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SUMMARY

The problem of the transformation propertics of hadronic
(IME)

currents in the infinite momentum franeIis investigated. A ge~
neral method is proposed to deal with the problem which is
based upon the concept of group contraction. The two-dimensio-—
nal aspects 9f the IMLF description are situdied in detail, and
the current matrix elements of & three-dimensional Poincaré co~
variunt theory are reduced to those of a two-dimensional one.
1t is emplicitly shown that the covariance group of the two-di-
mensional theory may either be a "mon-relativistic" (Galilei)
croup, or a “"relativisiice® (Poincaré) one depending on the va-
luc of a purumeter reminiscent of the light velocity in the three—
dingnsional theory., The value of this parameter cannot be deter-
mined by xinematical argwnents, These results offer a natural
reneralization Lf models which assume Galilean symmetry in the

infinite momentum frame.



I. Introduction

In this paper we are going to study the transformation
properties of local interaction currents in the infinite momen-~
twn freme (IMF). There is no need for emphagizing the importance
of the commonly used fact that all unknown dynamicel details a-
bout the matrix element of the electromagnetic current between,
for example, pion states can be condensed into oune invariant

function of the momentum transfer, and the relation

{a*x &' (ofa. (0| o7 = (mp');“F(q‘)gl‘(p-qu) (1.1)
can be deduced from the transformatior properties of the states
and the currvent. Since INF methods are quite ureful in studying
many physical problems we have found it attractive to investi-
gate the trangformation properties of various quantities in the
IKF in order to be able to apply such powerful arguments as in
{I.1). In a recent paper we oxamined such questions concerning
the four-momsntum and angular momentum tensors of a scalar
field theory /1/. In the present paper we wunt to deael with
the transformation properties ig the IMF of currents integrated
over the varisble }= %(Z-t),

(1.2)

Sj)“"(t' B z) d% »
/23

which are often called the “transverse currents" Our

®
investigations are motivated by the review paper of Kogut and



Susskind .4 in which the suthors give & certain group-theoreti-
cal background of parton models. On the basis of some heuristi~
cally justified transforwmation properties of the current (I.2)
in the IKF they give an elegant and compact derivation of the
main features of deep-inelastic ep scattering. They emphasize
the two-dimenaional aspects of INF theories and argue that a
two-dimensional Galilel group is the symmetry group of these
theories, the Galilean space being the transverse space, §l=(x,y),
and the Galilean "time" is obtained by & "rescaling" of the va-
riable t+2z /2'3/. Their argumentation for the Galilean symmet-
ry has, beyond its intuitive beauty, two somewhat obscure points.
One of them is the ambiguous role of z-boosts. In order %o de~
fine the current in the IWF the infinite boost is followed by &
change of the scale for lengths in the }~direction. But this re-
scaling is not present in the case of successively applied "fi-
nite" z-boosts /2'3/. The second point concerms “time" in the
ILF. The transverse current (I.2) appears to be a function only
of X, in the IMF. Its "time dependence", and the “time” itself,
can be defined by means of the'"time translation operator® after
the symmetry group in the IMF has been introduced. Tae procedure
described in refs. 2 and 3 to obtadn the two-dimonsional Ga-
lilei group is very much reminiscent of the contraction of the
Poincaré group into a Galilean subgroup. It is well-known that

group contraction is not & unique procedure, therefore the ques~



tion arises whether the Galilean symmetry in the IMF is unique.

The purpose of this paper is te show that the definition
of "relativistic" gquantities is also possible in the INF, and on
purely kinemetical grounds the "non-relativistic" transformation
properties of the tramnsverse current cannot be justified, The ag-
sumption of Galilean symmetry in the ILF may perhaps be suppor—
ted by that it allows one to deduce many experimentally obser—
ved features of high energy collisions /3/. It 1s an intereating
question whether these features rule out "relutivistic” currents
in the INF.

In what follows we give m detailed derivation of the
transformation properties of “transverse currents® in the INF.
Our method will be the contraction of the Poincaré representa-
tions defined on the matrix clements of currents between physi-
cal states. The crucial steps of this method are the contraction
of the Poincaré group and the "contraction" of the representa-
tion space by means of appropriatcly defined integrals of the
above matrix elements. only after performing both purts of the
programme we cuan deduce the transformation properties of the
ntransverse curreat" in the ILlF. In Uect.II we summarize the
basic concepts needed in the subsequent parts of the paper and
fonwlate our programme for the ILF description. In Sect.III
we aescribe contraction schemes of .he Poincaré group which we

will be interested in. In Sect.IV these contraction schemes



are usgsed to construct representation spaces for the group ob=

tained by the contractions and the corresponding transformation
rules are deduced for the "transverse currents" in the INMF., In
Sect.V. we apply the results tc matrix elements between momen-

tumn eigenstates.

II., Formulation of the IMF problem

In general,we shall be ongaged in the properties of a
gealar current a(x)z s(t,;l,z)', but none of the forthcoming con-
clusions depends on this choice. We shall assume that we are gi-
ven all states, 43 y of a physical system, the physical observab~
les being the matrix elements of a(x) between these states:

20z £0t,5),2) = (g 4 3(x), ¥ . (11.1)
As usual, we assume that on the suates (1) a unitary, irreducible
representation of the Poincaré group ie given:

. '

ua,M) P =9, (11.2)
Ula,, A)U(e,,A) P = U(a,\, va,, AA) .
The relation between matrix elements ven in two different Lo-
gi /__A
renv2 reference frames comes from the principle of relativistic
e
covariance, which says:
(U(a,A)d)e , (e, I, )= (4, acxtemd,) . a1y
The relations (II.1-3) can be converted into a representation of

the Poincaré group on all functione f(x), which are all matrix



elements of 9(x) between the stateg ¢
T(a, A)f(x) = £(xA+n), (11.4)

ory, in the infinitesimal form:

M E(x) = =i [xﬁa% - xua_%] £(x) , (11.5)
Pre(x) = -1 5% £(x). (11.6)

This representation corresponds to a scalar current and ihe re-

lations (II.4-6) are to be compared with the usual operutor re-

lations:
U e, A)s(x)U(a,A) = s(xfea) , (I1.41)
b.“v s s(x)} = ~i [XFE%: - x"g%: }s(x), (I1.5M
[p‘”, s(n] = - 5)%; o(x). (11.0")

The detailed properties, like unitarity, etc., of the represen—~
tation (I1.4~6) depend very inuch on the operator s(x). Thece
propertics will not be important in this paper. But we chall
need the following properties of the functiona f(=z):
L. They are infinitely differentiable with respect to iy of
their fourAvariables;

2. Such geries like

- °0 "
re X0 o T (=i ) 6 £(x) (11.7)

n:=Q

converge, G, being any of the infinitesimal operutors.
These properties aossurc that infinitesimal and rinite group ele-

ments c¢an be used on an equal fcoting.



It is clcar that the representetion (II.4-6) is reducib-
le. #e shel) restrict ourselves to its irreducible parts proce-
eding in the following manner. We consider two fixed physical
states ¢ , (PP, and define the irreducible set of functions
fa:g (x;{(a,A}) of x by

£ep (xi(a, ANz (4,, s(xhea)d, ), (I1.8)
where all functions are enumerated when all elements (a,/ ) of
the Poincaré group are enumerated. It is obvicus that an irredu-
cible representation of the Poincaré group can be defined on these
functions, the representation being given by the same formulas
(I1.4-6) as previously. Let us remark that all information about
this irreducible representation is involved in the two properties
described above and in the infinitesimal relations (II.5,6) spe-
cifically applied to the function

Tup (x) =<¢P"S(X)¢°‘>' (11.9)
It is an important conseguence of relativistic covariance that

the sume representation space as (II.8) erises from the functions

+ )
ety (X2, ANz(disxend, ) (I1.10)
whare <5F’= U(a',A')dJﬂ , 4);: u(at, A')(b“ , and (&', A') is
fixed. The relation between the functions {(1I.B8) and (II.10) is
as follows: (II.11)
£, (x3(a,A)) = T(a', ANE, (x;Cary AV (ayA)(a" A,
for every {a,f\). The correspending representations of the Poin-

caré group can also be simply related:



s, A £L, (xi(a,A)) = (II.12)
= 2(a', AN {(a’, A (ar, A, ) (8", A

nfae (x5t AV (@A) (2, A,

for every (a,/\) end {a,, A,). Lspecially, if we choose a z-boost
e_i§ N, for {a', A\'), the _rimsd functions fl, and operators I
glve the description of the physical system, in comparison with
the unprimed ones f°‘i-‘ and T, in a moving reference frame. In the
limit §—yo.:. we obtain the description in the Inl's In order to be
able to specify the symmetry propertics of the theory in the ILPF
one must discuss the following problems:

Problem 1

¥e are to describe the group arising from the limit

lim [eif Ha(a’[\)e-i§ n,l s (A (11.13)

freo

Problem II

#e must specify all the functions

vim 2(e~tE R yp(eti (o) 1) et E ) fap (X2 (11.14)

§roo
on
EE 30 (x5(a,A) ) 3
Problem III
Finally, we must interpret the functions f:; (xi(a, A )y ) vs
oo g
matrix elements of an Il current s® (x) between stateu4) all
having well-defined transformation properties with respect to
the group (2,/\)e -

Problem I is, actually, a contraction problem for the Poincaré



group. It has severui solutions, the limit glves either the to.in-
caré group itself or one of 1ts subgroups /4/. (strictly spea-
king, these groups are isomorphic 19 the original Poincaré group
or its subgroups.) Contraction into the Poincaré group has been
descrived in ref. 5 , and into some of its subgroups by the pre-
sent euthor in ref. l. 4o a priori reason can be glven for cho-
osing cne or another sclution of the coniraction yroblem. Only
some physical hints may inspire one to maeke a definit choice.

In thip paper we look for such solutions of Problem I that
(I1.73) leads to zorntraction of the Poincaré group into .ome of
its subgroups. This choice is motivated by refs. 2 and 3 , These
subgroups will be Galilei and Poincaré subgroups which transform
two "gpace" coordinates and a non-relativistic or relativistic
“time%“ coordinate, respectively. (In what follows we ase the ter—
minology of ref.l. and call 3}-Poincaré group the cne described
by the formulas (Il1.4-6), its contractions will be called 2-Gali~
lei and 2-Poincaré groups, respectively.) After coming to this
decision on Prcblem I it is eclear that the four-dimensional ho-
mogeneous space x™ of the j-Poincaré group is to be raeduced to
gome three~dimensionzl one. One may hope to achieve this by in-
vegrating the functions f;e (x;(a, A)) over cne of its variables
and may reformulate Problems II and III i terms of these in-
tegrated functions. For a convenient choice of the integration

varieble we change t and z by Tand } :



(z-1), T =(t+z), (1I1.15)

S Ll

3=
and, for the functions f:p (t,_:gl,z;(a,A)) we use the notation
slp (T,L..};(E.A))‘E g;P (x;(2,A)). We phall be interested in

the functions

o
Elq (Trgl:(a,/\.))s_i £l (xj(8,A))ay {1I.16)
in the I¥P, that is, for §—>°° +» We must specify the functions
s {rz.im
o . _ -ifN. 1N ~1§N
es (Tixyi(e, A, )=éi:_£f(e Wy (elth (o, A)e ™ M) (x1a3

and deduce the transformation rules in the INF for the "trans-

verse current"
oo
_(s(x)dg .

Bef;:e concluding this section we make an important re-
mark cono;arning the solutions of Problem II. In general,the so-~
lution of Problem II yields different representation spaces and
theréfore different representations of the group (8,A). , if
fap (x) im changed to some f‘:F (x), fEF (x) being the matrix ele-
ment of g{x) between the states U(E,ji)ti)ul , u(a, i\)¢’p , with (3, A)
fixed. Problem II for the function fi[’i {x) would mean the calcu~-
lation of

2an7 (e M) 2 (o, 1) e 08, Ry (0. (1I.18)

»>o0
“ince (5,[\) is a fixed element ¢f the j~Foincaré group, in the
limit f+oo it becomes, in general, a foreign object from the point
of view of the contracted group (&, ). .

ally, for the reader's convenience, we write down here



the action of the 3}-Poincaré generators on the functions g (x):
xg

(b, =N, ) g(x)

]

ey - y;%) BT 4%,53)s

(ni, +N, Y g(x) = 21(3% - y;‘%-) a(x),

(g =iy ) g(x) = 2100 -1 3D (),

(e, )6(x) = ilxg -T2 200,
My glx) = i(y'éa; - :51;;)‘ gl{x), (11.19)
Ny alx) = i(};% -79—2-)' a(x),

(R +F,)e(x) = -21 5% g(x),

(§, ~F, 1 g(x) = ia—g' a(x),

P, o) = -1 5,—2: &(x).

I1II. Contructions of the 3j-Poincaré group

In order .o make this paper gself-contained as much as
possible we glve a short summary of those coniractions of the
3~Foincuré group which we are interested in. (For more details
see also ref.l )

The two-~-dimensional Galilean description in the ILF <cems
from the following connecfion between the generators of space-time
transformations in the limiting and ordinary reference frames,

N2/,

0 and O', respectively

5,= Alim {e-jU(E)(M;d-N")U-‘(E)} , (I11.1e)
freo



,=- A {7 up ag-apuip} (111.1b)

M= lin {u(f)m;u‘(g)} . (III.1¢)
R 5= 1im {ef u(g)(p;+P3")U'(g)‘(- . (111.14)
P,= lim {u(;)Pgu"{;)} ,  i=1,2 (III.1e)
/L,-.—).lim{e_f U(EI(RI-BOUR] (I1r.11)

lim {e'f U(EN U] = Lmfu(g YU} =
» (I11.1g)
= 1w {0 @-R)HUIDY = 0

The symbol U({) denotes a z-boost, U(§)=eiEHI s A 19 a1 arbitrary
positive number. These relations zive & mapping of the 3-Poincaré
al gebra

[y, nnl= oy, m] =1, 0m,

[”Z ’ N,’] =1 g, N, (II1.2)

(M)lw ' P;] = i(g‘,? P»lt b g}“y Py )
onto the 2-Galilel algebrs, its elements being 5 , P,, (i=1,2),

M, , B andp,:

[s,p 51=0, [, s]-=1 £, Si »

@DL' Pj]=°' [Hcr P¢]=°:

[s: a'l= 1, , [s., 7] = 1.8y s (1I1.3)
[u,, #l=0 , [u, p]=1 € By

[si,v/‘o]"" [Mg l}"n] = [P., ppbo )= [Hq l/"’oJ= 0.

The mapping (III.1) can also be expressed as follows:

13
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=lim
fwoo

L

0

0

o]

0

o]

0

=

ey

P
’ (I1I.48)
Pl

Pcl _P}l

o o] [n Hgf[

0o 0 b
o 0 At
3
. (IIT.4b)
o 0 Ny
—o~ 0§ | my -ny
1 )
-%

o e J ;M: +Nq

This is obviously a Wigner~Indni contraction of the 3-Poincaré

LY

algebra

« How the question arises if other wigner-Indnii con~

tractions of the 3-Poincaré algebra may also be of interest. As

it was shown in ref.

it seems natural to consider, for example,

the following contraction:

-

3
=lim

e

.

s}

8]

0

1 1 Rk
Dot © 1[ ms e
1
0 S| BN
0o o b}
, (II1.5a)
0o 0 Ny
'E Nt
3 Q M} -N,
0 e-f/ | B! N




-

o

I

""]{—’\' 0 0 Ac* P! +P¢
o] 1 [¢] [o] A
1
= . . (I11L.5D)
[o] [o] 1 [o] Ig
:1— 0 0 A P -p!
axet ° 3

The "infinite momentum 1limit" character of this mapping becomes

more o

bvious if one rewrites (III.5) in terms of z~boosts:

4ict

=§J;1iu {u(g)[ I §(m' +N)) - _Le§(m =N! )1 U"(E)S i (1I1.68)

K= M {U(_E)[ Y] }(m' =N!)+ —-)\—élef (k! +1

U'(§)j- 5 (IIL.6b)

1

]
hm{u(p[ Fag w0 + Acte™! (m) -py oot 5 (1inse)
]

p= 1 {ug)[- e +P')+)\e gy -p2)

In (II
That t

vious

(»

This i

of inh

vpl ; (ar.ea)

I1.5,6) the letters )\, c¢ denote arbitrary positivé numbers,
hisg contraction scheme-: is natural to be consldered is ob-
from the following commutators:
dEl= -ty [uy, w)eaegk, . seL.2
’Pt]=0 ’ [Pt ’P4]=0’
c =0, {m} VB ]=ie,E (111.7)
P N .1 4
~,H}=1P", [3{;11)3}=1E_1' ch s

&
L H )= (ks P‘] =[/,L yin] = [k K] =0.

s a 2-Poincaré algebra, its elements being the generators

omogeneoua Lorentz transformations of two spacelike and one

timelike coordinates. The parameter ¢ plays the same mathematical

role a

s light velocity does in the usual 3+1 dimensionu’ algebra.



when ¢ poes to infinity the algebra (III.7) contracts into the
non-relativistic one (IIT.3).

In contrast witn the parameter .: we have an arbitrary po-
sitive number A in both cases of contractions which does not ap-
pear at all in the commutators (III.3), (III.7). Obviously, for
the different values of A the mappings (II1.4) and (III.5) yield
different (but isomorphic) 2-Gaelilei and 2-Poincaré subalgebras
of the 3-Poincaré algebra, respectively. We are going to assume
that 3-Poincaré covariant theories become 2-Poincaré covariant
ones in the IMF with some given value of the parameter c. (Its
value is to be determined phenomenologically. For the 2~Galilei
covariant case c=6 .) It seems natural to postulate that all
contractions corresponding to the various values of \ are phy-
sically equivalent, that is, none of the predictions of the theo-
ry in the ILF may depend on .

For a comparison with Susskind's {reatment of the 2-Ga~
lilei symmetry in the INF we mention that he seems to choose A=l,
but preserves the N3 generator /2'3/. Thus the aymmetry group in
the Ik} becomes a 2-Galilei group extended with dilatations. Since
the dilatations correspond to changing the value of )\ , dilata-
tion invariance of the theory correaponds just to the postulate
we formulated above. Our formulation has the advantage that it
can be generalized without difficulty to the 2-Poincaré case,

while the N, generator cannot be joined to the 2-Poincaré genera-

tors to form a closed algebra.

6



There are, obviously, further ambiguities in choosing
the matrices on the right hand side of (II1.4) and (1II.5). Let
us denote by A any of the matrices in (III.4m,b) (or (III.S5a,0)).
The algebra (III.3)} (or (III.7)) remains unchanged if Agha, is
substituted for A, whers A, is eny 3=Poincaré transforeation of
the generators M;v N PL s and A, is any 2-Galilei (or 2-Foinca=-.
ré) trensformation of the gemerators S, 9 Ny, i v B (?r K, »
My, HP s PL ). The requirement that the INF theory should be in-
deperident of the choice of A, and A, is, in the case of 4,, ful-
filled by the 3-Foincaré covariance of ihe theory before trans-
forming inte the IMF. In the case of A, this requirement leads
to the covariance of the theory with respect to the 2-(Galilei (or

2-Poincaré) group in the IMF.

IV. The representation spaces in the INF

In this section we deal with the soluticn of Problem II,
and constiact those function spaces which may serve as represen-
tation spaces for the contracted groups. This task, in its origi-
nal form (II.14) means the calculation of such limits:

. ~i -
lji T{e “ﬂgw{'r,zl,g ) = lig gdp('re ‘._:g*. 3e§ Y (Iv.1)

£

and we need mnch more detailed properties of the current matrix

elements as we have used so far. To overcome this one may use

7



72/

Susskindt's proposal for integrating over the variable } and

calculating by means of the rule

glim Eup ('!'e-'E Xy jef Yay = lime-fgg:;(Te—g,gl,g)d y (Iv,.2)
o §

but then one faces ihe probvlem that the factor e makes zero
the functions we are looking for. One may use certain "physical"
arguments /2/ to eliminate the factor e—g from (IV.2) and may

conclude that in the IMNF the correspondence

foup (7o 203003 — (6, (0 x,53 )03 (1¥. 3)

is valid. One must notice, however, that (IV.3) is part of the

mapping

fenp (xia ANdy = 5’ CICTPNLE (1v.3)

- o0

we are to specify when we solve Problem II. It is this mapping
what really determines the content of the theory in the IMP.
As 8 first step to specify the mopping (IV.3) we deal
with integrals of the following type:
SGg‘F’ (xaj , (1V.4)
where G is an arbitrary polynomial of the 3-Poincaré generators

(1X.19). In practice, (IV.4) means such expressions:

- I R 3 .

‘(D( Ty l(‘).’ 3T ! ax )3 33,_ g“‘ﬁ s '-J. }]d} s (1v.5)
where k,1 = U, 1, 2, ..., and D 1s some polynomisal of its ergu-
ments. To obtain useful formulas we must assume that derivatives

with regpect to T, x, are interchangeable with the integral in

e



(IV.5%. This means that the integral
{
)
y e (x) aj 1v.6
{4 37 Bep 3 (1v.6)
must exist for every %,1= 0, 1, 2, ... . Then it follows thal
t
k_2 i .
‘1 IF Exp (0] = 0, if |jlo e . (1v.7)
In goneral, this condition does not fulfill even if the function
Exp (x) 1s a matrix element of the current s(x) between normsli-
zabl : states 4;, #a’ Uince the variable 3 wes arbitrarily chogen
as integration variable the strong asymptotic behaviour (IV.7)
mus% be required also for the dependences on 7 and X, But this
class of functions is m3pped onto itself by Fourier transforma-

tion, therefore, if

é«ﬂ (q) = rg“p (x) &' a'x , (1v.8)
then it follow;:,for example, that

@) &, ()0 (1v.9)

for any n=0, 1, 2, «us, if {Q*|~> o« . If, especially, Cug (x) is
a matrix element of s{x) between normalizable supcrpositions of
momentum wigenstates, the coadition (IV.9) means, in general,
that the form factor

F((x-k")") =<x'|s(0) k)
decreases faster than any inverse power of (k—k'f , if t(k—kUL‘aau
If do not wan' such an unduly restricted theory, we must accept
that the integrals (IV.5) diverge, and we must decide on the mea-

ning we are going to attrivbute to them. This is, 1in fact, a re-

formulation of tha problem of the mapping (IV.3).



With special sttention to the purpose of describing

functions in the IMF we define (IV.5) as follows:

o0 ]
. k_9
-iD(T' 55 32 723 3T fx(®9y= (1V.10)
=p(T 2 2.
=(T, X5 37 0 951_) gnp (7, EC-L) ’
where
Eup (Ty E) £~g €y (T 2p03)4) (1v.11)

denotes the canonical distribution theoretic value of the integ-
ral /6/.

First of all, it follows from the definition (IV.10) that

giﬂ S pee~tt N,)g“ (T 2,383 = £4(0, X+ (1v.12)
This 1s the function in the IMF which corresponds to th. unit e-
lement of the group (a,A)m s independently of the actual group
contraction scheme we want to choose. Let us notice that in
(IV.12) we arrived at a function of iwo variables only.

In order to construct the other g:"p functions one must
calculate the action of the generators of the group
{e,\)o, on Eyp (o, x,). In the 2-Galilei case we proceed by
using (I1.17), (11.19), (I1I.1), (II1.10) and obtain:

o, i= 1, 2,

iy Z-x) g, 01,

5 545(0'51)

My g,(0,x))
3 Pap TS e (1v.11)
By g (0m) = =t 5% 6 (002 ),

H £,(0,2) = ~jt 55 645 (00F,) -



From these relations one can easily reconstruct il the functions
RS IO SN L
(1v.12)

85 (Th %3(a A0 ) 260, (Oxi (B1)s 6, Gl g+ L)y

where (E,L) denotes a general, six-parameter element of the 2-Ga-

lilei group. Its homogeneous part L = (R, !-.\.) involves rotations

R and Galilei transformutions in the two-dimensional plane gc_l=(x,y).

Its inhomogeneous part b = (2, _EL) corresponds to "time" and

space translations. Altogether the transformation rule:
Ltos x)CE,0) = (fo+ by, Xt + y+ £ ),

B =
sin® cosb

(0039 -sinG)
The functions (IV.12) depend on the variables Eln(ny) only, and
look like the functions

: &
& ;1
£ (tor 2,500 ,1))= ot

g2, (00 201,10 (1v.14)
of the variables (t,, E.L) for zero value of the non-relativistic
"time" t,. It follows from the construction of the functions
{IV.14) that a scalar representation of the 2-Galilei group can
be defined on these functions by the rule:

88,5 28 (x5 (0,000 = £ (6,x (8,18 ,L)=

) <p otk ? ] “p ot X 7 y )

(Iv.15)

= oo (horly s xR+ ¥ B5CE,10) .

This pricedure can be repeated also when (a,{\), is the 2~Foin-
caré group. tguations (IV.11) remain unchanged in the case of M3

p .
and E.L , the action of the genevatirs lil_=(l{4 y K,)9 H on g“p(o,il)
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iz as followa:

1 3
Kt (0, z,) = -4 SraZl 5T Bap (o, )
(IV.16)
P - 2.2
B g, (0 %) = -2 2n 37 Sup (0, x,) .
Ingtead of eq. {IV.12) now the functions
6 (To zilaf) Iz e, (0 23(2i8)) 26, (54 +8) (V1D

appear, where (g,é}) denotes & generzl element of the 2-Poincaré
£Toup, £§ being a 3x3 matrix for the homogeneous 2-lLorentz trans-~
formations, the three-vector a= (a,, gl) refers to the transla-
tions of the 142 dimensional Ninkowski space-time X = (t, x ).
In (IV.17) also the following notations are used:

i = (0, 20, é = { g; 8, gl). Again, the two-variable
functions (IV.17) cun be provided with "time dependence" by means
of the definition

P
P H
Tap (80 25(8,0)) = elt

ng (0,x,35(a, 41 (Iv.18)
On the functions (1V.18) it is easy to define a scalar representa~
tion of the 2-Poincaré group:

[

17 (2t AN 1], (xi(ai)) = fjp (xila’, A (8,A)) =

=l (A s ati(a 4. (1v29)

Only 1he last point, lroblem IlI , of our programme re-~
mains, namely, to express the equations (IV.15) and (IV.19) as

transformation rules of the transverse current Ss(?‘.éLré )d§

in the 1hM¥. In the 2-Galilei case we interpret the functions



G
L (t,, 51;(!,L)) as matrix elements of a 2-Galilei scalar cur—
rent
s 3
5(t,,x )z v, (oMM ) (1Iv.20)
es G
U A | it B
n{?.::g -LU (§)slT, x,,] )U(pdazuc(e )
between the states U (!,I)¢, , IJC(L,L):{;‘3 s where Ug(?,L) stands
for the cperators representing the 2-Galilei subgroup, generated
by (III.1), of the :-Poincaré group on the physical states ¢.
By similar definition the operator

P
-t itH
s(t, x,)= U, (e )

;{11m_f1flg)s(1-, £ 3)0Dag | U s

is a scalar operator with respect to the 2-Poincaré group. As we

(1v.21)
ith )

have shown, the integral in both cases assumes a careful definition.
Before concluding this section we shortly discuss vector
currents %W(T‘, 5;’3 ) in the INP. By repeating the arguments
described in detail for the scalar current one obtains the follo-~
wing results.
1. If the 3-Poincaré group is contracted inte the 2-Galilei one
the following gquantities have simple transformation properties
in the INF:
[T HC 7 i
- 3 . .
2,0 0x)= 0 () {1 (01, (rx, ) agoc o
-oo
G
Lyt olnE
P, (4,,x,)25 Uy (e )4
2 o G
linm :‘Ffu"( i e 5 ]uerag b o et ) (1v.23)
* e § do < JsJ £143§ Ue ‘ <23
-

The transformation rules for d; , §, end§ ere those of the two-

. [
10y (1v.22)

23



momentum, energy and megs densities, respectively, in a non-re-
lativistic theory. (See also ref.2 )

2, +hen the 3-Toinenré group is contracted into the 2-Foincard
one in the Iil' a vector current g(g)sa(Jo(z), il(f)) and a sca-
lar one 5(5) can be found. They can be expressed by formulas si-

milar to eq. (IV.21), only the guantities

I AP -F . . .
5 e (JC+J§) + Aete (30-33) y i (1v.24)
and Ae"k(ja—.jj) - ﬁlef (3,+3,)s (1v.25}

respectively, are to be subsiituied for 9(1"5L'3)'

Finally, we must remark thot, naturally, the results ob-
tained in this section for the current transformation properties
deyend very much on the solution we have given for Problem II ,
or, explicitly, on the definition (IV.10,11). Uther prescriptions
for the restriction of the 3-Poincaré watrix elements to some IMF
functions can, of course, be propesed, but, in general, then one
finds more complicated expressions inatead of (IV.1l) or (IV.16)
which are of basic imporiance in the construction of all functions
in the IL¥. Also, the relations (IV.11) or (IV.16) w.ade us able
to recormize definit transformation properties, which would other-

wise be complicated and of no use.
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V. A gimple application

In this concluding section we illustrate how the proce-
dure described works in practice. The simplest possible objects
to consider are the matrix elements of a scalar current between

momentum eigenstates with zera spin:

Eyp (T Xi(aiA)) -5<p s(xA+a)|pdaj, (v.1)

the states 4; and ¢B belng labelled by the four-momenta

EN 2
B, = (B »p,sp )y P; =P, D - E)= u*, and pi*= (p/,0%,0"), Bi%= n*,
respectively. In the ordinary reference frame and for (a,/)=(0,1)

the function {V.l) can be written asg

T(p, p)+1(2 -p)x
LR S(p -py. (Va2)

EplTox) = 2P ((o-p ))
As usuel, the dependence of F on m is not denoted. Now we examine
the functions (V.l) in the Ik} in that cagze when the 2-Poincaré
scheme of contraction is used., According to the conclusiong of
the previous gection the counterpart fdp (5) of g*P (T,il) in the
ILF appears as the matrix element of a 2~Poincard scalar current
3(5) between some states lE ,fL)' and iE"}"> corresponding to
‘p:; andlp‘> , respectively. A state ,E ’ﬂ) is a momentum eigen—

atate in an irreducible 2~loincaré representation space with

"spin" zero and "mass" m , mot= M +pic? , (v.3)
1
M o=Ap. = Tap, . (Ved)
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Based upon the stundard arguments we may write:

Cetyp GO py = By pty e - ) EEDX ()
where
Uk = 2 O k) = (k) 2 (pp e (e (v.6)
(-l x= (e -t + (<KD, (V.
k, = enets }_c.ﬂ"‘ , K = c[@'lc’”k 1_:'11JVL. (v.8)

Notice, firstly, that we did not provide the function F with a
dependence on A . This is explained by the arguments of Sect.lIlI.
Secondly, one must notice that while in the ordinary reference
frame one could express the matrix element (V.2) by means of an
unknown tunciion ¥ of one variable only, now in (V.5) the function
ﬁ of three vuriubles has appeared. Carrying out, however, on
(v.1,2) the procedure we have described in the previous section
for the rcduction of 3-itoincaré covariant functions to 2-loincard
cavariant ones the dependence of ; on p and fﬁ can be made ex-~
plicit. #hut remains is again an unknown funciion of (p - p')l .
First we consider the speciul case when p,= Ve From the

general roraulas (Ved) and (V.B), and from

._.L_ 1 ¢
A T Actp_ (V.y)

it follows that
. L kY
2Nep_ = pe o+ [m‘ + cl] . (V.1u)
Unce the vnlue of the parametoer )\ is gpecified the guantity Moy

or, the 2-l’'oincuard mass m 4 can be detcrmined as function of p_
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and c¢. Furthermore, by identifying _l_{_l = Bl » and using

. 1
puo=Apt - ryv N (v,11)

the argument p - p' of the Dirac deltu in (V.2) gets easily ex~

, 2
pressed in terms of 4 i and (p =-p") :

l‘..._.];_ 'y ] . -p')
P~ p' =33 [(-#-}&)(.4+m+5-§%ﬁ_$] . (ve12)

Now we may write the equality:

Bt - ) = 2Tr((e-p ) S (0= ) & (vo13)
Lot us remark that in the 1imit c-4o eqs. {V.3,12,13) reproduce
the foriulas of the 2-Galilei symmetric case familiar from ref. 3.
It is also worth mentioning that while in the 2-Galilei cuse a
simple scaling property of 17 f‘olloulvs from the "no A~dependen@e*
agssumption /3/, in the 2-Poinceré case a rather complicated imp-
liecit relation can be extracted from egs. (V.10,11,12,13) for
the “unction F.

To complete the discussion of (V.2) in the IMF only the
case .EJf o, 2 # 0 remained to be dealt with. (For simplicity, we
still assume that p = (p,, O).) We make explicitly use of the
freedom in choosing the matrices (III.5) up to arbitrary fixed
3j-Lorentz transformation. For the matrix A, (see the discussion
at the end of Sect.III ) we choose the one carresponding to

o-i® (M, + Ny)
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I+ is not very hard to verify, that egs. (V.12,13) remain un-
changed, only the mapping between the momenta P, , p; and k , 5'

must be modified. The mapping in thls case is as follows:

k=0, k, = (p +av. 4B ), (V.14)
1 , :
M o=Ap! - Dorlp, v 2xp +pl ), (v.15)

and eqs. (V.8,10) survive.

In possession of these results one may already start
with making models for the calculation of various physical pro-
cesses. These models will corntain the free parameter c whicu re-
mained completely undetermined. #hat actually happens when trens-
forming into the ILF is that we reotrict the surface (p - p‘)l=
const, to its subsurfeces, to its intersection w#ith the surface
M = corst. To each given value of corresponds a two-parumeter
{arily of surfaces in our construction, the parameiers being A
and c¢. On the basis ol the assuaption that the IMF world is of
reduced dimensionality one can arpue for the equivalence of sub-
surfaces with different A , but nothing can be said about the
value of c¢. It in possible that dynamics prefers the “"relativis—
tie" subsurfaces with some given c. In this case all such pheno-

mena, like scaling, etc./j/, which agree with the result of cal-
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culations making use of the Galilean symmetry, must be considered
as the “non~-relativistic" limits of "relativisgtic" phenomena.
There is no a priori reason to believe that this is n % the case.
If this is, then an enlargement of the present experimental in-
put figures, probably the enlargement of energy, must be accom-
panied by remarkable changes in the present experimental trends,

by the breakdown of scaling, and so on.
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