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1. Introduction

In the quantization brocedure 1t 1s conventional to
treat gravity as a varlant of the gauge fielg theory 1,2,3 .
In the present note another analogy chiral dynamics,

13 used for covardiant quantization of the gravitational field,
As has been shown * , the gravitational fie1a theory 1s the
theory of spontaneous breaking of affine and conformal
symmetries like that the ohiral dynamies is the theory of
spontaneous breaking of the chiral symmetry. It allows one
to formulate perturbation theory with the most simple reduction
properties. In the ghiral dynenics, such a rerturbation theory
23647 simplifies considerably the calcuwlation techrique and
is quite sultable for the use of regularization methods 89
based on summgtion of certain diagrams,

To make the astatement of the problem more ¢lear, oconsider
the aimple A Y" theory. Together with the A 7’9 Lagrangian
there also exists a lot of equivalent on the mass shell
Lagranglians obtained by the transformations

y=¥309) e 1. @

Conatructive methods to fulfil the equivalence theorem
are rearrangements of matrix elements 10 called reductions 1o
( or contractions > Y. These reductions consist in
transferring the vertex derivatives from ome line to another

and in reduelng certain propagators to 51- functions,
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Conslderation of all possible reductions after the change
of variables (1) 1s equivalent to the inverse transition
to the /\':P" Lagranglan 1in terms of matrix el ements,
The latter Lagranglan does not contaln derivatives and,
aceordingly, perturbation theory has the most simple reduction
propertles,

A3 has been shown in refs, 10,5,8 y an analeg of the ,\‘f’
lagranglan for nonlinear realization of the chiral symmetry
is a Lagranglan to which there correspond the normal coordina—
tes ( along geodesics) 1n the Goldstone field 3pace 10 « Here,
to separate ths fields into classical ( background) and quantum
ones the use should be made of the summation of vectors in
the glven curved space 5,6 « For instanoce, for the ohiral
SU(2)x sU(2) theory the Goldstone field space 1s the spaoce
of constant ourvature and the summation of veotors is a displa-~
cement of the ooordinate origln on the sphere, that corresponds
to the chiral transformation of quantum fields with parameters
of classloal filelds, For the latter, the coordinates may not
be fixed and ln this sense the constructed perturbation theory
i3 covariant,

The geometry of the Goldstone field space 1s determined Yy
the dynamical group algebra. Standard group methods exist for

constructing the normal coordinates 10 given at an

arbitrary point of the space 6 .
In the present note the group methods of constructing

Lagrangians with the simplest reduction properties 6 are

applied to the gravity theory as the theory of the dynamical
affine symmetry. 4
In sect. 2 the main resitlts of paper 4 are presented and
the role of general coordinate tranaformations 1s ascertalned.
In sect. 3 the covariant perturbation theory 1s formulated

in terms of the Cartan forms.

2. Clasggical Theory

In paper 4 it has been shown that the group of all linear

transformations 1n a four—-di.mensio'na.l'space
Als)= ROILAR)

may be the starting dynamical group of gravity theory. Its
algebra consists of generators of the Lorentz grouy, Zt/uy
generators of the afflne transformations R v s and those

of translatlions 8.
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We consider the nonlinear transformations in the coset
space A(")A which parameters are the coordinates A;u
and ten Goldstone fields, l’l/” - gravitonas, The invariants
with respect to the linear transformations with constant
parameters are constructed with the help of the Cartan forms:

671 G =iWltR  F s (DR, ¢ fl L]
»

v = o othgRag
C‘r"@ E) (4)

R
The form defines the covariant differential of
! L .
fields h y and w”’,w are used to define the covariant
differentiation of fields 4~ tranaforming by representa-

4
tlons of the Lorentz group with matrices generators L/“V

G4 2a DR (e s ulGLh, )4

A

(5)

In what follows, the field LP 1a understood to be a
spinor field only., Let us find explicitly ths Cartan forms
for exponential pmrametrization (4) that corresponds to the

cholce of normal coordinates in the ten—dimensional space h/qv'

Instering into (3) the parameter [ through the change fn-sﬂ-.)

differentiating both sides of (4) with respeot to ty and using
the commutation relations (2) we obtain the equations:

. P =
%%Pfd):j}“vap(d) ;A (d)/:-_'
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(6)
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Solutlcons to these equations are the exprezssions
{ at t=l):
Pegy=0. dx ¢ Ji(d)= d?«w
U (d)=Suydx, | .

- h -t Sk
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The invariant elements of length md volume are constructed

K 4
on the basis of the Cartan forms W'r + Accordingly, we have
p
(/5 " g i ﬂdx
7 (8)
. ; f,
Juwz 8oy [ dVY = delld’s
The requirement of minimuwn with in respsot to the number of
derivatives does not fix uniquely the theery because the
trans formation properties of the covarlant derivative (%)
do not ohange if one adds several terms of the same order
of derivative with arbitrary coefficlents C", C1,%
+
vwé¥=3 ¥ t 3 lgwlj(c,,c‘,lgfﬁ/v 4
()
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As has been shown in paper * y the parameters C,) ¢, L6
are uniquely defined by the requirement that the theory be
simultaneously corresponding to the nonlinear realization

of the conformal group

C’l.;..! j‘ C'2=('J=0 . (o

This requirement leads to the tensor field theory which
equations colncide with the Einstein ones,

In this note we want to indicate that the ambiguity of the
theory of nonlinear affine realization may be removed by
requiring that in interaotions of the tensor Goldstone
field there be only the particle with spin two. The interaction
of the particle with spin one is complet ely ruled out
by the invariance of Lagrangian with respect to the gauge
transformations in the coset spacey, l.e.,with respeot
to the affine transformations with a raramet er being a vector
field gradient C.(x)

.hng ) .'Eagif?@ﬂd 552& ﬁ«ﬁ
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These traensformations with 0»65) infindtesimal correspond
to the transformations of ooordinates

%A —4,5& v-é; fx)

(12)

Provided the quantity \4% /(}‘C;,C,)ia transformed under
transformations (11) like under constant transformations,
we obtain the values of coefficlents (U‘G;’CJ in (10
leading to the Binstein theory., Transformations (11}, (12)
colucide with general aocordinate ones which in the given
approach acquire a slmple physlcal and geomatrical meanlng
as was mentioned above. A covariant form for the Goldstone
fields %ﬂu may be found by consldering the commutator

4
of oovariant derivatives for any field 4l(}) 4

. “H
(BG-%B ) = £ Ruvpplopy

The ocontraction R:: éiuv';4w is the scalar relative
to the affine group. To get a full colncldence with standard
definttions of gravity theory, one needs to introduce,

by means of ’gMV 3 the linearly transforming quantities

with spin integer, for inatance:

/1m a4 e
g (oA~ AT
D=ty (o5f )= (3 A= LA,
where [;; are the Christoffel symbols., The quantities
8y /7 é and R are connected with each
dpv A/

other by usual formulae of the Einstein gravity theory. The
minimal interaotion 1s described by the action

Sth )= (a4 dt[Z, (H54) + £R] .

(13)



Here J:o (%'924") 1s the Lagrangian of free flelds, 4"]

F=yk4r R ~)’0!‘9/"ei/; K 1s the Newton constant, The fields

}}“v. are dimensionless and related to the usual dimensional
fields /‘r.-f K }M=P}J

3+ Quantum Theory

¥e will proceed from the generating functional for the
Green functions written in the form af the continual integral
( see the review of Faddeev and Popov 1 )

25,10 [T h 15 enf 51,40

#J b,

where /V 1s the normalization, \Z“\, - the sourca,")(/}n):()-

the equatlon fixing the gauge, A{ (A) - the Faddeev-Popov
determinant, _S'(Aﬁ”) is the action function (3 ). The

(14>

fields ‘F can be treated, without loss of generality,
to be classical, The quantity A} (") is ecalculated by the

formula 1

T (x ;70} :i.
8,0)- 19600855 -

where C 1s the general coordinate transformation (11),(12).
In a qualsclassical expansion of the generating functional
the following change of integration variables

e e e S T T W R T T TR VT 06 5

Ty ~r ‘)3“‘) -+ é’“‘) (16)

i3 conventional, Ip this way one extracts the claassical

(background) Plelds ﬁw obeying the classical equations
of motion
8806 _ T (7
$ Py

and the "gquantum® fields l}uu over which one integrates.

In paper 6 y Where the nonlinear realizations for dynami-
cal symmetries @ of the chiral type were studied, 1t
has been shown that for construoting Lagz;a.ugians with the
simplest reduction properties it is necessary to separate
fields into the classical and quantum onesin the coset space
G"/H R where H 13 the subgroup of transformations leaving
vacuum invariant, The analogous separation of variables ¥
and }q in the gravity theory

- h
') L._._."fxékq‘
g9y, 0 TR 0T

(18)
e

defines the system of normal coordinates in the space of
Goldstone fields ;r with the coordinate origin at the
point ¥ ., Transformation (18) 1s a generalization of the

summation of vectors (16) for a surved space

h
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Like in the case (16), the determinant of this transforiwa—
tion equals untty 4 Thus, the generating functlonal (14)
takes the form
Z(7 ¢)=} [ /7 dh, rv// [ §(§(perp)) s (90rih) -
[ L’/c)‘
(0 # )}
.‘;Xf_-}(;y(f[‘?‘/’ﬂ ([U jd)l’ P\J /"’-/

Here 1t haos Yeen considercd that on the mass shell the

qual ity
WY L fwo )
i) < J(00)
(i
#) ’7
Letoos chtadin the exelloit Torm of the aotion ,«S/t’p()?
T sufficient bto find new Cortan forma by
inesrting {070 tnio {83 and CT-

o )
. i _,:{,r‘f = o ! ;,{J/O b uj (d)g y -f--‘-’;——u’;)r“v /d)é/“v
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faking the substitution with parameter t h s Zh
and differentiating both sides of eq. (10) with respect to ¢

x) For rencrmalization of wave funotions in changing

variables in the consldered generating functionsal, sese ref. i

we derive the differential equations for the Cartan forms
which are the same as in the classical cage (&) but with

nonzero boundary conditions which are the Cartan forms of

¢lassiocal fields

)z, )y,
Py i =P w/ﬁ/)/~.w/d).= NG,
() by 3, ) e
g ) O
D5 s dh [ 2 (¥
(FE— Q/)“v(q').:d‘ J ,.:,;‘02,(4/ *%B{d)"dl’l w / /‘Z
p —
W,Mu = W//(u)
w/:b = a)d[/u Vj .
Equations (20) desoribe the parallel displacement
of orthogonal moving 10-hedral along geodesics of the space of
the Goldstone fields from the point ¥  to the point A
and these are called fundamental 12 .
The solution of these equations at t=1 1s
- ~ A ;
ol a) = [€ e, dx, (20)

o fd)= [.e"’z"‘(«p)]/“a c/['t(\p)e"]”

where ['4'8] — */“383" .
In  what follows the bar above will stand for the gquantities
which simultaneously depend on ¥ and A .

4ds 1s shown in paper 6 s forms (7) and (21) have the
simplest reduction properties due to their constraction by
means of the dynamical group structure sonstants antisymmetric

N lower indices,



From {21) 1t follows that the transformed metrlc Lensor

g s (Fe0h )= [?(w) e?h z(w)]/ v

-2,
G (wen) < [ e

Next, we write the actloa for spinor and gravitatienal fields

(F(f-}f ‘/‘) fdxdﬁ(}@ }"‘)[}? *+ lf—' j’ Vi N.Cf_“gu]

§=2agﬁv'»vtﬂﬁﬂ %%”M%”
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Lagrangians for fields with integer spins are constructed

by means of the Christoffel symbols /:j’ irn a standard way.

The curvature K and Christoffel symbols L7 are

connacted with metric tensor (22) through the usual formulae

(22}

‘ (21

L5008 i)

= =7 = mPm S5 (24)
R=§40 0 = la) t Ld i —Lv 4 /.

Formulae (22), (23) are the main results of tkis paper.
To obtain the generating funotional direstly Zor the
S—matrix e¢lements we use a prescription proposed

in papers 13’14.

‘Let ,fo (%) be the free motion quadratic in Yo
and the classical fields Y obey the equation of motlon
sSe ) £84)
PR

Then the generating functional of the S—matrix ha; the form ld:

1l ) TS 10005 - [l 4.

3
Here og)d/‘f)g‘u /A) 13 the covariant derivative of C?!;wv(/?)
with the Christoffel symbols dependent on the classical
f1elds ¥

Bl49)- [ 9500 [1 5 (2l - ¢ = 2

The coefficient functions of the expansion of the functlonal &
in ‘ﬁ ooincide with thoge of the expansion of the S—makrrix
over the normal products of asymptotical flelds.



We have formulated the perturdation theory for gravity,
#here the cholce of fundamental fields and thelr separation,
in the generating functional, into classical (background)
and quantum fields are defined by geometry of the geodeslcs of
the space of gravitational fields,

The cholce of normal coordinates of this space and the
separation of fields along geodesics lead to the perturbation
theory with the simplest reduction properties, therefore the
corresponding Lagrangian 1s an analeg of tha A‘Pb lagrangian
among all equivalent on the mass shell Lagrangian?. For the
¢holce of an arbltrary system of coordinates the consilderation
of all possible reductions of diagrams on the mass shell
i3 equivalent to the covariant procedure of transition from
this coordinete system to the normal one.

For nonlinear realizatlions ofthe chiral symmetry such
an gpproach leads to the perturbation theory, which is the most
simple for calculatlons, especially, when one uses the regula-
rizations connected with summation of certailn diagrams, the
summation being expliciltly covariant with respect to the
classical fields.

The auther 1s sincerely grateful to D.I.Blckhintsev,
D.V.Volkov, M.K.Volkov, R.E,Kallesh ard L.D.Faddeev for useful

discusslions and especially to A,B.Borisov end V.I.Oglevetsky
for valuable advices.
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