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1. INTRODUCTION 

Interest in studies in 2D conformal field theory [1,2,3] is permanently increasing. In the  
last years, this theory gained general recognition as the basis of (super)string models and 
the statistical mechanics systems a t  criticality. 

Important examples of conformal field theory are provided by the Wess-Zumino- 
Novikov-Witten (WZNW) group manifolds sigma models and their supersymmetric ex- 
tensions. With a special ratio of the coupling constants, the WZNW action exibits both 
(super)conformal and (super)Kac-Moody (KM) symmetries and gives a field-theoretical 
realization of the Sugawara construction. All the non-trivial rational conformal field the- 
ories are expected to  follow from WZNW model by the  GKO projection 14). 

The  classical and quantum properties of ordinary bosonic and N = 1 superconformal 
WZNW sigma models were exhaustively analyzed in [5,6] and [7] , using the standard tech- 
niques of conformal field theory. The  first examples of N = 3 and N = 4 superconformally- 
invariant WZNW sigma models on group manifolds have been constructed in our papers 
[8,9]. These models involve, as essential blocks, the bosonic 0 ( 3 ) ,  SU(2)  or O(4)  WZNW 
actions and admit a nice interpretation in terms of nonlinear realizations of 2D N = 3 and 
N = 4 superconformal symmetries ( 0 ( 3 ) ,  s"U(2) and 0 ( 4 )  KM symmetries of the relevant 
actions naturally come out as parts of N = 3 and N = 4 superconformal ones). A neces- 
sary ingredient of these models is the presence of additional free bosonic fields interpreted 
as Goldstone fields corresponding to  broken 2D scale or U(1) invariances [8,9] ' . Later 
on, a wider class of such models was discovered, starting with a different geometric set-up 
[10,11]. T h e  most essential general features of them are, first,that N = 3 supersymmetry 
of the action always implies N = 4 supersymmetry and, second, t ha t  the relevant bosonic 
group spaces in most cases involve U(1) factors. A complete list of admissible 
bosonic target manifolds is given in [lo].  T h e  models we have constructed in [8,9] corre- 
spond to  the manifolds U(1) x SU(2) ,  U(1) x O(3) and U(1) x U(1) x O(4). As has been 
observed in [12,13,14], N = 4 superconformal WZNW sigma models of this type actually 
reveal a new kind of N = 4 superconformal symmetry which was missed in the  paper of 
Adelnollo e t  al., [15]. I t  contains an  additional U(1) generator giving origin to  the whole 
( ~ ( 1 )  KM symmetry. The  latter is realized as shifts of one of free scalar fields present in 
the action. 

The  quantum structure of these higher N WZNW sigma models has been studied 
in [12,13,14]. The  OPE'S (operator product expansions) of the relevant currents have 
been constructed and the  general expressions for central charges have been found. An 
interesting peculiarity of this superconformal theory is the  appearance of the Feigin-Fuchs 
type terms in the currents. In our letter [14] several important cases were considered when 
a ferrnionization of the KM currents becomes possible. As has been pointed out in [16], the 
\YZNW sigma model realizations of U(1) extended N - 4 superconformal algebra (SCA) 

'One may add to the sigma model action the Liouville term for 2D dilaton (accompanied by appropriate 
Yukawa couplings with fermions) without affecting the underlying superconformal symmetries [8,9]. 
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bear an intimate relation to the theory of representations of Knizhnik's superalgebras 
[17,18]. In more detail the representation theory of this new N = 4 SCA was constructed 
in [19]. 

Until now, all these considerations were performed using the language of ordinary 2D 
fields. However, the most elegant formalism for handling supersymmetric theories is of- 
fered by superfields The superfield methods, in particular the techniques of superfield 
operator product expansions (SOPE),have already shown their worth in N = 1 super 
WZNW models 17'1. The general superfield calculus of higher N superconformal symme- 
tries has been developed in [20,21], without referring to particular models. The purposes 
of the present paper are to specialize this general formalism to the N = 3 and N = 4 
WZNW sigma models mentioned above and to construct the self-contained superfield de- 
scription of the latter, both on classical and quantum levels. We confine our study to the 
sin~plest models of this type proposed in [9] because, for the time bdng, only for them the 
basic superfields are known. Besides, they are directly related to the structure of N = 3 
and N = 4 SCA's, originating from nonlinear realizations of the latter. Nevertheless, it 
is likely that the remaining models of this kind can also be translated into the superfield 
language without serious difficulties. 

The paper is divided into two parts. In this first part we begin (in Sect.2) by reviewing 
a general spperfield formalism of superconformal theories for any N ,  with focusing on the 
cases N = 3,4. As a new development, we give here the basic elements of superconfor- 
ma1 superfield calculus for U(1) extended N = 4 SCA. Further, ip Sect.3,4 a superfield 
formulation of N = 3 WZNW sigma model is presented. We show how to define the 
N = 3 supercurrent through the basic primary superfields, both in classical and quantum 
cases, and construct the relevant SOPE's. We also find out the necessary presence of 
one more N = 3 superfield of the supercurrent type which, together with the standard 
N = 3 supercurrent, generate U(1) extended N = 4 superconformal symmetry. Finally, 
we formulate the superfield fermionization rules corresponding to the cases considered in 

[141. 
The second part of the paper will be devoted to the superfield description of N = 4 

WZNW sigma models. 

2. GENERALITIES OF N EXTENDED 2D SUPERCONFORMAL 
THEORIES IN SUPERSPACE 

Here we sketch the superspace formalism of 2D superconformal theories for arbitrary N ,  
with a special emphasis on N = 3,4. We basically follow refs.[20,21]. 

Denote the coordinates of N extended 2D superspace by Z and 2 ,  where 

'We do not need Z and 2 to be n~utually conjugated 

and define spinor covariant derivatives D', D- 

i -j 
{ D ' , D ~ ) =  -26iiaz, { ~ - , ~ - ) = - a s j l a , ,  {D' ,E-)=O. 

The basic entities of N extended superconformal theory are the analytic (antianalytic) 
superfunctions f ( Z )  ( f ( 2 ) )  which are defined by the Grassrnann analyticity condition 

(and analogously for f ( 2 ) ) .  One may decompose them in generalized Laurent series 
which involve ordinary Laurent series in z and Taylor series in 8': 

For the coefficients in (2.4), the following modified integrd representation is valid [21] 

where the contour C2 encircles the point z2. 

The possibility to deal with the superanalytic functions in 2D superconformal theories 
is related to the property that 2D superconformal transformations preserve analyticity 

where E ( Z )  and E ( 2 )  are two arbitrary analytic and antianalytic superfunctions collect- 
ing parameters of superconformal transformations. 

3 ~ u r  notation is basically the same as in (211 

1 
[i] = i1 i2 . .  . iR, i j  # ik, 0 < R < N ,  fR = -R(R - I), 

2 

1 
e [ i l  = @ I  , , , @it e t c , ,  eN-I i1  = ------ E~~ j , ~ - n ) i i  l i t o ~ i  , . , ~ J , N - R I ,  

( N  - R)! 

e;, =of  - 8 1 ,  z12 = zl - z 2 + e ; o ;  



Spinor derivatives are transformed homogeneously under ( 2 . 6 ) ,  ( 2 . 7 )  

so Grassmann analyticity conditions ( 2 . 3 )  are covariant and one may restrict oneself to 
considering the analytic or antianalytic superfunctions. All this can be expressed as ! 
the statement that the 2D superconformal group is a direct product of two groups acting, I 

respectively, on Z  and 2. Correspondingly, the supercurrents generating these two groups I 
I 

are analytic and antianalytic superfields. In what follows we shall consider, without loss 
of generality, the objects depending on Z .  

The Important quantities are primary superfields 92 which are postulated to have the 
following superconformal transformation law 

I 
I 
I 

Here A is the conformal weight of 02 ancl a is an index of the representation of the group 
O ( N )  which extends to the whole O ( N )  K M  symmetry with the parameters contained in 
E ( Z )  ( o ( N )  acts also on Grassmann coordinates which transform as an O ( N )  vecl.or).The 
matrices ( T ~ J ) " ~  are generators of O ( N )  in this representation. 

The superconformal transformations of some superfield O ( Z )  (not nec:essarily the pri- 
mary one) are generated by the supercurrent J ( ~ )  according to the general rule 

I 

I 
In ( 2 . 1 0 ) ,  all the information about the transformation properties of @ ( Z )  is encoded 
in singular terms of the product J ( N ) ( Z 1 ) O ( Z 2 )  at Z1 + Z 2 ,  because only such terms 
contribute to the contour integral. In particular, for the primary superfields O Z ( Z )  the 
relevant SOPE is of the following form 

( 2 . 1 1 )  I 

where dots stand for the regular terms. Substituting ( 2 . 1 1 )  into ( 2 . 1 0 )  yields just e q . ( 2 . 9 ) .  
I, 

The supercurrent J ( N ) ( Z )  is not a primary superfield, it transforms with an inhomoge- 
neous piece 

1 1 I 

6 , J c N )  = - E ( a ,  d N ) )  + - ( D ' E ) ( D ' J ( ~ ) )  - ( 2  - - N ) ( ~ , E ) J ( ~ )  + d N ) E  ( 2  12) 2  2  

or, in the SOPE language 
I 

where the central term c ( ~ )  and the central operator dN)  are related by 

Jacobi identities impose severe restrictions on the operators O ( N )  ( d N ) )  which prove to 
exist only for N  5 4[20 ,21] .  For N  = 3  and N = 4 the operators dN) (dN))  are 1211 

where c ,  c l ,  c2 ape centrd charges of N  = 3  and N  = 4 superconformal algebras ( c  and 
cl coincide with the conventionally normalized central charges of corresponding Virasoro 
subalgebras) (Appendix A). Appearance of two independent central charges in N  = 4  
case is related to the presence crf two commuting S U ( ~ )  KM subalgebras in N  = 4  SCA 
(0(4)k, ,k= - sAu(2)kI  X sAu(2)kpl  kl = f ( ~ 1  + ~ 2 ) ~  k2 = f ( ~ 1  - ~ 2 ) ) .  

To avoid nonlocalities in d 4 ) ,  it is convenient to define a new supercurrent J ' ( Z )  

which transforms according to 

1 1 
6,Ji  = - E a , J i  + - ( D J E ) ( ~ j J ' )  + - ( D ' D ~ E ) J ~  $ 2 D 4 - ' E  + ~ D i a , E .  ( 2 . 1 8 )  

2  2  12 12 

This supercurrent has the following SOPE's with itself 

and with a primary superfield O z  

The general integral formula ( 2 . 1 0 )  for the superconformal variation of a primary 
superfield in the N  = 4  case can also be concisely rewritten via the supercurrent J i ( Z ) .  



To this end, let us pass from the parameter superfunction E ( Z )  to  its spinor "potential" 
A i ( Z )  

E ( Z )  = D'A'(z) ( 2 . 2 1 )  

oiu(z) + D J A ' ( Z )  = ! P J D ~ A ~ ( z ) .  2 ( 2 . 2 2 )  

The constraint ( 2 . 2 2 )  leaves in A i ( Z )  the same number of independent functions as in 

E ( Z )  

Substituting ( 2 . 2 1 )  into ( 2 . 1 0 )  (for N -1 4 )  and integrating by parts one gets 

It is worth mentioning that the representation ( 2 . 2 5 )  is actually more general than the 
original one and opens up a way of extending the standard N = 4  SCA. To show this, we 
first notice that A i ( Z )  contains more parameters than E ( Z ) .  Indeed, the constant parts 
of functions p i ( z ) , v ' ( z ) ,  b[ ' j l (z)  and d ( z )  in A t ( Z )  do not contribute to E ( Z )  as is seen 
from eqs. ( 2 . 2 3 ) ,  ( 2 . 2 4 ) .  For the primary superfields + ( Z )  having the standard SOPE's 
( 2 . 1 1 ) , ( 2 . 2 0 )  with the supercurrents these additional parameters drop out from the ex- 
pression ( 2 . 2 5 ) .  So, for such superfields e q s . ( 2 . 1 0 )  and ( 2 . 2 5 )  are completely equivalent. 
However, this ceases to be the case if one assumes a more general form for SOPE of @ ( Z )  
and J i ( Z ) ,  namely, adds one more pole term to ( 2 . 2 0 )  

which amounts to allowing a logarithmic singularity in the product with J ( 4 )  

Here w is a new constant characterizing the primary superfield. This term, being sub- 
stituted into ( 2 . 2 5 ) ,  generates an additional U(1) transformation of '@"au(Z) with the 
parameter do coming out as the constant part of the function d ( z )  in A i ( Z )  

The remaining constant parameters by do not contribute as before. 
Thus, the class of N = 4  primary superfields can be enlarged by allowing them to 

carry a new quantum number, the eigenvalue of the U ( 1 )  generator Uo associated with 
the parameter do in h i ( Z ) :  

iUo I O:,, >= w I '@:+, > . ( 2 . 2 9 )  
1 

This generator acts only on the superfield as a whole (it does not affect the superspace 
coordinates ( z , 8 ' ) )  and is naturally accomodated by the general formula ( 2 . 2 5 ) .  It appears 
in the r.h.s. of anticommutators of spinor charges and, together with the old generators 

I Un, TL # 0, generates the whole ~ ( 1 )  KM symmetry. This new U ( 1 )  extended N = 4 SCA 
[12,13,14]  is lacking among those listed by Ademollo et a1 [15] .  The generator Uo enters 

, into the supercurrent J i ( Z )  as a coefficient of z-' in the decomposition of DiJ'  in 
' / Laurent series. On the other hand, in terms of the original supercurrent J ( ~ )  it comes 

out as the coefficient of the logarithmic singularity in J ( ~ ) ( z )  which was ignored in 
standard considerations. 

Thus, on the primary superfields @:,, with w # 0 just this new U ( 1 )  extended N = 4 
SCA is realized. It is reduced to the standard N = 4 SCA only for w = 0 .  Note that 
for the superfields with w # 0  one cannot return to the standard form of variation ( 2 . 1 0 ) .  
The reason is that in this case the integral of a full spinor derivative in the first line 
of formulas ( 2 . 2 5 )  does not vanish in view of the presence of log ZI2 under a/a, in the 
integrand. As we shall see in Part 11, the basic superfields of N = 4  WZNW sigma model 
necessarily possess w # 0  and so provide a representation of the U(1)-extended N = 4  
superconformal symmetry, in accordance with the component consideration of [12 ,13 ,14] .  
It is worthwhile to say that the supercurrents J ( ~ )  and J' possess W =  0  and thus are inert 
under the action of Uo. 

In the next Sections we shall also need an integral representation for the normally 
ordered product of two superfields at  a given point (181 

I 

1 Here Z ,  = (q. O;), Z2 = (Q, 81).  
Finally, we mention that for the coefficients in the z ,  8  expansion of J ( ~ )  and J z  defined 

. according to  

I eqs ( 2 . 1 3 )  (with N = 3 )  and ( 2 . 1 9 )  produce, respectively, N = 3 and N = 4 SCA's. These 

1 SCA's are written down in Appendix A. 



3. N=3 WZNW SIGhIA MODEL: CLASSICAL THEORY where 

The aim of this Sect. is to present a superfield formulation of N = 3 WZNW sigma 
model at the classical level. A generalization to  the quantum case will be given in the 
next Section. 

As has been shown in (91, the basic object of this model is the O(3) matrix superfield 

subjected to the equations 

3(q-'Diq)ll == 0 , (3.4) 

Here the non-underlined and underlined indices refer, respectively, to the vector repre- -- 
sontations of two O(3) groups,0(3) and 0(3) ,  which enter the analytic and antianalytic 
branches of N = 3 superconformal group realized on the coordinates (z,Bi), ( 2 , 8 1 ) .  The 

renormalization of superfield u(Z, Z )  in (3.1) by the factor &, k E Z, has been performed 
for future convenience. 

The meaning of eqs. (3.3),(3.4) was explained in [9] and it is as follows. Eqs. (3.3) 
are the off-shell irreducibility conditions extracting from qG(Z, Z )  an irreducible number 
of 8 + 8 field components. Eqs. (3.4) are dynamical equations eliminating auxiliary fields 
and resulting in the correct equations of motion for the physical components of qu. Thr  
latter are defined as the first components of the following superfields 

, = !/!(q-lDiq)jlcijl 6 2 

the renormalization factors being included to get a correctly normalized action (see below) 
In principle, eq. (3.4) could be obtained by varying a proper superfield action which 
justifies the interpretation of the remaining independent components of q" as auxiliary 
fields. For our purpose, it is sufficient to know the component action wlth the auxiliary 
fields eliminated [14] 

and X A  may stand both for the 2D coordinates z, r and for the 3D ones X n ( a  = 1,2,3) .  
The action (3.6) is invariant under N = 3 superconformal transformations and involves, 
as an essential ingredient, the action of the bosonic O(3) WZNW sigma model. The 
presence of integer k (which is the same as in (3.1)) reflects quantization of the coupling 
constant in front of WZNW action. 

As usual, N = 3 superconformal group can be realized in a closed form on the analytic 
and antianalytic components of fields involved in (3.6). These components are concisely 
encompassed by the general solution of the superfield equation (3.4) 

p ( z ,  Z)  = qiA(Z) . qA1(Z) , (3.8) 

where the index A = 1,2,3 is inert under both O(3)'s and so under N = 3 superc:onform&l 
group as a whole. The latter acts independently on qiA(Z) and qAj(Z), respectively 
by its analytic (antianalytic) branches. Thus, we may confine ourselves to considering 
the analytic superfields qAj(Z) (for q i A ( z )  all the considerations are carried vut quite 
analogously). The only equation to be satisfied by qAj(Z) follows from the irreducibility 
constraint (3.3a): 

~i A j  + p q A '  = 2 -p . .  D ~ ~ A I  

3 (3.9) 

The superfield $'(Z) is primary with the conformal weight 112: 

where the parameters f ( z ) , j ~ ' ( r ) ,  bi(z), rl(z) correspond to the transformations with gen- 
erators Ln, Gf, V,', r,, respectively (see ( A . l ) ) .  Eq.(3.9) is covariant under (3.10), which 
can be checked straightforwardly. 

So far, we tightly followed the consideration in [9). A novel point we have not discussed 
in [9] is the construction of N = 3 supercurrent J (3) (Z)  in terms of primary superfield 
qA'(Z). Generally speaking, it could be derived~from the superfield action corresponding 
to eq. (3.4). However, it is uniquely determined already from the simple dimensionality 
and symmetry considerations. It should be a spinor, have the dimension 112 , be the 
O(3) singlet and contain the KM current among its components. All these requirements 
are met by the expression 

Being aware of the transformation law (3.10) of qA'(Z), one may easily find the corre- 
sponding law of J (3) (Z) .  It is as in eq.(2.12) where the central term is given by expression 
(2.15) 

o(3) = -ZD3 
12 



with 
3 

c =  - k .  (3.12) 
2 

The definition of the component N = 3 currents and the explicit expressions for them in 
terms of fields (3.5) are given in Appendix B. 

I t  should be pointed out that in the given model the central term in the transformat~on 
of the supercurrent arises already at  the classical level. This is related to the fact that 
the bosonic part W1 = W: (3:7) of the KM current contained in J(3) is transformed 
inhomogeneously under 0 ( 3 )  KM transformations [5].By supersymmetry, an analogous 
classical inhomogeneity appears in the conformal transformation of the stress tensor T(z)  
This is achieved due to the Feigin-Fuchs term of field u(z) in T(z) (Appendix B). 

Expression (3.11) completely defines the supercurrent J ( ~ ) ( Z )  as a function of qA'(Z). 
However, this object is merely one irreducible piece of the expression (q-I D'qP1. There 
is another one as well. The constraint (3.9) Implies the following generql structure for 
(q- D'q)J' 

Thus one may associate with qAi(Z) one more superfield of the supercurrent type 

Different representations for P i ( Z )  follow immediately by applying the constraint (3.9). 
From (3.14) it also follows that P i ( Z )  satisfies the constraint 

Let us inspect Pk in more detail. Its transformation law stems immediately from 
eqs.(3.14), (3.10) 

Now we observe two peculiarities. 
First, as is seen from (3.16), P i ( Z )  behaves, up to the central term, as the primary 

superfield of the weight 112 and in this respect it resembles J ( ~ ) ( Z ) .  However, the central 
term has an entirely different form. To our knowledge, no such superfields have been 
considered earlier within the superspace approach to N = 3 superconformal theories. 

Second, the transformation law (3.16), in its own right, does not require E to be as in 
eq.(3.17); the Jacobi identities of N = 3 SCA are satisfied by (3.16) with any 5 ,  so the 

specific value (3.17) of 5 is an artefact of the given model in which P i ( Z )  is expressed 
via qAi(Z) by eqs.(3.14). In fact, one may forget about (3.14) and define P i ( Z )  by its 
transformation law (3.16) and the constraint (3.15) which is easily checked to be covariant 
under (3.16) irrespective of the value of Z. Then, considering J ( 3 ) ( ~ )  and P i ( Z )  together 
leads to the situation with the two independent central charges c and E .  

Thus, the N = 3 WZNW sigma model admits two conserved supercurrents, J(3)(Z) 
and P i (Z) .  As we know, J ( ~ ) ( z )  generates N = 3 SCA. It remains to  learn which 
invariance is associated with Pi(Z) .  

Actually, this question can be answered immediately by looking at the component 
structure of P i ( Z )  in the present model ((B.2)) and keeping in mind that the action (3.6) 

I possesses a wider symmetry, namely that with respect to O(4) x U(1) X = 4 SCA 1141. 
i The coefficients in the expansion of P i (Z)  

are easily seen to complete N = 3 SCA (A.l)  generated by J(3)(Z) to the N = 4 SCA 
just mentioned (eq~(A.2) ) .  As was given in Sect.2, the latter possesses twc independent 
central charges aqd this accounts for the appearance of two different numbers c and 5 in the 
transformation rules of J(3)(Z) and Pi(Z) .  These numbers actually coincide with c, and 
c2 figuring in eq.(2.16) and reflect the two-levels structure of 0(4)-KM subalgebra. Let us 
stress that the canstraint (3.15) is entirely neccessary in order to  match the component 
content of P i (Z)  with the set of component currents completing N = 3 SCA to N = 4 
SCA. It is also worthwhile to emphasize that,  within the superfield approach we deal 
with, N = 4 superconformal invariance of the N = 3 WZNW sigma model in question is 
directly related to the possibility to construct the second conserved sup.ercurrent $'(Z) 
out of qAi(Z). 

Being aware of the transformation properties of N = 4 superconformal currents (141, 
one may derive the transformation law of supercurrents J ( 3 ) ( ~ )  and P i ( Z )  under the 
action of generators belonging to the coset ( N  = 4) / (N = 3): 

where the new superparameter Aa(Z)  collects all the parameters of N = 4 SCA lacking 
in E(Z):  



Here parameters a.d'(z),a(z), ~ ( z ) ,  and aZrli(z) correspond to the generators A:, U,, Q, 
and S: defined in (A.2), (B.5). Let us emphasize that the transformations (3.19), (3.20) 
do not act on the coordinates (z ,  B')  of N = 3 superspace and only change the form of 
superfields J(')(Z), q i (Z) .  The defining constraint (3.15) is covariant under (3.19) for any 
C. 

When deriving eqs.(3.19),(3.20), we did not use the explicit expressions of J (3) (2)  and 
q i ( Z )  via $'(Z) and did not assume any relation between c and Z. So, these transfor- 
mations together with N = 3 transformations of supercurrents can be regarded as the 
general realization of above N = 4 SCA in terms of N = 3 superfields. Specializing to 
the particular form of supercurrents (3.11) and (3.14) amounts to expressing the central 
charges by eqs.(3.12), (3.17) via the integer k appearing in the WZNW action (3.6). With 
this choice of c and Z, the transformations of supercurrents (3.19), (3.20) are produced by 
the following transformation of $'(Z) 

I 

It is noteworthy that the irreducibility constraint (3.9) for qAi puts severe restrictions 
on the structure of supercurrents J(3) and I' (3.11),(3.14).The superfield projections of the 
latter with dimensions 312 and 2 (the ordinary supersymmetry currents and the conformal 
stress-tensor) are expressed, in virtue of (3.9),as the composites of the projections with 
lower dimensions,viz 1 and 112 (KM currents and the additional supersymmetry currents). 
Thus the constraint (3.9) automatically gives rise to the generalized Sugawara form for the 
component currents of higher dimensi0ns.A more detailed treatment of this phenomenon 
will be given in Part I1 in the framework of N = 4 superspace. 

By this we finish the description of classical superconformal theory associated with 
the N = 3 WZNW sigma model (3.6) and turn to the quantum case. 

1 1  
4. N=3 WZNW SlGhlA MODEL: QUANTUM THEORY 

The component action (3.6) involves, besides the fields of bosonic O(3) WZNW sigma 
model, only free bosonic and fermionic fields. So we may quantize this system following 
the standard prescriptions of ref.[22]. As has been shown in [14] and in accordance with 

I 
the general reasoning of [5,7], the basic novel features brought about by quantization are 
the changes in the values of the central charges (actually. only in c) 

and possible appearance of anolnalous conformal weight A and U ( l ) - ~ l i a r ~ e  cv {or q 4 ' ( % ~  
The shift of c by 3 reflects the contributions of quantum fermions ($,( .; 2), of bosonic 

3ka KM current (cw = &) and of quantum dilaton u(z) (c, = 1 + rn) 

The noncanonical contribution from u is due to the presence of the Feigin-Fuchs term 
(properly renormalized in the quantum case) in the stress tensor T(z)  (see Appendix B). 

The transformation laws are most transparently represented by SOPE's between the 
supercurrents themselves and between the supercurrents and the primary superfield qA'(Z) 

';2 i j k  A k  2 
+ - - €  q ( 2 ) +  . . .  . 

2 2:2 

Remarkably, the underlying constraint (3.9), being applied on both sides of eqs.(4.3), 
unambiguously fixes A and wto be equal to their classical values 

The relations (4.1)-(4.4) completely specify the quantum transformation properties of 
the basic superfields and supercurrents of the N = 3 WZNW sigma model in question. 
Note that the infinitesimal ( N  = 4)/(N = 3) transformations generated by '@'(Z) are 
represented by the following general contour integral formula 

jci.  (2.25)). In particular, for $j we have the same transformation law (3.22) as in the 
classical case. 



An important problem is how to define the supercurrents via the basic superfield 
qAi(Z) in quantum case. The classical expressions (3.13) now make no sense (cf. an 
analogous situation in N = 0 and N = 1 WZNW sigma models [5,7]), so one needs to 
seek another way of relating the supercurrents to the basic superfields. By analogy with 
the N = 0 and N = 1 cases, we define the quantum supercurrents J ( ~ ) ( Z )  and q i ( Z )  by 
the following equation 

a D'~"J(Z)  =: [ J ( ~ ) ( Z ) ~ " ~ ~ ~ ~ ( Z )  + V J ( Z ) ~ ~ ' ( Z )  - s ' J * ~ ( z ) ~ ~ ~ ( z )  - B ' ( z ) ~ ~ J ( z ) ]  : , 
2 

(4.5) 
where the symbol : : means the normal ordering (i.e., it is assumed that all the singular 
pieces have been subtracted). In the classical case, eq.(4.5) with a = is just another 
form of eq.(3.13). In quantum case, the value of constant a is different. It can be evaluated 
by resorting to the staqdard arguments of refs.[5,7]. Namely, one defines the supermatrix 
state 

I QA'(Z)) = qAi(Z) 10) (4.6) 

and demands it to obey the conditions (J!], *!I' are defined in (2.31), (3.18)) 

which are required for consistency with SOPE's (4.3). Eqs.(4.3),(4.7) and (4.5) further 
imply 

s2jA = (Q-;6jk t E ~ ~ ~ G ~ ~ )  I Q ~ ~ ( z )  >= o (4.9) 

(for the definition of generators I?, S, G, Q see Appendix A). So, the states BIJA and RJA 
must be interpreted as zero-norm states. For consistency of such an interpretation the 
following relations should be valid 

from which, just as in the N = 0 and N = 1 cases, the constant a is unambiguously fixed 
this time to the value 

thereby completely specifying the supercurrents J(3)(Z) and *'(Z) in terms of $'(Z). It 
is worth mentioning that in the quantum case it is impossible to define two supercurrents 
via $' separately; they are introduced simultaneously by the matrix equation (4.5). 

The rest of this Sect. is devoted to discussing of two important particular cases 
of the N = 3 WZNW supermultiplet, corresponding to the two versions of its partial 
fermionization. 

The first option is 
k = O  + c q = 3 ,  E q = O .  (4.11) 

This choice makes sense only quantum-mechanically. In this case the bosonic component 
Wi(z) of KM current does not contribute to all OPE'S [12,14] and the whole N = 3 and 
N = 4 SCA can be realized on a shortened mul t i~ le t  consisting of scalar field u(z) and 
spinors ~ ( z ) ,  t i ( z )  (231. The relevant currents can be obtained from the general ones by 
putting elsewhere k = 0 and 

Wi(z) = 0 . (4.12) 

Eq.(4.12) at  k = 0 can be shown to be covariant both under N = 3 and ( N  = 4)/(N = 3) 
transformations (141 ', so it may be considered as the additional irreducibility condition 
which singles out an invariant rubspace (u, ,y,ti)  from the N = 3 WZNW supermultiplet. 

Our aim is to translate eq.(4.12) into the superfield language. Before all , we need to 
correctly choose the superfield representation adequate to this situation. Clearly, ~ ~ ' ( 2 )  
already does not suit for this purpose as the above shortened multiplet con!ains no trace 
of the bosonic WZNW fields. On the other hand, the constraint (3.15) is valid as well in 
the quantum case and one may still represent the supercurrent 'Z"(Z) as 

where i ( Z )  is unconstrained for the moment and is not obliged to coincide with the 
superfield u(Z) figuring in our previous consideration 5 .  What one actually needs is 
that i ( Z )  starts with the field u(z). Also, the field ~ ( z )  enters as the first component 
into J ( ~ ) ( z ) ,  so we are led to include the relevant supercurrent j ( 3 ) ( ~ )  together with i ( Z )  
into the sought minimal superfield set. I t  remains to write down the superfield constraints 
equivalent to  eq.(4.12). Looking at the component content of J(3)(Z) and q i ( Z ) ,  such 
constraints are easily found to be 

Indeed, the lowest components of the 1.h.s. of these equations just coincide with the 
bosonic part Wi(z) of the 0(3)  and 0(4)/0(3) KM currents, which proves equivalence of 
(4.14) and (4.12). 

'In the language of N = 4  SCA, W i ( z )  is the bosonic part of the current f ( ~ ' ( z )  + ~ ' ( 2 ) )  generating 
first of S b ( 2 ) ' s  entering into the product 0 ( 4 ) ~ + ~ , 1  - s b ( 2 ) t + l  x ~ b ( 2 ) ,  (for definition of Vs, A' see 
Appendix B ) .  The second S b ( 2 )  is generated by the combination f ( v i ( z )  - A i ( z ) )  which includes only 
the fermionic parts. The fermions X , ( i  contribute 1 to the levels oE both S b ( 2 )  KM algebras, because 
they can be assembled into doublets with respect to each of these SU(2) 's .  

5Expression (4 .13)  is the general superfield solution of (3.15). Any other possible structures are 
reduced to (4 .13)  after performing some D' algebra. 



The  transformation properties of G(Z) and j ( 3 ) ( ~ )  subjected t o  constraints (4.14) are 
easily established by substituting the representation (4.13) into the general supercurrent 
SOPE's (4.2), putting there k = 0 and taking off one spinor derivative from ZL(ZZ) 

T h e  supercurrent j (3)(~)  still satisfies eqs.(4.2) with k = 0. 
I t  is instructive to  see how eqs.(4.14) necessitate k = 0. Applying D' on both sides, 

e.g., of the  first of these equations and summing over index i one gets 
, 

where we have used the  second of eqs.(4.14). In  the  classical case the r.h.s. of this 
relation identically vanishes, which leads to  azj(3) = 0 + j(3) = const. T h e  set of 
eqs.(4.14) becomes meaningful in the quantum case where (4.16) in view of SOPE's (4.2) 
merely fixes c, to the value c, = 3 3 k = 0 ( the  r.h.s. of (4.16) is evaluated with using 
the  definition (2.30)). 

One may directly check that eqs.(4.14) are consistent with SOPE's (4.15) and (4.2). 
It is also a simple exercise to show that j ( 3 ) ( ~ )  and C(Z) subject t o  (4.14) include just 
the necessary set of independent fields (u(z) ,  ~ ( z ) ,  ( '(z)) 

1 
D ~ P ) ( z )  j e = o -  T(Z)  = - - { :  aZuazu : + : ~ ~ a , ( '  : + : xazx :) 

2 

T h e  components Si(z),  U(z), Ak(z),  V'(Z), I'(z), Gi(z) ,  T (z )  satisfy the  standard 
OPE'S of U(1)-extended N = 4 SCA 1131 with c, = 3,?, = 0. Note that  the superfield 

U(Z) (4.17) is just the one conjectured Ly Schoutens [23]. It is worth mentioning that the 
set irreducible under N = 4 SCA is formed by both superfields j ( 3 ) ( ~ )  and i ( Z ) ;  as is 
seen from eqs.(4.15), the ( N  = 4 ) / ( N  = 3) transformations mix these superfields among 
themselves 6 .  

One more interesting peculiarity of the superfield N = 3 representation considered is 
related to  the  following interpretation of the  constraints (4.14). One may construct their 
solution starting from the s~pe rcu r ren t s  J ( ~ ) ( z )  and Ik'(Z) with k = 0. Indeed, one may 
check tha t  the expressions 

( the  higher terms can also be easily restored) satisfy, in their own, the SOPE's (4.2) at  
c, = 3,Eq = 0. So, we may realize on the original set of fields (involving the bosonic 
current Wi (z ) )  two N = 3 (or N = 4)  SCA's, both with c, = 3,Cq = 0. Their realizations 
are quite different, but the  most important point is that the second SCA closes on the 
shortened multiplet (u ,  X,( i ) ,  while the first one mixes the latter with Wi(z)'. With 
respect t o  this second SCA the supercurrents J ( ~ ) ,  Iki are not superfields, but j(3) and 

are. O n  the  other hand, the  newly defined j(3) and $' are not superfields with respect 
t o  the previous N = 3,4  SCA's generated by the supercurrents J (3) ,  Iki. This manifests 
itself as the presence of explicit 0's in the expressions (4.19). Note that i t  is impossible 
to invert eqs.(4.19) and express J (3) ,  Iki through j (3) ,  Gi since the latter objects involve 
a lesser number of independent fields than the former ones. 

The  second interesting case corresponds to  

With these values of c,,?, the contributions of the bosonic K M  current Wi (z )  to  the 
central charges of the  Kac-Moody and Virasoro subalgebras equal 1 and 5 respectively, 
and thus this current can be fermionized in terms of the O(3)-triplet of extra fermions {' 
l22,51 

(this corresponds to  fermionizing the bosonic part of KM current for one of ~ ~ ( 2 ) ' s  
entering into 0(4)k+],] - s'U(2)k+] x ~ ' U ( 2 ) ~ ;  another S U ( ~ )  is realized from the  beginning 

'This property becomes manifest in N = 4 superspace where . f ( 3 ) ( ~ )  and C(Z) turn out to be acco- 
modated by the single N = 4 ruperfield 3(Z,B4)  = C(Z) + B , J ( ~ ) ( Z )  (Part 11). 

'Generally speaking, the currents of this second SCA, being functions only of the shortened multiplet, 
can be constructed out of J ( 3 )  and 4" with arbitrary k , but the expressions for them look more com- 
plicated than (4.19).The possibility of such a construction is closely related t o  the general observation of 
Goddard and Schwimmer 116). 



I 
only on fermions x,?). The relevant superfield constraints look as follows 

where we have introduced a new superfield ( ' ( 2 )  

t ( z )  le=o= ('(2) . ( 4 . 2 3 )  

As the integrability condition for ( 4 . 2 2 ) ,  one gets the constraint for ( ' ( 2 )  

~ ' ( ' ( 2 )  =: [ J ( ~ ) ( z ) ~ ' ~ '  + C ? ~ Q ~ ( Z )  - 6 " q k ( z ) ]  c(2) : . ( 4 . 2 4 )  

It is not difficult t o  figure out the relevant SOPE's (up to the regular terms) 

It follows that the superfields ( ' ( Z ) ,  ~ ( 2 )  and J ( 3 ) ( Z )  are mixed under ( N  = 4 ) / ( N  = 3 )  
transformations. Just these superfields accomodate the irreducible set of fields in  the 
present case. I t  can be shown that  after imposing the constraints ( 4 . 2 2 ) , ( 4 . 2 4 )  the only 
independent fields in these superfields are 

The remaining components are expressed in terms of ( 4 . 2 6 )  and their derivatives. In  
particular, the conformal stress tensor is given by 

The presence of the Feigin-Fuchs term in ( 4 . 2 7 )  results in the noncanonical contribution 
5/2 from u ( z )  t o  the  central charge of Virasoro algebra. 

Finally, we note that one may construct new representations of N  = 3 ( N  = 4 )  SCA 
by tensoring independent copies of the superfield q A i ( Z ) .  Each qA' enters with its own 
integer k and makes an independent contribution to  the  supercurrents and, respectively, 
to the central charges. The corresponding component action is a sum of actions ( 3 . 6 ) ,  
with the product bosonic manifold ( U ( 1 )  x 0(3) )" ,  where n is the number of 9's. 

So much for N  = 3  WZNW superfields. In the second part of the  paper we discuss 
analogous issues in the  framework of N  = 4  2D superspace. 

APPENDIX A 

Here we write down N = 3 and U ( 1 )  extended N  = 4 SCA's in terms of generators J:] 
( 2 . 3 1 ) ,  ( 3 . 1 8 )  and I!]' (2 .32) .  

N  = 3  SCA 

n 
[L,, Gf] = (- - r)G;+,; [L , ,  V;] = -mVi+,; 

2  
('4.1) 

{G:,  G:} = 2 a i j ~ , + ,  + i ( r  - q)cijkV;+, + f ( r 2  - 1/4)6"6,+~,0;  3  



Completion to N = 4 SCA 

n n 
ILn, Q r I  = (Z - r)Qn+v; [Ln,  sf] = -(- + T)s;+,; 

2 

[Ln,  UmI = m u n + m  - i c n ( n  + l)b,+,,,o; [L,, A,] = -mAL+,,; 
6 

€ i j k  { G f ,  s:} = - p J ~ . + ,  - + i C ( r  + 1/2)6'J6,+q,0; 
3 

{G:, Qq} = - i ( r  - q ) ~ ' , + , ;  [ G f ,  U,] = nS;+,; . . 
[G:, A:] = i G ' j ~ , + ,  - nc'jk Sn+v ; 

C . .  [v:, sj] = i c '~~S:+ , ;  [ V i ,  A;] = i ~ ' j ~ A : + ~  + -n6'J6,+m,o; 
3 

Ivi,~.] = -nsA+,; [v;, urn] = { r , , ~ ; }  = [r,, u,] = IS;, un] = [A;, urn] = 0 ;  

[r., A;] = is:+.; {r.. 4 , )  = U.+, + i S ( r  - 1/2)6.+q0; 
C .. 

{S: ,  s:) = -6'J6,+q,0; [ S f ,  A;] = -iG'Jrr+,; 
3 

[A' ~j ] = i € i j k v k  
. .  ( A . 2 )  

n7 m n+m + -n6 'J6n+m,~;  [A:, Q ~ ]  = i ~ i + ~ ;  
3 

I I = m [un. Q.] = nr.+.; 

{Q., Q.1 = 2L.+q + f ( r 2  - 1/4)6.+,.; {S: ,  Q q }  = -y+, 

O ( 4 )  covarzant form of N = 4 SCA 

i 1 z 1 
I" m = - 6 ' ~ ~  - ( m  + l )T; ,  $1' = ( ~ J ' G ;  - @'GI)  - - ( q  + ) e ~ ~ ' k  k 

2 2 , 2  2 rpl 

1 -€tJu I,,, t ~ * n  - - - I €  - 1 1n.t T,,,+~"u,], .I 1 - . u ~ I ; J ~ ~ = - ~ ~ ;  1 
2 4! 

c2 
[L,, Urn] = - i - n ( n  + l)6n+m,0; [L,, T:] = -TnT:+,; 6 

[TI T k ' ]  = i(@l'Ttkm + 6 ~ [ k T L t m )  + [ ( @ k 6 j 1  - 6 1 6 , k ) 5  - ciJkl f l  I 
( A . 3 )  

n r  m 3 
n6n+m,0; 

[ ~ i j  G;] = n c i ~ k l  1 
n r rn+- - i ( 6 ' k ~ ; + ~  - 6 j k ~  n+r 1; 

[T;, r i] = -i(6'kr;+q - 6 ~ ~ r L + ~ ) ;  
1 . .  c2 1 - .  

{ ~ f ,  I':} = 6"U,+, + 2 -E'J'T" '+' - i - (r  3 + -)6'J6,+q,0; 2 

c1 C ,  . . 
[LI,n'LI,I = 3n6n+m.~; { r d ,  r : )  = -6"6.+q,o; 3 

[Gf, U,] = nr; , , ;  [ra, U,] = [T;, Urn] = 0 

Comparison of ( A . 3 )  with ( A . l ) ,  ( A . 2 )  yields 

c = c 1 ,  c = c z .  

APPENDlX B 

Here we give a general definition of the component currents appearing in the B-decomposi- 
tion of J ( 3 ) ( Z ) , q i ( Z )  and their explicit form in terms of the fields u ( z ) ,  ( ' ( z ) ,  ~ ( z )  and 
W ' ( r )  entering into the  action (3.6).  



The  repaining components of *'(Z) vanish or are expressed as derivatives of (B.2) in 
virtue of the constraint (3.15). The  values of the  central charges are 

in the classical case and 
3 3 

C =  - ( k + 2 ) , 2 . =  -k 
2 2 

in the  quantum one. 
For the reader's convenience, we alsv recall t he  general z-expansion of the  currents 

T h e  coefficients in (B.5) obey the relations ( A . l ) ,  (A.2) as a consequence of SOPE's 
(4.2). 
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