СООБЩЕНИЯ
 OБbЕАИHEHHOTO
 ИНСТИТУТА
 ЯАЕРНЫX
 ИССАЕАОВАНИЙ

АУБНА

HADRONIC CURRENTS
IN THE INFINITE MOMENTUM FRAME

E2 - 8908

K.Toth*

HADRONIC CURRENTS
 IN THE INFINITE MOMENTUM FRAME

$S U M M A R Y$

I'he problem of the transformation propertios of hadronic (IME)
currents in the infinite momentum fremelis investigatedo a generai method is proposed to deal with the problem which is based upon the concept of group contraction. The two-dimengional ampecs of the IbF description are studied in detail, and the curreat matrix eloments of a thres-dimensional Poincaré covariant theory are reduced to those of a two-dimensional one. It is explicitly shown that the covariance group of the two-dimensioneal theary may either be a "non-relativistic" (Galilei) iroup, or a "relativistic" (Foincaré) one depending on the valuc of a puriuneter reminiscent of the light velocity ir the threedinensional theory. The value of this parameter cannot be determined by kinematical argunents. These results offer a natural geseralization $f f$ models which assume Galilean symmetry in the infinite monentum frame.

I. Intraduction

In thise paper we are going to study the transformation properties of local interaction currente in the infinite momentwn frame (IMF). There is no need for emphasizing tine importance of the commonly: used fact that all unknown dynamicel details about the matrix element of the electromagnetic current between, for example, pion states can be condensed into one invariant function of the momentum transfex, and the relation

$$
\begin{equation*}
\int d^{4} x e^{i q x}\langle p| J_{\mu}(x)\left|p^{\prime}\right\rangle=\left(p+p^{\prime}\right)_{\mu} F\left(q^{2}\right) \delta^{4}\left(p-p^{\prime}+q\right) \tag{I.1}
\end{equation*}
$$

can be deduced from the transformation properties of the states and the current. Since INF methods are quite useful in stadying many physical problems we have found it attractive to investigate the transformation properties of various quantities in the Ibif in order to be able to apply such powerful arguments as in (I.1). In a recent paper we examined such questions concerning the four-momentum and angular momentum tensors of a scalar field theory $/ 1 /$. In the present paper we want to deal with the transformatian properties in the Liw of currents integrated over the variable $z=\frac{1}{2}(z-t)$,

$$
\begin{equation*}
\int_{j} j_{\mu}\left(t, \underline{x}_{1} ; z\right) d z \tag{I.2}
\end{equation*}
$$

which are often called the "transverse currents" $/ 2,3 /$. Our investigations are motivated by the review paper of Kogat and

Susskind $/ 3 /$ in which the authors give a certain group-theoretical backeround of parton models. On the besis of some heuristically justified transformation properties of the current (I.2) in the lifif they give an elegant and compact derivation of the main features of deep-inelastic ep scattering. They emphagize the two-dimensional aspects of IVF theories and argue that a two-dimensional Gelilei group is the symetry group of these theorieg, the Galilean space being the transverse space, $\underline{x}_{1}=(x, y)$, and the Galilean "time" is obtained by a "rescaling" of the variable $t+z / 2,3 /$. Their argumentation for the Galilean symmetry has, beyond its intuitive beauty, two somewhat obscure pointa. One of them is the ambiguous role of z-boosts. In order to define the current in the Irif the infinite boost is followed by a change of the scale for lengths in the $\}$-direction. But this rescaling is not present in the case of succesaively applied "finite" z-boosts $/ 2,3 /$. The second point concerns "time" in the Ini. The transverse current (I.2) appears to be a fuaction only of \underline{x}_{1} in the IMF. Its "time dependence", and the "time" itaelf, can be defined by means of the"time translation operator" aftex the symunetry group in the TMP has been introduced. The procedure described in refs. 2 and 3 to obtalin the two-dimensional Galilei group is very much reminiscent of the contraction of the Poincaré group into a Gaillean subgroup. It is well-known that group contrabtion is not a unique procedure, therefore the ques-
tiod arlses whether the Galilean symmetry in the TMF is unique.
The purpose of this paper is to show that the definition of "relativistic" quantities is also possible in the Ivip, and on purely kinematical grounds the "non-relativistic" transformation properties of the trensverge current cannot be justified. The assumption of Galilean symmetry in the In.F may perhaps be supported by that it allows one to deduce many experimentally obser ved features of high energy collisions $/ 3 /$. It ig an interesting question whether these features mule out "relativistic" currents in the LMF.

In what follows we give a detailed deriyation of the transformation properties of "transverse currentis" in the IMP. Our method will be the contraction of the Poincare representations defined on the matrix clements of currents between physical states. The crucial steps of this method are the contraction of the Poincare group and the "contraction" of the representation space by mears of appropriatcly defined integrals of the above matrix elements. Unly after performing both purts of the programme we can deduce the transformation properties of the "transverse current" in the Ihs. In ject. II we summarise the basic concepts needed in the subsequent parts of the paper and formulate our programme for the $\mathrm{L}_{\mathrm{F}} \mathrm{F}$ description. In ject. III we aescribe contraction schemes of ihe Poincare group which we will be interested in. In sect.IV these contraction schemes
are used to construct representation spaces for the group obtaine by the contractions and the corresponding transformation rules are deduced for the "transverse currents" in the MF. In Sect.V. we apply the results to matrix elements between momentum eigenstates.

II. Formulation of the Mir problem

In general, wo shall be engaged in the properties of a scalar current $a(x) \equiv s\left(t, \underline{I}_{1}, z\right)$, hut none of the forthcoming conclusions depends on this choice. We shall assume that we are given all states, ϕ, of a physical system, the physical obeervailes being the matrix elements of $g(x)$ between these states:

$$
\begin{equation*}
f(x) \equiv f\left(t, x_{1}, z\right)^{\prime} \equiv\left(\phi_{\beta}, g(x) \phi_{1 \beta}\right) \tag{IIII}
\end{equation*}
$$

As usual, we assume that on the sates ϕ a unitary, irreducible representation of the Poincare group ie giver:

$$
\begin{equation*}
\mathrm{u}(a, \Lambda) \phi=\phi^{\prime}, \tag{III}
\end{equation*}
$$

$U\left(a_{1}, \Lambda\right) U\left(a_{2}, \Lambda_{2}\right) \phi=U\left(a_{1} \Lambda_{2}+a_{2}, \Lambda_{4} \Lambda_{2}\right) \quad$.
The relation between matrix element a given in two different Lorent reference frames comes from the principle of relativistic covariance, which says:

$$
\begin{equation*}
\left(U(a, \Lambda) \phi_{\beta}, \varepsilon(x) U(a, \Lambda) \phi_{\alpha}\right)=\left(\phi_{\beta}, \quad \theta(x \Lambda+a) \phi_{\alpha}\right) \tag{II.j}
\end{equation*}
$$

The relations (II.1-3) can be converted into a representation of the Poincare group on all functions $f(x)$, which are all matrix
elements of $g(x)$ between the stater q :

$$
\begin{equation*}
f(a, \Lambda) f(x)=f(x \Lambda+a), \tag{II.1}
\end{equation*}
$$

or, in the infinitesimal form:

$$
\begin{align*}
M^{\mu \nu} f(x) & =-i\left[x^{\mu} \frac{\partial}{\partial x_{\nu}}-x^{\nu} \frac{\partial}{\partial x_{\mu}}\right] f(x), \tag{II.5}\\
P^{\mu} f(x) & =-i \frac{\partial}{\partial x_{\mu}} f(x) . \tag{1I.6}
\end{align*}
$$

This representation corresponds to a scalar current and the relations (II.4-6) are to be compared with the usual operutor relationg:

$$
\begin{align*}
& U^{-1}(a, \Lambda) s(x) \cup(a, \Lambda)=s(x \Lambda+a) \tag{11.41}\\
& {\left[M^{\mu \nu}, s(x)\right]=-i\left[x^{\mu} \frac{\partial}{\partial x_{\nu}}-x^{\nu} \frac{\partial}{\partial x_{\mu}}\right] s(x),} \\
& {\left[P^{\mu}, s(x)\right]=-1 \frac{\partial}{\partial x_{\mu}} s(x)} \tag{11.6'}
\end{align*}
$$

The detailed properties, like unitarity, etc., of the representation (1I.4-6) depend very inuch on the operator $s(x)$. These properties will not be important in this paper. But we shall need the following properties of the functions $f(x)$:

1. They are infinitely differentiable with recpect to iny of their four variables;
2. Such serie:s like

$$
\begin{equation*}
T\left(e^{-i x G_{k}}\right) f(x) \equiv \sum_{n=0}^{\infty} \frac{1}{n!}(-i x)^{n} G_{k}^{n} f(x) \tag{JI.7}
\end{equation*}
$$

converge, G_{k} being any of the infinitecimal operators. These properties ancure that infinitesimal and finite group elements can be used on an equal footing.

It is clear that the representation (II.4-6) is reducible. Ne she 1.2 restrict ourselven to its irreducible perts proceeding in the following manner. We consider two fixed physical states $\phi_{\alpha}, \phi_{\beta}$, and define the irreducible set of functions $f_{\alpha \beta}(x ;(a, \Lambda))$ of x by

$$
\begin{equation*}
f_{\alpha \beta}(x ;(a, \Lambda)) \approx\left(\phi_{\beta}, s(x \Lambda+a) \phi_{\alpha}\right) \tag{1I.8}
\end{equation*}
$$

where all functions are enumerated when all elements (B, Λ) of the Poincaré group are enumerated. It is obvicas that an irreducible representation of the Paincare Eroup can be defined on thege functions, the representation being given by the same formulas (II.4-6) as previously. Let us remark that all information about this irreducible representation is involved in the two properties deacribed above and in the infinitesimal relations (II.5,6) spec.ifically applied to the function

$$
\begin{equation*}
E_{\alpha \beta}(x)=\left(\phi_{\beta}, s(x) \phi_{\alpha}\right) \tag{II.9}
\end{equation*}
$$

It is an important consequence of relativistic covariance that the same representation space as (II.8) erises from the functions

$$
\begin{equation*}
f_{\alpha \beta}^{\prime}(x ;(a, \Lambda)) \equiv\left(\phi_{\beta}^{\prime}, s(x \Lambda+a) \phi_{\alpha}^{\prime}\right), \tag{II.10}
\end{equation*}
$$

where $\phi_{\beta}^{\prime}=U\left\langle a^{\prime}, \Lambda^{\prime}\right) \phi_{\beta}, \quad \phi_{\alpha}^{\prime}=U\left(a^{\prime}, \Lambda^{\prime}\right) \phi_{\alpha}$, and $\left(a^{\prime}, \Lambda^{\prime}\right)$ is fixed. The relation between the functions ($X I, 8$) and (II.10) is as follows:

$$
\begin{equation*}
f_{\alpha \beta}^{\prime}(x ;(a, \Lambda))=T\left(a^{\prime}, \Lambda^{\prime}\right) f_{a \beta}\left(x ;\left(a^{\prime}, \Lambda^{\prime}\right)^{-1}(a, \Lambda)\left(a^{\prime}, \Lambda^{\prime}\right)\right) \tag{II.11}
\end{equation*}
$$

for every (a, Λ). The corresponding representations of the Poinceré group can also be simply related:
$f^{\prime}\left(a_{1}, \Lambda_{1}\right) f_{\alpha \beta}^{\prime}(x ;(a, \Lambda))=$
$=T\left(a^{\prime}, \Lambda^{\prime}\right) T\left\{\left(a^{\prime}, \Lambda^{\prime}\right)^{-1}\left(a_{1}, \Lambda_{1}\left(a^{\prime}, \Lambda^{\prime}\right)\right)^{x}\right.$

$$
x f_{\alpha \beta}\left(x ;\left(a^{\prime}, \Lambda^{\prime}\right)^{-1}(a, \Lambda)\left(a^{\prime}, \Lambda^{\prime}\right)\right),
$$

for every (a, Λ) and $\left(a_{1}, \Lambda_{1}\right)$. Especialiy, i.f we choose a z-boost $e^{-i \xi N_{3}}$ for (a^{\prime}, Λ), the ramad functions $f_{\alpha \beta}^{\prime}$ and operutors $I^{\prime \prime}$ give the description of the physical system, in comparison with the unprimed ones $f_{\alpha_{i} s}$ and T, in a moving reference frame. In the limit $\xi \rightarrow \infty$ we obtain the description in the Lif. In order to be able to specify the symmetry propertics of the theory in the Ih. one must discuss the following problems:

froblem I

We are to describe the group ariging from the limit

$$
\begin{equation*}
\lim _{\xi \rightarrow \infty}\left[e^{\left\{\xi N_{3}\right.}(a, \Lambda) e^{-i \xi N_{3}}\right]=\left(a, \Lambda \infty_{\infty} ;\right. \tag{II.13}
\end{equation*}
$$

Problem II

fe must specify all the functions

$$
\begin{gathered}
\lim _{\xi \rightarrow \infty} T\left(e^{-i \xi N_{3}}\right) T\left(e^{+i \xi N_{3}}(a, \Lambda) e^{-i \xi N_{3}}\right) f_{\alpha \beta}(x) \equiv \\
\equiv f_{\alpha \beta}^{\infty}\left(x ;(a, \Lambda)_{\infty}\right) ;
\end{gathered}
$$

Problem III

Finally, we must interpret the functions $f_{\alpha \beta}^{\infty}\left(x_{i}(a, \Lambda)_{\infty}\right)$ as matrix elements of an Hral current $s^{\infty}(x)$ between statea ϕ^{∞} ail having well-defined transforuation properties with respect to the group ($a, \Lambda)_{\infty}$.

Problem I is, actually, a contraction problem for the poincare
group. It has soverie golutions, the limit gives either the toin-caré group itgelf or one of its subgrolips /4/. (Strictily spesking, these groups are isomorphic to the originel Poincare group or its subgroupa.) Contraction into the Poincare group hes been described in ref. 5 , and into some of its subgroups by the present author in ref. 1. No à priori reason can be given for choosing one or another solution of the contraction rroblem. Only some physical hints mey inspire one to make a definit choice. In this paper we look for such solutions of Problers I that (II.'3) leads to contraction of the Poincare group into some of its sungropa. This choice is motivated by reis. 2 and 3 . These subgroups will be Galilei and Poincaré subgroups whtch transform two "space" coordinates and a non-relativistic or relativistic "time" coordinate, respectively. (In what follows we $\lambda s e$ the terminology of ref.l, and call 3-Poincare group the one described by the formulas (II.4-6), ite contractiong will be calied 2-Galilei and 2-Poincaré groups, respectively.) After coming to this decision on Prcbiem I it is slear that the four-dimenslonal homogeneous space x^{μ} of the 3 -Poincaré group is to be raducea to some three-dimensional one. One may hope to achieve this by invegrating the functions $f_{\alpha \beta}^{\prime}(x ;(a, \Lambda))$ over one of its variables and may reformulate Problems II and III ir terme of these integrated functions. For a convensent choice of the integration variable we change t and z by 5 and z :

$$
\begin{equation*}
z=\frac{1}{2}(z-t), \quad \tau=(t+z) \tag{II.15}
\end{equation*}
$$

and, for the functions $f_{\alpha \beta}^{k}\left(t, x_{1}, z ;(a, \Lambda)\right)$ we use the notation $\left.g_{\alpha \beta}^{\prime}\left(T, \underline{x}_{i} \cdot\right\} ;(a, \Lambda)\right) \equiv g_{\alpha \beta}^{\prime}(x ;(a, \Lambda))$. We shall be interested in the functions

$$
\begin{equation*}
G_{\alpha \beta}^{\prime}\left(T_{r-\underline{x_{1}}}^{1} ;(\varepsilon, \Lambda)\right) \equiv \int_{-\infty}^{\infty} E_{\alpha \beta}^{\prime}(x ;(a, \Lambda)) d z \tag{II.16}
\end{equation*}
$$

in the IMR, that is, for $\xi \rightarrow \infty$. We must specify the functions
$\left.g_{\alpha \beta}^{\infty}\left(T, \underline{x}_{1} ;(a, \Lambda)_{\infty}\right) \equiv \lim _{\xi \rightarrow \infty} \int_{-\infty}^{\infty} T\left(e^{-i \xi N_{3}}\right) T\left(e^{i \xi N_{3}}(a, \Lambda) e^{-i \xi N_{3}}\right) g_{\alpha \beta}(x) d\right\}$
and deduse the transformation rules in the Mif for the "trang-
verse current"

$$
\int_{-\infty}^{\infty} s(x) d z .
$$

Before concluding this section we make an important remark concerning the solutions of Problem II. In general, the solution of Problem II yields different representation spaces and therefore different representations of the group (a, Λ) $)_{\infty}$, if $f_{\alpha \beta}(x)$ ia changed to some $f_{\tilde{\alpha} \tilde{\beta}}(x), f_{\tilde{\alpha} \tilde{\beta}}(x)$ being the matrix element of $s(x)$ between the states $U(\tilde{a}, \tilde{\Lambda}) \phi_{\alpha}, U(\tilde{a}, \tilde{\Lambda}) \phi_{\beta}$, with ($\left.\tilde{a}^{\prime}, \tilde{n}\right)$ fixed. Problem II for the function $f_{\alpha \tilde{\beta}}(x)$ would mean the calculation of

$$
\begin{equation*}
\lim _{\xi \rightarrow \infty} T\left(e^{-i \xi N_{3}}\right) T\left(e^{i \xi N_{3}}(a, \Lambda) e^{-1 \xi N_{3}}\right) T\left(\tilde{a_{y}} \tilde{\Lambda}\right) \mathbf{I}_{\alpha \beta}(x) \tag{II.18}
\end{equation*}
$$

ince ($\tilde{a}, \tilde{\Lambda}$) is a fixed element of the j-Poincare group, in the limit $\xi \rightarrow \infty$ it becomes, in general, a foreign object from the point of view of the contracted eroup $(a, \Lambda)_{\infty}$.
\therefore ally, for the reader's convenience, we write down here
the action of the 3 -Paincare fenerators on the functions $g_{\alpha \beta}(x)$:

$$
\begin{aligned}
\left(M_{1}-N_{2}\right) g(x) & \left.=i\left(T \frac{\partial}{\partial y}-y \frac{\partial}{\partial z}\right) g\left(T, x_{1},\right\}\right), \\
\left(M_{1}+N_{2}\right) g(x) & =2 i\left(z \frac{\partial}{\partial y}-y \frac{\partial}{\partial T}\right) g(x), \\
\left(M_{1}-N_{1}\right) g(x) & =2 i\left(x \frac{\partial}{\partial r}-j \frac{\partial}{\partial x}\right) g(x), \\
\left(M_{2}+N_{1}\right) g(x) & =i\left(x \frac{\partial}{\partial z}-T \frac{\partial}{\partial x}\right) g(x), \\
M_{3} g(x) & =i\left(y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}\right) g(x), \\
N_{3} g(x) & \left.=i(\} \frac{\partial}{\partial z}-5 \frac{\partial}{\partial r}\right) g(x), \\
\left(P_{C}+F_{3}\right)_{g}(x) & =-2 i \frac{\partial}{\partial T} g(x), \\
\left(F_{0}-F_{3}\right) g(x) & =i \frac{\partial}{\partial z} g(x), \\
\underline{P}_{\perp} g(x) & =-i \frac{\partial}{\partial x_{1}} g(x),
\end{aligned}
$$

III. Contructions of the 3-Poincaré group

In orier wo make this paper self-contained as much as possible we give a short summary of those contractions of the 3-koincaré group which we are interested in. (For more details see also ref. 1)

The two-dimensional Galilean description in the IbF scems from the following connection between the generators of space-time $^{\text {fen }}$ transformations in the limiting and ordinary reference frames, 0 and $0 \cdot$, respectively $/ 1,2 /$:

$$
\begin{equation*}
S_{1}=\lambda \lim _{\xi \rightarrow \infty}\left\{e^{-\xi} U(\xi)\left(M_{2}+N_{1}\right) U^{-1}(\xi)\right\}, \tag{III.1e}
\end{equation*}
$$

$$
\begin{align*}
& S_{2}=-\lambda \lim _{\xi \rightarrow \infty}\left\{e^{-\xi} U(\xi)\left(M_{4}^{\prime}-\Pi_{2}^{\prime}\right) U^{-1}(\xi)\right\} \text {, } \tag{III.ID}\\
& \mathrm{m}_{3}=\operatorname{lin}\left\{U(\xi) M_{3} U^{-1}(\xi)\right\} \text {, } \tag{III.Ic}\\
& H^{G}=\frac{1}{2 \lambda} \lim \left\{e^{\xi} U(\xi)\left(P_{0}^{\prime}+P_{3}^{\prime}\right) U^{-1}(\xi)\right\} \text { : } \tag{III.Id}\\
& P_{i}=\lim \left\{U(\xi) P_{i}^{\prime} U^{-1}(\xi)\right\}, \quad i=1,2 \tag{III.le}\\
& \mu_{0}=\lambda 11 m\left\{e^{-\{ } U(\xi)\left(P_{0}^{\prime}-P_{3}() U^{-1}(\xi)\right\}\right. \text {. } \tag{III.If}\\
& \lim \left\{e^{-\xi} U(\xi) N_{3}^{\prime} U^{-1}(\xi)\right\}=\lim \left\{U(\xi)\left(M_{1}^{1}+N_{2}^{\prime}\right) U^{-1}(\xi)\right\}= \\
& =\operatorname{Im}\left\{U(\xi)\left(M_{2}^{4}-N_{i}^{1}\right) U^{-1}(\xi)\right\}=0_{i} \tag{III.1g}
\end{align*}
$$

The symbol $U(\xi)$ denotes a z-boost, $U(\xi)=e^{i \xi N '}, \lambda$ ifs as. arbitrary positive number. Thess relation g give a mapping of the 3 -Poincare algebra

$$
\begin{aligned}
& {\left[W_{i}^{\prime}, M_{i}^{\prime}\right]=-\left[N_{i}^{!}, N_{j}^{\prime}\right]=1 \varepsilon_{i l k} M_{k}^{\prime},} \\
& {\left[M_{i}^{\prime}, N_{j}^{\prime}\right]=1 \varepsilon_{i j k} N_{k}^{\prime},} \\
& {\left[M_{\mu \nu}^{\prime}, P_{\rho}^{\prime}\right]=i\left(g_{v \rho} P_{\mu}^{\prime}-\delta_{\mu \rho} P_{\nu}^{\prime}\right)}
\end{aligned}
$$

onto the 2-Galilei algebra, its elements being $S_{i}, P_{i},(i=1,2)$, $\mathbf{m}_{3}, \mathbb{H}^{\mathrm{c}}$ and μ_{0} :

$$
\begin{align*}
& {\left[S_{i}, S_{j}\right]=0, \quad\left[M_{3}, S_{i}\right]=i \varepsilon_{i j} S_{j},} \\
& {\left[P_{i}, P_{i}\right]=0, \quad\left[H^{G}, P_{i}\right]=0,} \\
& {\left[S_{i}, H^{C}\right]=1 P_{i}, \quad\left[S_{i}, P_{j}\right]=i \mu_{0} \delta_{i j},} \tag{III.3}\\
& {\left[M_{3}, H^{\dot{L}}\right]=0, \quad\left[M_{3}, P_{i}\right]=i \varepsilon_{i j} P_{i},} \\
& {\left[S_{i}, \mu_{0}\right]=\left[M_{3}, \mu_{0}\right]=\left[P_{i}, \mu_{0}\right]=\left[H^{G}, \mu_{0}\right]=0 .}
\end{align*}
$$

The mapping (III.1) can also be expressed as follows:

$$
\left[\begin{array}{l}
H^{G} \tag{III.4a}\\
P_{1} \\
P_{2} \\
\mu_{0}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{1}{2 \lambda} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right]\left[\begin{array}{c}
P_{0}^{\prime}+P_{3}^{\prime} \\
P_{1}^{\prime} \\
P_{2}^{\prime} \\
P_{c}^{\prime}-P_{3}^{\prime}
\end{array}\right]
$$

(III.4b)

This is obviously a $\begin{aligned} \text { dgener-Inönü contraction of the } \\ \text {-Poincaré }\end{aligned}$ alfebre /t/ Now the question arises if other wigner-Inönii contractions of the 3-Yoincaré algebra may also be of interest. As it was shown in ref. 1 it seems natural to consider, for example, the following contraction:
$\left[\begin{array}{l}K_{1} \\ K_{2} \\ \mu_{3} \\ 0 \\ 0 \\ 0\end{array}\right]=\underset{\xi \rightarrow \infty}{ }\left[\begin{array}{cccccc}\lambda & 0 & 0 & 0 & -\frac{1}{4 \lambda c^{2}} & 0 \\ 0 & -\lambda & 0 & 0 & 0 & \frac{1}{4 \lambda 2^{2}} \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & e^{-\xi} & 0 & 0 \\ 0 & 0 & 0 & 0 & e^{-\xi} & \theta \\ 0 & 0 & 0 & 0 & 0 & e^{-\xi}\end{array}\right]\left[\begin{array}{cc}M_{2}^{\prime}+N_{1}^{\prime} \\ M_{1}^{\prime} & -N_{2}^{\prime} \\ \mu_{3}^{\prime} \\ N_{3}^{\prime} \\ M_{2}^{\prime}-N_{1}^{\prime} \\ \omega_{1}^{\prime} & +N_{2}^{\prime}\end{array}\right]$, (III.5a)

$$
\left[\begin{array}{l}
H^{p} \tag{III.5b}\\
P \\
P \\
\mu
\end{array}\right]=\left[\begin{array}{cccc}
\frac{1}{4 \lambda} & 0 & 0 & \lambda c^{2} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\frac{-1}{4 \lambda c^{2}} & 0 & 0 & \lambda
\end{array}\right]\left[\begin{array}{c}
P_{0}^{\prime}+P_{3}^{\prime} \\
P_{1}^{\prime} \\
P_{2}^{\prime} \\
P_{0}^{\prime}-P_{3}^{\prime}
\end{array}\right]
$$

The "infind te momentum limit" character of this mapping becomes more obvious if one rewrites (III.5) in temns of z-boosts:
$\mathrm{K}_{1}=\lim _{\xi \rightarrow \infty}\left\{U(\xi)\left[\lambda \rightarrow^{-\xi}\left(\mathrm{Ni}_{2}^{\prime}+N_{1}^{\prime}\right)-\frac{1}{4 \lambda \mathrm{a}^{2}} e^{\xi}\left(N_{2}^{\prime}-1 i_{1}^{\prime}\right)\right] U^{-1}(\xi)\right\} ;$ (III.6a)
$\mathbb{Z}_{2}=\lim \left\{U(\xi)\left[-\lambda e^{\left.\left.-\left\{\sum_{1} ;-N_{2}^{\prime}\right)+\frac{1}{4 \lambda c^{2}} e^{\xi}\left(N_{1}^{\prime}+N_{2}^{\prime}\right)\right] U^{-1}(\xi)\right\} ; ~ ; ~ ; ~}\right.\right.$

$\mu=\lim \left\{U(\xi)\left[-\frac{1}{4 \lambda c^{1}} e^{\hat{E}}\left(P_{0}^{\prime}+P_{3}^{\prime}\right)+\lambda e^{-\xi}\left(P_{0}^{\prime}-F_{z}^{\prime}\right)\right] U^{-1}(\xi)\right\} ;$ (III. $\left.6 d\right)$
In (III.5,6) the letters λ, c denote arbitrary positive numbers. That this contraction scheme - is nstural to be considered is obvious from the following commutators:

$$
\begin{array}{ll}
{\left[K_{i} ; K_{2}\right]=-i \frac{1}{c^{2}} \omega_{3},} & {\left[M_{3}, K_{i}\right]=i \varepsilon_{i j} H_{1}, \quad i=1,2} \\
{\left[H^{p}, P_{i}\right]=0,} & {\left[P_{i}, P_{j}\right]=0,} \\
{\left[M_{3}, H^{p}\right]=0,} & {\left[B_{3}, P_{i}\right]=i \varepsilon_{i j} F_{i},} \tag{III.7}\\
{\left[K_{i}, H^{p}\right]=i P_{i},} & {\left[K_{i}, P_{j}\right]=i \frac{1}{c^{2}} \delta_{i j} H^{p},} \\
{\left[\mu, H^{p}\right]=\left[\mu, P_{i}\right]=\left[\mu, H_{3}\right]=\left[\mu, K_{i}\right]=0 .}
\end{array}
$$

This is a 2-Poincaré algebra, its elenents being the generators of inhomogeneous Lorentz transformations of two spacelike and one timelike coordinates. The parameter c plays the same mathematical role as light velocity does in the usual $1+1$ dimensiontu' algebra,

When c goes to infinity the algebra (III.7) contracts into the non-relativistic one (IIC.3).

In contrast witn the parameter ; we have an arbitrary positive number λ in both cases of contrastions which does not appear at all in the comutators (III.3), (III.7). Obviously, for the different values of λ the mappings (III.4) and (III.5) yield different (but isomorphic) 2-Galilei and 2-Poincaré subalgebras of the 3 -Poincaré algebra, respectively. We are going to assume that 3-Yojincaré covariant theories become 2-Poinceré covariant ones in the IMF with some given value of the parameter c. (Its value is to be determined phenomenologically. Por the 2-Galilei covarient case $c=\infty$.) It seems natural to postulate that all contractions corresponding to the various values of λ are physically equivalent, that is, none of the predictions of the theory in the $I w_{i} \mathrm{~F}$ may depend on λ.

For a comparison with Susskind's treatment of the 2-Galilei symmetry in the LbF we mention that he seems to choose $\lambda=1$, but preserves the N_{3} generator $/ 2,3 /$. Thus the aymmetry group in the Inf becomes a 2-Galilei group extended with dilatations. Since the dilatations correspond to changing the value of λ, dilatation invariance of the theory corresponds just to the postulate we formulated above. Our formulation has the advantage that it can be generalized without difficulty to the 2-Poincaré case, while the N_{3} generator cennot be joined to the 2-Poincare generators to form a closed algebra.

There are, obviously, further ambiguities in choosing the matrices on the right hand side of (III.4) and (III.5). Let us denote by A any of the matrices in (III. 4a,b) (or (III.5a,o)). The algebra (III.3) (or (III.7)) remaing unchanged if $A_{1} A A_{2}$ is substituted for A, wherg A_{2} is any 3 -Poincaré trangfornation of the genarators $N_{\mu \nu}, P_{\mu}^{\prime}$, and A_{f} is any 2-Galilei (or 2-roinca-. ré) trangformation of the generators $S_{i}, N_{3}, H^{G}, P_{L}$ (or K_{i}, M_{3}, H^{P}, P_{i}). The requirement that the Thif theory sholld be indeperdent of the choice of A_{1} and A_{2} is, in the case of A_{2}, fulfilled by the 3 -Foincere covariance of the theory before transforming inte the $I M F$. In the case of A_{1} this requirement leads to the covariance of the theory with respect to the 2 -Galilei (or 2-Poincaré) group in the BM.

IV. The representation spaces in the INF

In this section we deal with the solution of Problem II, and constiact those function speces which may serve es representation spaces for the contracted groups. This task, in its original form (IT.14) means the calculation of such limits:

$$
\begin{equation*}
\left.\left.\lim _{\xi \rightarrow \infty} T\left(e^{-i \xi E_{3}}\right) g_{\alpha \beta}\left(T, \underline{x}_{\perp},\right\}\right)=\lim _{\xi \rightarrow \infty} g_{\alpha \beta}\left(\tau e^{-\xi}, x_{\perp},\right\} e^{\xi}\right), \tag{IV.I}
\end{equation*}
$$ and we need mich more detailed properties of the current matrix elements as we have used so far. To overcome this one may use

Susskind's proposal $/ 2 /$ for integrating over the variable g and calculating by means of the rule

$$
\int_{-\infty}^{\infty} I I m g_{\alpha \beta}\left(T e^{-\xi}, \underline{x}_{1}, z e^{\xi}\right) d \xi=I I m e^{-\xi} \int_{-\infty}^{\infty} E_{\alpha \beta}^{\infty}\left(\tau e^{-\xi}, \underline{x}_{1}, \jmath\right) d \text {, (IV,2) }
$$

but then one faces the problem that the factor $\mathrm{e}^{-\xi}$ makes zero the functions we are looking for. One may use certain "physical" arguments $/ 2 /$ to eliminate the factor $e^{-\xi}$ from (IV.2) and may conclude that in the IMiF the correapondence

$$
\begin{equation*}
\int_{-\infty}^{\infty} g_{\alpha \beta}\left(T, \underline{x}_{1}, z\right) d z \Longrightarrow \int_{-\infty}^{\infty} E_{\alpha \beta}\left(0, x_{1}, z\right) d z \tag{IV,3}
\end{equation*}
$$

is valid. One rust notice, however, that (IV.3) is pert of the mapping

$$
\begin{equation*}
\int_{-\infty}^{\infty} g_{\alpha \beta}(x ;(a, \Lambda)) d z \Longrightarrow \int_{-\infty}^{\infty} g_{\alpha \beta}^{\infty}\left(x ;(a, \Lambda)_{\infty}\right) d z \tag{IV.3}
\end{equation*}
$$

we are to specify when we solve Problem II. It is this mapping what really determines the content of the theory in the imp. As a first step to specify the mapping (IV.3) we deal wi.th integrals of the following type:

$$
\begin{equation*}
\left.\int \operatorname{gg}_{\alpha \beta}(x) d\right\} \tag{IV.4}
\end{equation*}
$$

where G is an arbitrary polynomial of the 3 -Yoincaré generatore (II. 19). In practice, (IV.4) means such expressions:

$$
\begin{equation*}
\int D\left(T, \underline{x}_{1} ; \frac{\partial}{\partial T}, \frac{\partial}{\partial \underline{x}_{1}}\right) z^{k} \frac{\partial^{k}}{\partial z^{2}} g_{\alpha \beta}\left(T, \underline{x}_{\perp}, z\right) d z ; \tag{IV.5}
\end{equation*}
$$

where $k, 1=0,1,2, \ldots$, and D is some polynomial of its areuments. To obtain useful formulas we mast assume that derivatives with respect to T, \underline{x}_{1} are interchangeable with the integral in
(IV.5'. This means that the integral

$$
\begin{equation*}
\int d^{k} \frac{\partial^{l}}{\partial f^{t}} g_{\alpha \beta}(x) d z \tag{IV.6}
\end{equation*}
$$

must exist for every $k, l=0,1,2, \ldots$. . Then it follows that

$$
\begin{equation*}
\left|z^{k} \frac{\partial^{l}}{\partial z^{l}} g_{x \beta}(x)\right| \rightarrow 0, \text { if }|z| \rightarrow \infty \tag{IV.7}
\end{equation*}
$$

In caneral, this condition does not fulfill even if the function $C_{\alpha \beta}(x)$ is a matrix element of the ourrent $3(x)$ between normaizabl. s states ϕ_{a}, ϕ_{θ}. iince the variable $\}$ wes arbitrarily chooen as intefration variable the strong asymptotic behaviour (IV.7) must be required also for the dependences on τ and \underline{x}_{2}. But this class of functions is mapped onto itself by Fourier transformation, therefore, if

$$
\begin{equation*}
\hat{E}_{\alpha \beta}(q)=\int_{-\infty}^{\infty} E_{\alpha \beta}(x) e^{i q x} d^{4} x, \tag{IV.8}
\end{equation*}
$$

thon it follows, for example, that

$$
\begin{equation*}
\left(q^{2}\right)^{n} \hat{g}_{\alpha \beta}(q) \rightarrow 0 \tag{IV.9}
\end{equation*}
$$

for any $n=0,1,2, \ldots$, if $\left\{q^{2}\right\} \rightarrow \infty$. If, especially, $\varepsilon_{\alpha \beta}(x)$ is a matrix element of $s(x)$ between normalizable supcrpositions of momentum aigenstates, the coudition (IV.G) means, in general, that the form factor

$$
F\left(\left(k-k^{\prime}\right)^{2}\right)=\left\langle k^{\prime}\right| s(0)|k\rangle
$$

decreases faster then any inverse power of $\left(k-k^{1}\right)^{2}$, if $\left.\left|\left(k-k^{1}\right)^{2}\right| \rightarrow\right)^{\infty}$. If do not want, such an unduly restricted theory, we must accept that the integrals (IV.5) diverge, and we must decide on the meaning we are going to attribute to them. This ia, in fact, a reformulation of the problem of the mapping (IV. 3).

With special attention to the purpose of describing functions in the IMF we define (IV.5) as follows:

$$
\begin{align*}
\int_{-\infty}^{\infty} D\left(\tau, x_{1} ;\right. & \left.\frac{\partial}{\partial \tau}, \frac{\partial}{\partial x_{1}}\right) z^{k} \frac{\partial^{l}}{\partial g^{t}} g_{\alpha \beta}(x) d z \equiv \tag{IV.10}\\
& \equiv D\left(T, \underline{x}_{1} ; \frac{\partial}{\partial \tau}, \frac{\partial}{\partial \underline{x}_{1}}\right) \xi_{\alpha \beta}\left(T, x_{1}\right)
\end{align*}
$$

where

$$
\begin{equation*}
g_{\alpha \beta}\left(\tau, x_{1}\right) \equiv \int_{-\infty}^{\infty} g_{\alpha \beta}\left(\tau, x_{1}: z\right) d z \tag{IV.II}
\end{equation*}
$$

denotes the canonical distribution theoretic value of the integrel /6/.

First of all, it follows from the definition (IV.10) that

$$
\begin{equation*}
\lim _{\xi \rightarrow \infty} \int T\left(e^{-1 \xi N_{3}}\right)_{g_{\alpha \beta}}\left(5, x_{1}, z\right) d z=g_{\alpha \beta}\left(0, x_{1}\right) \tag{IV.12}
\end{equation*}
$$

This is the function in the IMP which corresponds to the unit element of the group $(a, \Lambda)_{\infty}$, independently of the actual group contraction scheme we want to choose. Let us notice that in (IV.12) we arrived at a function of two variables only.

In order to congtruct the other $g_{\infty \beta}^{\infty}$ functions one must
calculate the action of the generators of the group $(e, \Lambda)_{\infty}$ on $g_{\alpha \beta}\left(0, x_{1}\right)$. In the $2-G a l i l e i$ case we proceed by using (II.17), (II.19), (III.1), (III.10) and obtain:

$$
\begin{align*}
& S_{i} g_{\alpha \beta}\left(0, \underline{x}_{1}\right)=0, \quad i=1,2, \\
& \mathbb{H}_{3} E_{\alpha \beta}\left(0, \underline{x}_{1}\right)=i\left(y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}\right) g_{\alpha \beta}(0, \underline{x}), \tag{IV.II}\\
& \underline{P}_{1} g_{\alpha \beta}\left(0, x_{1}\right)=-1 \frac{\partial}{\partial \underline{x}_{1}} g_{\alpha \beta}(0, \underline{x}), \\
& H^{C} g_{\alpha \beta}\left(0, x_{1}\right)=-\frac{1}{1 \lambda} \frac{\partial}{\partial T} g_{\alpha \beta}\left(0, \underline{x}_{1}\right)
\end{align*}
$$

from these relations one can easily reconstruct all the functions

$$
\begin{align*}
& \tilde{\alpha}_{\alpha \beta}^{\infty}\left(\tau, \underline{x}_{1} ;(a, \Lambda)_{\infty}\right): \tag{IV.l2}\\
& g_{\alpha \beta}^{\infty}\left(\tau, \underline{x}_{1} ;(a, \Lambda)_{\infty}\right) \equiv g_{\alpha \beta}^{G}\left(0, \underline{x}_{1} ;(\ell, L)\right) \equiv E_{\alpha \hat{i}}\left(\frac{1}{\lambda} q_{t}, x_{1}^{R}+\underline{L}_{1}\right),
\end{align*}
$$ where (l, L) denotes a ceneral, six-parameter element of the 2-Galilei sroup. Its homogeneous part $L \equiv\left(H, \underline{y}_{1}\right)$ involves rotations R and Galilet transtornations in the two-dimensional plane $\underline{x}_{1}=(x, y)$. Its inhomogentous part $l=\left(l_{t}, \ell_{t}\right)$ corresponds to "time" and space translations. Altogether the transformation rule:

$$
\begin{aligned}
& \left(t_{0}, \underline{x}_{1}\right)(\ell, L)=\left(t_{0}+\ell_{t}, \underline{x}_{1} H+t_{0} \underline{y}_{1}+\underline{l}_{1}\right), \\
& R=\left(\begin{array}{lr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
\end{aligned}
$$

The functions (IV.12) depend on the variables $x_{1}=(x, y)$ only, and look like the functions

$$
\begin{equation*}
f_{\alpha \beta}^{G}\left(t_{0}, \underline{x}_{1} ;(L, L)\right) \equiv e^{i t_{0} H^{G}} G_{\alpha \beta}^{G}\left(0, \underline{x}_{1} ;(l, L)\right) \tag{IV.14}
\end{equation*}
$$

of the variables (t_{0}, x_{1}) for zero value of the non-relativistic "time" t_{0}. It follows from the constriction of the functions (IV.14) that a scalar representation of the 2-Galilei group can be defined on these functions by the rule:

$$
\begin{gather*}
T^{G}\left(\ell^{\prime}, L^{\prime}\right) f_{\alpha \beta}^{G}\left(t_{0}, \underline{x}_{1} ;(l, L)\right)=f_{\alpha \beta}^{G}\left(t_{0}, \underline{x}_{1} ;\left(\ell^{\prime}, L^{\prime}\right)(\ell, L)\right)= \\
=f_{\alpha \beta}^{G}\left(t_{c}+t_{t}^{\prime}, \underline{x}_{1} R^{\prime}+t_{0} \underline{\underline{y}}_{1}^{\prime}+\underline{t}_{1}^{\prime} ;(\ell, L)\right) . \quad(I V, 15) \tag{IV.15}
\end{gather*}
$$

This procedure can be repeated also when $(a, \Lambda)_{\infty}$ is the 2-1oincaré Eroup. Lquations (IV.II) remain unchanged in tho case of \mathbb{N}_{3} and \underline{P}_{1}, the action of the generaturs $\underline{K}_{1}=\left(K_{1}, K_{2}\right), H^{P}$ on $E_{\alpha \beta}\left(\nu, x_{1}\right)$
is as follows:

$$
\begin{align*}
& \underline{\underline{x}}_{1} \underline{g}_{\alpha \beta}\left(0, \underline{x}_{1}\right)=-i \frac{1}{2 \lambda c^{2}} \underline{x}_{1} \frac{\partial}{\partial T} g_{\alpha \beta}\left(0, \underline{x}_{1}\right), \\
& \underline{H}^{P} g_{\alpha \beta}\left(0, \underline{x}_{1}\right)=-i \frac{1}{2 \lambda} \frac{\partial}{\partial T} \varepsilon_{\alpha \beta}\left(0, \underline{x}_{1}\right) . \tag{IV.16}
\end{align*}
$$

Ingtead of eq. (IV.12) now the functions

$$
\begin{equation*}
E_{\alpha \beta}^{\infty}\left(J, \underline{x}_{1} ;(a, \Lambda)_{\infty}\right) \equiv g_{\alpha \beta}^{p}\left(0, x_{1} ;(\underset{\sim}{a}, \underset{\sim}{\Lambda})\right) \equiv E_{x \beta}(\underset{\sim}{x} \underset{\sim}{\hat{A}}+\hat{a}) \tag{IV.I7.}
\end{equation*}
$$ appear, where $(\underset{\sim}{a}, \underline{\sim})$ denotes a general element of the 2 -Poincaré group, \AA being a 3×3 matrix for the homogeneous 2-Lorentz transformations, the three-vector $\underset{\sim}{a}=\left(a_{0}, \underline{a}_{1}\right)$ refers to the translations of the $1+2$ dimensional Minkowaki apace-time $\underset{\sim}{x}=\left(t, x_{1}\right)$. In (IV.17) also the following notations are used:

$$
\underset{\sim}{x}=\left(0, \underline{x}_{\perp}\right), \dot{\underset{a}{x}}=\left(\frac{1}{2 \lambda} a_{0}, \underline{a}_{1}\right) \text {. Again, the two-variable }
$$

functions (IV.17) can be provided with "time dependence" by means of the definition

$$
\begin{equation*}
\mathbb{i}_{\alpha \beta}^{P}\left(t, \underline{x}_{\perp} ;(\underset{\sim}{a}, \underset{\sim}{\Lambda})\right) \equiv e^{i t H^{P}} E_{\alpha \beta}^{p}\left(0, \underline{x}_{\perp} ;(\underset{\sim}{a}, \underset{\sim}{\Lambda})\right) \tag{IV.18}
\end{equation*}
$$

On the functions (1v.18) it is easy to define a scalar represention tion of the 2-Yoincare group:

$$
\begin{gather*}
T^{P}\left(\underset{\sim}{a},{\underset{\sim}{n}}^{\prime}\right) f_{\alpha \beta}^{p}(\underset{\sim}{x} ;(\underset{\sim}{a}, \underset{\sim}{\Lambda}))=f_{\alpha \beta}^{p}\left(\underset{\sim}{x} ;\left({\underset{\sim}{a}}^{\prime},{\underset{\sim}{n}}^{\prime}\right)(\underset{\sim}{a}, \underset{\sim}{\Lambda})\right)= \\
=f_{\alpha \beta}^{P}\left(\underset{\sim}{x}{\underset{\sim}{\prime}}^{\prime}+\underline{\sim}^{\prime} ;(\underset{\sim}{a}, \underset{\sim}{\Lambda})\right) . \tag{IV.19}
\end{gather*}
$$

Only the last point, Iroblem IlI , of our progrume rem matns, mamely, to express the equations (IV.15) and (IV.25) as transformation rules of the transverge current $\int 9\left(T, x_{1} ; z\right) d z$ f.n the laif. In the 2-Galilei case we interpret the functions
$f_{\beta \beta}^{G}\left(t_{0}, x_{\perp} ;(\ell, L)\right)$ as matrix elements of a 2 -Galilei scalar current

$$
\begin{align*}
& S\left(t_{0}, \underline{x}_{1}\right) \equiv U_{G}^{-1}\left(e^{i t_{0} H^{G}}\right) \star \tag{IV.20}\\
&\left.\left.\times\left\{\lim _{\xi \rightarrow \infty} \int_{-\infty}^{\infty} U^{-1}(\xi) s\left(r, x_{1},\right\}\right) U(\xi) d\right\}\right\} U_{G}\left(e^{i t_{c} H^{G}}\right)
\end{align*}
$$

between the states $U_{G}(l, L) \phi_{\alpha}, U_{G}(l, L) \phi_{\beta}$, where $U_{G}(l, L)$ stands for the operatore representing the 2-Gaiilei subgroup, Eenerated by (III.1): of the z-Poincaré Eroup on the physical states ϕ.

By similar defintion the operator

$$
\begin{aligned}
& \mathfrak{g}\left(t, \underline{x}_{1}\right) \equiv U_{p}^{-1}\left(e^{i t K^{P}}\right) \times \\
& \\
& \quad\left\{\left\{1 i m \int_{-\infty}^{\infty} U^{-1}(\xi) s\left(T, x_{1}, z\right) U(\xi) d z\right\} U_{p}\left(e^{i t H^{p}}\right)\right.
\end{aligned}
$$

is a scalar operator with respect to the 2-Hoincaré group. As we have shown, the integral in both cases assumes a careful definition.

Before concluding this section we shortly discuss vector ourrente $j_{\mu}\left(\tau, x_{1}, Z\right)$ in the ImP. By repeating the argumente described in detail for the scalar current one obtains the following results.

1. If the 3-Foincaré group is contracted into the 2-Gulilei one the following quantities have simple transformation properties in the IHF:

$$
\begin{align*}
& \underline{I}_{-}\left(t_{a}, \underline{x}_{1}\right) \equiv U_{G}^{-4}\left(e^{i t_{0} H^{G}}\right)\left\{I x \int_{-\infty}^{\infty} U^{-1}(\xi) \dot{I}_{1}\left(T, \underline{x}_{1}, j\right) d z\right\} U_{G}\left(e^{i t_{0} H^{G}}\right), \quad \text { (IV.22) } \\
& \rho_{ \pm}\left(t_{0}, \underline{x}_{\perp}\right) \equiv \frac{1}{2} U_{G}^{-1}\left(e^{i t_{0}} H^{G}\right) x \\
& \times\left\{\lim e^{* f} \int_{-\infty}^{\infty} U^{-1}(\xi)\left[j_{0} \pm j_{3}\right] U(\xi) d \xi\right\} U_{G}\left(e^{i t_{\alpha} H^{G}}\right) . \tag{IV.23}
\end{align*}
$$

The trangformation rules for \mathcal{I}_{i}, ρ and \mathcal{S} are those of the two-
momentum, enerey and mass densities, respectively, in a non-relativistic theory. (isee also ref.2)
2. Then the 3-Ioincaré group is contracted into the 2-Foincaré one in the $I f . F^{\prime}$ a vector current $\underset{\sim}{J}(\underset{\sim}{x}) \equiv\left(J_{0}(\underset{\sim}{x}),{\underset{J}{L}}_{J}^{(x)}\right)$ and a scalar one $g(\underset{\sim}{x})$ can be found. They can be expressed by formulas similer to eq. (IV.21), only the quantities

$$
\begin{equation*}
\frac{l}{+\lambda} e^{\xi}\left(j_{c}+j_{3}\right)+\lambda e^{x} e^{-\xi}\left(j_{0}-j_{3}\right), \quad \dot{j}_{1} \tag{IV.24}
\end{equation*}
$$

and $\lambda e^{-\xi}\left(j_{0}-j_{3}\right)=\frac{1}{4 \lambda c^{2}} e^{\xi}\left(j_{0}+j_{3}\right)$,
respectively, are to be subsiituted for $\left.s\left(\sqrt[T]{ }, x_{1},\right\}\right)$.
Finally, we must remark that, naturally, the results $\mathrm{ob}-$ tained in this section for the current transfomation properties desend very much on the solution we have given for froblem II, or, explicitly, on the definition (IV. 10,11). Uther presiriptions for the restriction of the 3-Poincare watrix elonents to some mip functions an, of course, be proposed, but, in general, then one finds more complicated exprassions instead of (IV.11) or (IV.I6) which are of basic importance in the construction of all functions in the InH. Also, the relations (IV.11) or (IV.16) wade us able to recomize definit transformetion properties, which would otherwise be complicated and of no use.

V. A simple application

In this concluding section we illustrate how the procedure described works in practice. The simplest possible objects to consider are the matrix elements of a scalar current between momentum eigenstates with zero spin:

$$
\begin{equation*}
\left.g_{\alpha \beta}\left(5, x_{1} ;(a, \Lambda)\right)=\int_{-\infty}^{\infty}\langle p \prime| s(x \Lambda+a)|p\rangle d\right\}, \tag{V.1}
\end{equation*}
$$

the states ϕ_{α} and ϕ_{β} being labelled by the four-momenta $p_{\mu}=\left(p_{+}, p_{1}, p_{-}\right), p_{\mu}^{2}=p_{+} p_{-}-p_{\perp}^{2}=m^{2}$, and $p_{\mu}^{\prime *}=\left(p_{+}^{\prime}, p_{\perp}^{\prime}, p_{-}^{\prime}\right), p_{\mu}^{\prime 2}=m^{2}$, respectively. In the ordinary reference frame and for $(a, \Lambda)=(0,1)$ the function (V.1) can be written as

$$
\begin{equation*}
g_{\alpha \beta}\left(\tau, \underline{x}_{\perp}\right)=2 \pi r\left(\left(p-p^{\prime}\right)^{2}\right) e^{i \frac{1}{2} \tau\left(p_{+}-p_{+}^{\prime}\right)+i\left(p_{1}-p_{\perp}^{\prime}\right) \underline{x}_{\perp}} \delta\left(p_{-}-p_{-}^{\prime}\right) \tag{V.2}
\end{equation*}
$$

As usual, the dependence of F on m is not denoted. Now we examine the functions (V.1) in the InF in that cace when the 2-Poincare scheme of contraction is used. According to the conclusions of the previous section the counterpart $f_{\alpha \beta}(\underset{N}{x})$ of $g_{\alpha \beta}\left(\tau, \underline{x}_{1}\right)$ in the LuF appears as the matrix element of a 2-Poincarc soalar current $s(x)$ between some states $|\underset{\sim}{k}, \mu\rangle$ and $\left|\underset{\sim}{k}, \mu^{\prime}\right\rangle$ corresponding to $\left|p^{\prime}\right\rangle$ and $\left|p^{\prime}\right\rangle$, respectively. A state $\left|\frac{k}{m}, \mu\right\rangle$ is a momentum eigenstate in an irreducible 2~1oincaré representation space with

$$
\begin{align*}
\text { "apin" zero and "nesse" } \underset{\sim}{m},{\underset{\sim}{e}}^{2} e^{2} & =m^{2}+\mu^{2} c^{2}, \\
\mu & =\lambda p_{-}-\frac{1}{4 \lambda \mathrm{c}^{2}} p_{+}
\end{align*}
$$

Bascd upon the stumbard argumenta we may write:

$$
\left\langle\underset{\sim}{k^{\prime}}, \mu^{\prime}\right| s(\underset{\sim}{x})|\underset{\sim}{k}, \mu\rangle=\tilde{F}\left(\mu, \mu^{\prime},\left(\underset{\sim}{k}-{\underset{\sim}{1}}^{k^{\prime}}\right)^{2}\right) e^{i\left(\underset{\sim}{k}-k_{\sim}^{\prime}\right) \underset{\sim}{x}}, \quad \text { (V.j) }
$$

where

$$
\begin{align*}
& \left(\underset{\sim}{k}-{\underset{\sim}{k}}^{\prime}\right)^{2}=\frac{1}{c^{2}}\left(k_{c}-k_{c}^{\prime}\right)^{2}-\left(\underline{k}_{1}-\underline{k}_{1}^{\prime}\right)^{2} \equiv\left(p-p^{\prime}\right)^{2}+c^{2}\left(\mu-\mu^{\prime}\right)^{2}, \tag{v.6}\\
& \left(\underset{\sim}{k}-{\underset{\sim}{k}}^{\prime}\right) \underset{\sim}{x}=\left(k_{c}-k_{c}^{\prime}\right) t+\left(\underline{k}_{1}-\underline{k}_{1}^{\prime}\right) x_{1}, \\
& k_{c}=c\left[m^{2} c^{2}+\underline{k}_{1}^{2}\right]^{1 / 2}, \quad k_{e}^{\prime}=c\left[\underline{m}^{\prime 2} c^{2}+\underline{k}_{1}^{\prime 2}\right]^{1 / 2} . \tag{v.8}
\end{align*}
$$

Notice, firstly, that we did not provide the function \tilde{F} with a dependence on λ. This is explained by the arpuments of sect.lli. Becondly, one must notice that while in the ordinary reference franc one could express the matrix element (V.2) by means of an unknown lunction F of one variable only, now in (V.5) the function $\tilde{\mathrm{F}}$ of three varistbles has anpeared. Carrying out, however, on ($v .1,2$) the procodure wo have doscribed in the previous section for the reduction of 3 -toincaré covariant functions to 2-1oincaré covariant ones the dependence of $\tilde{\mathfrak{F}}$ on μ and μ^{\prime} can be made explicit. that remains is afain un unknown function of $(p-p)^{2}$. First we consider the special case when $\mathrm{D}_{1}=$ U. from the seneral formadias (V.4) and (V.B), and from

$$
\begin{equation*}
x_{0}=\frac{1}{+\lambda} p_{+}+\lambda c^{2} p_{-} \tag{V.6}
\end{equation*}
$$

it follows theit

$$
\begin{equation*}
2 \lambda c p_{-}=\mu c+\left[m^{2}+\mu^{2} c^{2}\right]^{1 / 2} \tag{v.lu}
\end{equation*}
$$

Unce the value of the parametar λ is specified the quantity μ, or, the 2 -1oinears mass $\underset{\sim}{\text { In }}$, can be determined as function of $p_{\text {_ }}$
and c. Furthermore, by identifying $\underline{k}_{\perp}^{\prime}=P_{\perp}^{\prime}$, and using,

$$
\begin{equation*}
\mu^{\prime}=\lambda p_{-}^{\prime}-\frac{1}{4 \lambda c^{2}} p_{+}^{\prime}, \tag{v.11}
\end{equation*}
$$

the argument $p_{\sim}-p_{-}^{\prime}$ of the Dirac delta in (V.2) gets easily expressed in terms of $\mu \mu \mu^{\prime}$ and $\left(p-p^{\prime}\right)^{2}$:

$$
\begin{equation*}
p_{-}-p_{-}^{\prime}=\frac{1}{2 \lambda}\left[\left(\mu-\mu^{\prime}\right)\left(1+\frac{\mu \mathrm{c}}{\sqrt{m^{2}+\mu^{2} c^{2}}}\right)+\frac{\left(p-p^{1}\right)^{2}}{2 c \sqrt{m^{2}+\mu^{2} c^{2}}}\right] \tag{V.12}
\end{equation*}
$$

Now we may write the equality:

$$
\begin{equation*}
\tilde{F}\left(\mu, \mu^{\prime} ;\left(k-k^{\prime}\right)^{2}\right)=2 \pi F\left(\left(p-p^{\prime}\right)^{2}\right) \delta\left(p_{-}-p_{-}^{\prime}\right) \tag{V.13}
\end{equation*}
$$

Let us remark that in the limit $c \rightarrow \infty$ eqs. (V, $3,12,1 j$) reproduce the formala of the 2-Galilei symmetric case familiar from ref.3. It is also worth mentioning that while in the 2-Galilei case a simple scaling property of \tilde{F} follows from the "no λ-dependence" assumption $/ 3 /$, in the 2-Poinceré case a rather complicated implicit relation can be extracted from eqs. (V.10,11,12,13) for the : innction \tilde{F},

To complete the discussion of (V,2) in the IMF only the case $P_{\perp} \neq 0, P_{\perp}^{\prime} \neq 0$ remained to be dealt with. (For simplicity, we still assume that $p_{\perp}=\left(p_{1}, 0\right)$.) We make explioitly use of the freedom in choosing the matrices (III.5) up to artitrary fixed 3-Lorentz transformation. For the matrix A_{2} (see the discussion at the end of Sect. III) we choose the one corresponding to

$$
e^{-i \times\left(M_{2}+N_{4}\right)}
$$

with

$$
\alpha=-\frac{p_{1}}{p_{-}}
$$

It $1 s$ not very hara to verify, that eqs. (V.12,13) remain unchanged, only the mopping between the romenta $p_{\mu}, p_{\mu}^{\prime}$ and $\underset{\sim}{k}, \underset{\sim}{\boldsymbol{k}}$ must be modified. The mapping in this case is as follows:

$$
\begin{align*}
& \underline{k}_{\perp}=0, \quad \underline{\underline{E}}_{\perp}^{\prime}=\left(p_{1}^{\prime}+\alpha F_{-}^{\prime}, p_{2}^{\prime}\right), \tag{V.14}\\
& \mu^{\prime}=\lambda p_{-}^{\prime}-\frac{1}{4 \lambda c^{2}}\left(p_{+}^{\prime}+2 \alpha p_{1}^{\prime}+\alpha^{2} p_{-}^{\prime}\right), \tag{v.15}
\end{align*}
$$

and eqs. (V. 8,10) survive.
In possession of these results one may already stert with making models for the calculation of various physical processes. These models will coritain the free parameter c whira. remained completely undetermined. What actuelly happens when trensforming into the LIF is that we restrict the surface $\left(\mu-p^{\prime}\right)^{2}=$ const. to its subsurfeces, to its intersection with the surface $\mu=$ cor.st. To each \quad fiven value of μ corresponds a two-parumeter fominy of surfaces in our construction, the paramoiers being λ aru c. On the basis or the assunption that the Ihr world is of reduced dimensinnality one can argue for the equivalence of suksurfaces with different λ, but nothing can be said about the value of c. It is possible that dynamics prefers the "relativistic" subsurfaces with some $E^{i} v e n c$. In this case all such phenomena, like scaling, etc./3/, which agree with the result of cal-
culations makine use of the Galilean symmetry, must be considered Es the "non-relativistic" limits of "relativistic" phenomena. There is no a priori reason to believe that this is n is the case. If this is, then an enlargemont of the present experimental input figures, probably the enlargement of energy, must be accompanied by remarkable changes in the present experimental trende, by the breakdown of scaling, and so on.

Acknowledement

The author thanks Drs. G.Lassner, El.bihul, K.sizegó and Prof. A.Uhlmann for valuable discussions and remarks.

Relerences

1. K. Tóth, to appear in Nuclear Phy3. B, and E2-8023 Dubna preprint, $1974 ;$
2. L.: Husskind, F.ys. Rev., 165, 1535 (1968);
3. J. Kogut, L. Susakind, Yhys. lep., 8, 75 (19'1);
4.. L. Inönd, L. F. لigor, Proc. Nat. dead. Soi. USA, 39, 510 (1953);
4. H.Bacry, N.P.Chang, Ann. of l'hys., 47, 407 (1568);
5. I.h. Gel'fand and G.E.Shilov, Generalized functions (Academic, New York, 1乌64), Vol.l.

Received by Publishing Department Way 22, 1975.

