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1. Introduction 

In the quantization procedure it is conventional to 
treat gravity as a variant of the gauge field theory 1 • 213 
In the present note another analogy ohiral dynamics, 
is used for covariant quantization of the gravitational field. 
Aa has been shown 4 , the gravitational field theory is the 
theory of spontaneous breaking of affine and conformal 
symmetries like that the ohiral dynamics is the theory of 
spontaneous breaking of the chiral symmetry. It allows one 
to formulate perturbation theory with the most simple reduction 
properties. In the ohiral dynamics, such a perturbation theor,r 5,6,7 simplifies considerably the calculation technique and 
is qUite suitable for the use of regularization methods 8 •9 
based on summation of certain diagrams. 

To make the 

the eimple A 'f" 
statement of the problem more clear, consider 

theocy. Together with the). f'~ Lagrangian 
there also exists a lot of equivalent on the mass shell 
Lagrangians obtained by the transformations 

:fd'fM I 
.f(C'/' 1 ' (1) 

Constructive methods to fulfil the eqUivalence theorem are rearrangements of matrix elements lo called reductions lo 
( or contractions 5 ). These reductions consist in 
transferring the vertex derivatives from one line to another 
and in reducing certain propagators to d.- functions. 
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Consideration of all possible reductions after the change 

of variables (1) is eqUivalent to the inverse transition 

to the ).'f'1 Lagrangian in terms of matrix elements. 

The latter Lagrangian does not contain derivatives and, 

accordingly, perturbation theory has the most simple reduction 

properties. 

A.:3 has been shown in refs. 10 • 5•6 , an analog of the }..tpf 
Lagrangian for nonlinear realization of the ohiral symmetry 

is a Lagrangian to which there correspond the normal coordina-

tes ( along geodesics) in the Goldstone field space 10 Here, 

to separate the fields into classical ( background) and quantum 

ones the use should be 

the given curved space 

made of the summation of vectors in 

5, 6 • For instance, for the ohiral 

SU(2)x SU(2) theory the Goldstone field ~ace is the space 

of constant curvature and the summation ofveotors is a displa­

cement of the coordinate origtn on the sphere, that corresponds 

to the chiral transformation of quantum fields with parameters 

of classical fields. For the latter, the coordinates may not 

be fixed and in this sense the constructed perturbation theory 

is covariant. 

The geometry of the Goldstone field S})ace is det ennined b;r 

the dynamical 1roup algebra. Standard group methods exist for 

constructing the normal co ordinates 10 given at an 

arbitrQX7 point of the apaoe 6 

In the })resent note the group methods of constructing 

Lagrangians with the simplest reduction properties 6 are 

4 

applied to the gravity theory as the theory of the dynamical 

affine symmetry. 4 
In sect. 2 the main resUlts of paper 4 are presented and 

the role of general coordinate transformations is ascertained. 

In sect. J the covariant perturbation theor,y is formulated 

in terms of the Cartan forms. 

2. Classical Theory 

In paper 4 it has 8een shown that the group of all linear 

transformations in a four-dimensional space 

A(4)= R@ L(4)R) 

may be the starting dynamical group of &ravity theory. Its 

aJ.gebra consists of generators of the torentz group, L .,I"Y 

generators of tll e a.:f'fine transformations R~ v , and those 

ot translations ~ 

f[~v/_J~]= ~J Lvr- ~rLY_,P- (r' +-> v) 

J [ L;.v, R_rr] = ~!Rv~ t ~,..~R'U' - (;• ... ~J 

f{f\n ,R.f1'J = ~1 Lc~ + ~ .-L.f" '"('"' ~ v) 

1 [ 4--v) f} 1 = ~JP, - s"J'r;.. 

: [~v)&l ~ ~~Pv + s1~ 
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We consider the nonlinear transformations in the coset 
space A (4)/'[ which parameters are the coordinates ~ 
and ten Goldstone fields, ~Y - gravitons, The invariants 
with respect to the linear transformations with constant 
parameters are constructed with the help of the Ca.rtan forms: 

c-tdc; ~i[u;r,l)e 'fuf, {dJR/', +f<-<;.~(dJ~, 7 

f 
U) 

,Px 'h " 
c: = e e> """"' . 

(J) 

(4) 

The form 

fields h • and 

definee the covariant differential of 
p L 

W 
1 

W are used to define the covariant 
differentiation of fields ~ transforming by representa-
tions of the Lorentz group with matrices generators ~Y 

\7. Lf1 = 
' 

;}Jif-
wp 

" 
JJ '~' = ( d + i c.;.~ ML;..) 0 

In what follows, the field Lp is understood to be a 
spinor field only. Let us find explicitly the Cartan forme 

(5) 

for exponential parametrization (4) that corresponds to the 
choice of norma.l coordinates in the ten-dimensional space ~ .... 
Instering into (J) the parameter t through the change h....,. fj, J 

differentiating both sides of (4) with respect to t, and using 
the commutation relations (2) we obtain the equations: 

6 

L u./ (ci )~ h'"v w: (d) 
3t- /"' / 

w:ML~ J"? 

__f--~v(d):tliy.,-/,M],W1 v(d)+~ 6 (d)hJv · u.j..,vfd)) =0 ut / / 1 · It ~o 

w:v = Wr/'v;(d) "j(~v • W~) 
(6) 

L. - I ( w-"'" - wc,...vJ = T <..JI"v- w'/") 
Solutions to the.se equations a.re tht~ expre.s.stons 

( at t•l): 

. - i 
w;(d)= ~v d)(,. 

. !, ) 
~v=(e ~" 

I 
~vi <I)~ '/-a d~•v 

(7) 

<;: = (<>-h~v 

The invariant elements of length and volume are constructed 
I' on the basis of the Cartan forms W • Accordingly, we have 4 

d < P P_a d"'cl" S .-: WA W~ - d/' v · .\ X 

j/' v " ~I t, y d v = d~,ttd ;X 

The requirement of minimum with in respect to the number of 
derivatives does not fix uniquely the theory because the 
transformation properties of the covariant derivative (5) 
do not change if one adds several terms of the same order 
of deriva.tive with arbitrary coefficients c.., f C1 J c3 
v, 11 = ~ i" ' 2L v..; " (0 c, (1) L "'. 1-' ,.--· , I f /"" 

(8) 

(9) \?v,> "'w.,.,;(~) .-c,[Wrv,/~)- w~,,(&,)] + 

+ C, { ~' W;;(J,) - S,, ~.<.'1,(5-J ] + e, { f,.; W(;t;fD,) - S rAU/;' u(~,J]; 
JA:2";:d~ U}.,(j,) = ~-; J, -z-,v 
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As has been shown in paper 4 , the parameters c c1,c:2,1 
are uniquely defined by the requirement that the theory be 
simultaneously corresponding to the nonlinear realization 
of the conformal group 

c, = -1 J c,; {'J; 0 . (10) 

ThiS requirement leads to the tensor field theory which 
equations coincide with the Einstein ones. 

In this note we want to indicate that the ambiguity of the 
theory of nonlinear affine realization may be removed by 
requiring that in interactions of the tensor Goldstone 
field there be only the particle with sPin two. The 1nteraot1ou 
of the particle with spin one is completely ruled out 
by the invariance of Lagrangian with respect to the gauge 
transformations in the coset space, i.e.,with respect 
to the affine transformations with a parameter being a vector 
field gradient c/'t (x.} 

. b.;v R 
, , .1'" e 

e -
d c.(•!R 
~..I'" 2 

These transformations with ('~ (x) 
to the transformations of coordinates 

X ..I' -4 X" -t- <;;. (x) 

8 

e 
h.A R.f 
2 

(11) 

infinitesimal correspond 

(l :2) 

--·----------------

Provided the quantity ~~A (G,C1,f1 )in transformed undt:r 

transformations (Jl) ltke under con.-,tant tran:<~formattons, 

we obtain the values of coeffid.ents ('J c2 c] . ' l.n (10) 

leading to the Einstein theory. Transformations (11), (12) 

coincide with eeneral ooordinate orJes wh:l.ch in the giver1 
approach aoq_u1r-e a s!rr:pl e ph,ysloal and geometrical mean1ng 

as was mentioned aOOye. A oova:rtant fo.rm for the Goldstone 

field$ J~~,~ ma,y be fourJd by nonsiderlng the comrrmtato:r 

of covariant derivatives for any field Lj.l. (-'<) "~ 
• 4' 

("). '}- ~ \3.) "t "' l Rr',> j 1/"",. 

The contraction R. = R./1.,; ,.u Jl 
. ' ls the scalar relative 

to the affine group. To get a full coincidence with standard 

defin~tions of gravity theory, one needs to introduce, 
by means of ~v , the linearly tran.sfo:rm:tng quantities 

with spin integer, for ingtancc: 

A -= ~_;;- c;,< /" 2) 1>..,4- = z-,., ~/ ll;d2";) tl-,) = (0. A/' - !; }. A· , 
/" 1 

where f:~ are the Christoffel symbols. The quantities "- 6 
8)'V (8) f;..l' and R. are connected w:1 th each 

other by usual formulae of the Einstein gravity theory. The 
minimal interaction is described qy the action 

S(h,'t'}:: fdLiet~[tJ'I','5-'f)+ (R]. 

• 

(lJ) 



Here f..
0 
(~ ~ 'fl) is the Lagrangian of free fields, LjJ ~ 

F-::-/k;;; .. t -toi:irev; J< is the Newton constant. The fields 
~v are dimensionless and related to the usual dimensional 

fields j., • h d = F h 

J, !{uantum T~ 

We will proceed from the generating functional for the 
Green functions written in the form of the continual integral 
( see the review of Faddeev and Popov 1 ) 

z(:J;'f)~ J.:fn d~ (xJn s(f(hrv))IJ/h)e,pf t(h, 'f)' 
fV J_,N.>J X .; ~ 

(14) 

+ fc>~ ~v i;,.v}, 
where N is the normalization, J -,... the source, j(h)= 0-
the equation fixing the gauge, .d.,- (J,) - the Faddeev-Popov 
determinant, 

fields if 
S'(h. '1') is the action fWlction OJ ) • The 

can be treated, without loss of generality, 
to be classical. The quantity ~f (J,) is calculated by the 
formula 1 

Llf (h). fn dC,.Jx) s(f(hc(•J))"' 1' _.., 
(15) ' 

where c is the general coordinate transformation (11),(12). 
In a quaisclassical expansion of the generating functional 

the following change of integration variables 
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--··---· . ·-··· .... ·~·-··········""'··=-· =;::;::.._ __ _ 

~" -"' t. v +- ly..; (16) 

is conventional. In this way one extracts the classical 
(background) fields ~.; 
of motion 

obeying the classical equations 

LJ' (<f If') 
. s~" - - :;., v (17) 

and the •quantWD" fields ~ tJ over which one integrates. 
In paper 6 , where the nonlinear realizations for dynami-

cal symmetries {j of the oh1ral type were stud! cd, 1 t 
has been shown that tor constructing Lag~angians with the 
simplest reduction properties it is necessary to separate 
fields into the classical and quantum ones in the coset space 
C /H , where H is the subgroup of transformations leaving 
vacuum invariant. The analogous separation of variables l.f' 
and J, in the gravity theory 

e
<!,«.Pfl.. e'·<P,.•R e'""'R 2 J" ~ 2 ,.... :z •)l 

(18) 

defines the system of normal coordinates in the space of 
Goldstone fields h with the coordinate origin at the 
point tp • Transformation (18) is a generalization of the 
summation of vectors (16) for a curved space 

~- ..... 'tr,C+-)~" 
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l.ike in the case (16), the determinant of this transfonna.-
:ion equals unity 4 'llllls, the e,enerating ftmcttona.l (14) 
'!:a\-:e3 the :·ann 

--:! (J, 'i') =- }(; fr?, d ~.,(•! ~7 S(f(i'i+lh)) Af('i'r,,h) · 

up{· S('f'!-rJh, (!') 'j d'x :j;.. ('5-• +h,...-J}. 

0re tt hc\e> >,~en cons.l.d~:rc·(t that o_n the man~ shell the 
i! q ll<c_',] ~ t '/ l( .l 

·,l.' 

'' ·) fi<.(>-r'IJ , I . ; -' 
I ~ J(f•h; 

G'' ' I I form of tbe o.ctton ;./(4'(1}1?) -F), · l·•ol~ the ~xrllclt 

:;uff·~;:..LF.::!d. to find new Carta..•'. fo:t'T.3 by 

~ '' ·;0 r 1.-:. "L ·.:,l0 (.;) l"\l):i c j~· 

f 
-'d'(1.:: 

-- ,. 
' '/J)p I/· ''II/>< ·/ 

' 

,· ·--R I JR -/- ; .~i L ld)L -- t•..l..,. ( d ''..«!/ -~}- lLI,.uv t I -..,... ,, J./1 / ·"-/ / 

p ,· . G' = e'x er'-Pa_.R,; ef-h,..v!<_~,, 

Making the substitution rlth parameter t h ~ th 

(19) 

and differentiating both sides of eq. (10) With respect to t 

x) For renormalization of wave 
variables 1n the considered 

functions in changing 
generating functional, see ref. 11 

12 
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we derive the differential equations for the Cartan forms 
which are the same as in the classical case (6) but with 
nonzero boundarY" conditions which are the Cartan forms of 
olasaloal fields p 
l. -P()-; -~). t;/(,;JI.~u;.,M"7-•Mdx, ~t U.:,.. "-ry..,w,,ct ; ./" '~·o . 

(20) 
? - . . - il - d'h . W IIIJI =?: -J ('l'}ctr-.. ('1>} ih' CA}.v(cf).~d!y.,-,.~W;/<II'H9-/ I ~Of /"' l(,o /'Z 

-R w,..,; = wr,..•J 
-L --OV_,.v -= Wc_pvJ 

Equations (20) describe the parallel displacement 
of orthogonal moving 10-hedral along geodesics of the space of 
the Goldstone fields from the point ~ 
and these are called fundamental 12 

to the JX>int 

The solution of these equations at t=l is 

w; (a}= [e ~ 1:(-P)Z,., dx" 

w_,..."{d)= [e-\-1('1')~~ d[tt.P)eh]lv 

where [ ir B'J,.., = *-"" ~ 8 l V • 

h 

(21) 

In What follows the bar above will stand for the quantities 
wh1oh simultaneously depend on ~ and h 

As is shown in paper 6 , !orme (7) and (21) have the 
simplest reduction properties due to their oonstraction by 
means of the dynamical group struoture oonstants ant1symmetric 
m lower indices. 
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Frow (?.1) it follmrs tAAt the tra.n2formed metric tensor 

tnks:s th2 form 

j-,.,('I'(,Jh) :{t('i')l?~ht(o')~~v 

,:('(N•Jh) -· (t-\'·{!e-J.t,t-
1
('1')]/''' 

(22) 

Next, we wrtte tho ti .. ar:: Oil for spinor and t:;ravita.ticnal fields 

J!(f'!ril', 'f•)~Jd~ M,e'"h{R ;- tp,~ ~ 1'- ('1 ij 'f] 
- 3. -- ··- - - ·-
R = 2,.. ~v,v + Y.v,l V-t,l'- ~I',"' Vv!, II 

\71./J~J.'P ;-Lo \7 hi 
.A ..-. y D_,..«V~JJ1 ,.\T ) 

'?-; = ~'c/-vJ dJ- qv>./~)+wyo1 (~,) 
'i =[e-"r-1('1'11 'J /" /'t .r 

G~~c (3 )-= {t'-hl:- 1('1'}] ~ {l:(<f')t'A), -~ 
./A )Ml> •V 

- ( -'; ~ (c>'J .,. lp-') ["<--'f'f/h:(</'1] f?hJ' - e /;.'}. ,-~. lv 1,_1 ./"'/' -1. ?l~i(C vV 

Lagranginns for fields With integer 

by mea!ls 'Jf the Christoffel symbols 

The cunatt<re J and Chr:1.stoffel 

spins are constructed 
-.J' 

_;;.· 
11 

in a standard 

SJ'Ulbols t"v.J' are 

( 2J) 

wa.y. 

cor<-"lectcd ViHh metric tensor (22) through the usual fonnulae 

I( 

Jv zo= t"'(J. fotv "()~ h - 1• £-..J 

l~ r" ['Jv_;:;- ?t t::' t t/y~. -fi:;;. J. 

Formulae (22), (2J) are the main results of this paper. 

To obtain the generating functional directly !or the 

S-matrix elements we use a prescription proposed 

in papers 13 , 14. 

. Let ~0 {l.fc) be the free aotion quadratic in YJv 
and the olassical fields lf obey the equation of motion 

s ,f'( <P If") - ts'.(<t:,) 
S<.p - d</. 

(24) 

Then the generating functional of the S-matrix ha.s the form 
14 

l/<£ If l,j{/{7 4h fxJnJ~l<~Jgr'(hJ-f.)!J(~ f)-"J<t {J'!<~wJ., 4")? . 
( . "; I ,, JJ,(tJ X i* X J 

'' ' 
Here .i),(<P}g I''(~} is the covariant derivative of ~~-v(h) 
with the Christoffel symbols dependent on the classical 

fields .P 

.1(h <f)· fnd~(xJ!1 s1J;./'f)8"""(i,')-r") =1 . 
J <,.Ac/ J( 

The coefficient functions of the expansion of the functional 2 

in ~ ooincide w1 th those of the expansion of the s~trix 

over the normal products of asymptotical fields. 
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~.£1~!2!! 

We have formulated the perturbation theory for gravity, 

where the choice of fundamental fields and their separation, 

in tbe generating functional, into classical (background) 

and qu~~tum fields are defined by geometry of the geodesics of 

the space of gravitational fields. 

The choice of normal coordinates of this space and the 

separation of fields along geodesics lead to the perturbation 

theory with the simplest reduction properties, therefore the 

corresponding Lagrangian is an analog of the A 'f'-' lagrangian 

among all equivalent on the mass shell Lagrangian~. For the 

choice of an arbitrary system of coordtnates tl!e consideration 

of all possible reductions of diagrams on the mass shell 

is equivalent to the covariant procedure of transition from 

this coordinate system to the normal one. 

For nonlinear realizations ofthe ch.1ra.l symmetry such 

e.n approach leads to the perturbation theory, which is the most 

simple for calculations, especially, when one uses the regula­

rizations connected ~~th sUEmation of certain diagrams, the 

summation being explicitly covariant with respect to the 

classical fields. 

The author is sincerely grateful to D.I.Blokb!ntsev, 

n.v.Volkov, M.K.Volkov, R.E.Kallosh and L.D.Faddecv for useful 

discusslons and especially to A..B.Borisov ond v.I.Ogievetsky 

for valuable advices. 
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