3. ELEMENTS OF A FUNCTIONAL CALCULUS 
FOR DOMAINS OF CLOSED OPERATORS 

This short section deals with some remarks 
about a "functional calculus" for domains of 
closed operators. 
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As is known, 

If S,T are two self-adjoint operators 

on D then D (Sa) = D ( T a) for 0 ~ a .:;_ 1. 

In general, this statement is false for a> 1 

even if S, T are strictly positive. There-

fore in general one cannot speak about the 

"square" D 2 of a doil!.ain D, and so on. 
But for the classes D one can give a preci-
se definition of a function f( D) of : 
a class of domains for a suitable set of 
functions f. 
Definition 4 

Let f be a function from R in R which is 
positive for positive x r;;; R. f is called 
admissible if f preserves the equivalence, 
i.e., if from (a 0 ) -(b 0 ) l[f(a 0 )[!-l!f(b 0 )[! 
follows. 

It can easily be seen that an admissible 
function also preserves the other types of 
equivalence. Now we give the definition of 
the functional calculus. 
Definition 5 (functional calculus) 

Let f be admissible and o ~ I a ( r;;; II f3, r;;; IIIA,y• 
~ III B, B, f , r;;; III c, ,\ , f.L resp.) Then by f( D) we 
mean the following classes of domains: 
Ilr<a>I(Illf(f3ll•···· IIIc,lr<Al 1. [f(f.Lll resp.) where 
J'f ( p) I means II f ( s n ) ll , , ( s n) ~ p , and so 
on. 

One can easily give examples of admis
sible functions. A rather general case is 
the following: 

Let f be monotone and positive 
for positive x.If for any sequence 
( b n) , b 0 > 0 , b n -> oo f( C b 0 ) ::; De · f( b0 ) 

for all C>O then f is admissible. 
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We omit the proof for this statement which 
says that, for example, all pohynomials, 
log and functions formed of these in a sui
table way are admissible functions. An 
example for a function which is not admis
sible is given by ex_. O!J. the othe_r hand-! 
it is possible that 0 1 -f. D 2 but f(D 1 ) =f(D 2 ) 

It holds, for example, for f( x) =log x . 
It can easily be seen that the functional 

calculus has the following properties 

(i) if h(x) =f(x)+g(x), then h(D) = f(D)+g(D) 

( ii) if h ( x) =A· f( x), then h ( D) = f( D) 
(iii) if h(x) =f(g(x)), then h(D) = f(g(D)) 

It seems natural to make the following 
convention: if_f is bounded tunction we put 

f(D) = H for all D . 
Up to now we have not yet given a justifica
tion of the functional calculus. This is 
done by the following proposition. 
Proposition 5 

Let D ~ i5 , S = S* ;;: I a positive selfad-
joint operator on D f an admissible functi-
on. If f(S) exists, then D (f( S)) ~ f( D ) . 
Proof: 

By using the spectral representation of 
one can construct a diagonal operator T 
on D such that D ( f( T) ) - D ( f( S) ) .Therefore 
f ( D ) ~ D ( f( S) ) . Q.E.D. 
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