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1. INTRODUCTION 

The calculation of the hadron mass spectrum in the frame- 
work of quantum chromodynamics still remains a practically 
unsolved ~roblem. Therefore the potential/1/ and string mo- 
dels '2-11' of hadrons are widely used for this purpose. 

In the string model of hadrons the quarks are treated to 
be tied together by a gluon tube. In the approximation of the 
vanishing width the gluon tube dynamics is described by the 
Nambu-Goto action for the relativistic string/12-I41 . The 
string model has the following~obvious merits: it ensures the 
quark confinement into hadrons and from the very beginning it 1 gives the relativistic description of the hadron dynamics. 
However, even the derivation of classical solutions in the 

, string model proved to be a cumbersome mathematical problem 
, when the quark masses are different from zero. 
I Two exact solutions to the equations of notion in the mo- 

del of the relativistic string with massive ends are known. 
The first solution/l5/ describes two massive quarks tied to- I gether by a straight-line string and vibrating along the 
string. The string length changes periodically in time, but 
the system as a whole is at the rest. The second known solu- 
tioni16* 1'7/ describes the uniform rotation in the given plane 
of the straight string with massive ends. The string length 
retaines consrant during rotation but it depends on the rota- 
t ion frequency . 

InRef. 18 an attempt was undertaken to construct such new 

1 solutions in the string model that unite two exact solutions 
described above. The straight-like string with massive quarks 
at its ends has been considered. This system can rotate as 
a whole in a giver1 plane with an angular velocity dependent 
in the general case on time. The string length can vary during 
the motion as well, i.e., quarks can move in the radial direc- 
tion. In Ref. 18 it has not been argued rigorously that the 
new solutions are exact or approximate for the string model. 
If they are approximate, the question arises: what is the 
criterion of their application? 

In the present paper we shall prove strictly that quarks 
cannot move in the radial direction when they are tied by a 
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straight-line string and the system rotates as a whole with a 
nonvanishing angular velocity in a given plane. This implies 
that the new solutions obtained in Ref.18 (the so-called gene- 
ral case) are just approximate from the standpoint of the 
original string model besides of the two special cases dis- 
cussed above. 

The paper is arranged as follows. In the second section we 
propose a simple derivation of the equations of motion that 
lead to new solutions of Ref.18. In the third section it will 
be argued strictly that the new solutions from Ref. 18 cannot 
be exact in the string model of hadrons because the string 
world surface in this case is not minimal and the curvature of 
quark world trajectories turns out to be not a constant as 
the string model requires. The nonvanishing mean curvature of 
the string world surface and the differences of the curvatu- 
res of quark world trajectories from the fixed known values 
can be treated as a measure of the deviation of the new so- 
lutions from the exact dynamics in the model of the relativis- 
tic string with massive ends. In conclusion (section 4) the 
implications of the obtained results for phenomenological 
string models of hadrons are briefly discussed. 

2. EQUATIONS OF MOTION 

We start with the action of the string connecJing two mas- 
sive quarks. The space-like string coordinates x will be pa- 
rametrized by the time from the Minkowski space and the vari- 
able u  numbering the points along the string (the so-called 
t = r  gauge/2! ) x' = ;(t, ) .  In terms of these variables 
the action of the system under consideration is 

------ 
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t l  0 1 ( ' )  
a = l  

' 1  
dt 

+ 
(2.1) 

-, -. + -, + 
where x , = x ( t , o , ( t ) ) ,  a = 1.2, x = d t  x ,  x '=  d u x ,  is the 
string tension with dimension of ( length)-2. Further we confine 
ourselves to the consideration of such string motions when it 
rotates in a given plane keeping the straight-line form. The 
string length, i.e. the distance between quarks can vary 
during the motion. Those string motions can be parameterized 
in the following way 

Here r stands for a constant with dimension of length. 
Now we will proceed in the same way as in Ref. 18: we sub- 

stitute (2.2) into the action (2.1) and vary it. It should 
be noted that at this point we could go away from the initial 
string model and the solutions to the new equations of motion 
would not obey the Lagrange - Euler equations following from 
(2.1) without any assumptions about the form of the functions 
+ 
x(t ,  u ) . .  Further it will be shown that it is just this situa- 
tion that takes place really. But first we derive these new 

, equations of motion. 
After substituting (2.2) into (2.1) the integration over / 0 in the last equation can be done exactly 

t2 
s =  d t ~ ,  (2.3) 

' 1  

1 The Lagrangian function (2.4) describes the system with three 
1 degrees of the freedom u ,(t) , a = 1,2, and Q ( t )  . The variables 

r o , ( t )  define the distance of quarks from the origin of coordi- 
nated in the rotation plane. 

We write the equations of motion following from (2.3) and 
(2.4) for the symmetric case when m l =  m 2 =  m and u l ( t )  = 
= - u  (t) = ~ ( t )  introducing the distance of quarks from the 

I coorginate origin as a dynamical variable. It this case the 
Lagranfian function (2.4) can be rewritten as follows 

The corresponding equations of motion read 



If we assume in (2.6)-(2.9) that 

where 

There are two constants of motion 

It is easy to verify that E is the energy and p4is the angu- 
lar momentum of the string with quarks at the ends calculated 
with solutions (2.2). 

From the standpoint of the Hamiltonian dynamics the model 
under consideration (2.5) is a completely integrable (accor- 
ding Liouville) Hamiltonian system because it has two con- 
stants of motion (2.9) and (2.10) in involution/lg/. However, 
the explicit integration of this system encounters difficul- 
ties just in the derivation of the corresponding Hamiltonian 
as a function of the canonical variables. 

From Eqs. (2.6)-(2.9) it is easy to obtain two exact so- 
lution~ in the string model of hadrons noted above. If one 
puts 4 = O  in Eqs. (2.6)-(2.91, then only one equation re- 
mains 

Its integration shows that the massive string ends more along 
the segments df the hyperbola in the i t ,  r 1 plane /Is/ 

then we obtain the second exact solution 1161, described in 
the preceding section. Indeed, Eq. (2.6) with allowance of 
(2.14) determines the distance quark as a function of the ro- 
tation frequency o 

Substitution of the solutions (2.14) and (2.15) into the 
integrals of motion (2.10) and (2.11) results in the 2 paramet- 
ric representation of the Regge trajectory J = J(M ) , M = E  
which proves to be nonlinear at low M2/16v1'/. 

3. RELATIONSHIP WITH THE INITIAL 
STRING MODEL 

It turns out that all other solutions to the equations of 
motion (2.6)-(2.9),different from (2,13) and (2.14), are not 
solut-ions to the initial string model defined by the action 
(2.1). For verifying this one should substitute the solution 
(2.2) into the Euler - Lagrange equations and into the bounda- 
ry conditions that follow from the action (2.1) or from the 
corresponding covariant action without using the t = r gauge 

Here the metric with signature (+, -, -, ..., - )  is used in , the ambient D-dimensional space-time. However, it is more 
simple to consider the invariant geometrical characteristics 
of the string world surface and the world trajectories of 

\ quarks placed at the string ends. 
It is well known/20/ that the variation of the action (2.1) 

or (3.1) implies that the string world surface be a minimal 
surface in the D-dimensional Minkowski space-time, i.e., 
the mean curvatures h a  of this surface along all its D-2 nor- 
mals nz, a = 1.2,. . . D - 2, p = 0,1,. . . , D - 1 should vanish 



i j  h a  = - n: a i  a, x r  = o ,  
I‘' k 

(3.2) 
j 0 , ;  a , . =  i ,  X g . .  IJ = a i .  a j x r ,  g i j g J k = a i  . 
The D-2 independent Euler-Lagrange equations following from 
the action (3.1) reduce really to these requirements. 

In the model of the relativistic string with massive ends 
the equations of motion must be supplemented by the boundary 
conditions 

Now we deduce from Eq. (3.3) squared 

where k,, a = 1 2  are the curvatures of quarks world lines /21/. 
It should be noted that. at this point the motion of massive 
quarks tied by a string resembles the classical Delaunay prob- 
lem/22/ of drawing a curve of a constant curvature connecting 
two given points and having the least length. 

Let us consider the consequence of the requirement that 
the solution of form (2.2) should obey Eqs. (3.2) and (3.4). 
For the mean curvature squared of the world surface (2.2) one 
obtains easily 

Here x P  (t, o )  is a three dimensional Lorentz vector with compo- 
nents x r  (t, o) = I t, ro n (t) I. Taking this into account we dedu- 
ce from (3.5) 

2 "2 h = 4 (t) = O .  (3.6) 

Thus the condition of minimality for the string world surface 
of the form (2.2) requires that the string should rotate with 
a constant angular velocity, i.e., its world surface should 

be a helicoidf:. Hence, if we would like to choose among all 
the solutions to the system (2.6)-(2.9) special ones that sa- 
tisfy the equations of motion in the initial string model 
(2.1), we should put 

4(t) = w = const. (3.7) 

In this case in the set (2.6)-(2.9) there remains only one 
degree of freedom the dynamics of which is determined by the 
Hamiltonian 

2--- -- 
H(r, P) = ( d  4m + P + yr) Y J1 - r2o2 + - arcsio(ar). 

a 
(3.8) 

After imposing the conditions 

the equations of motion generated by the Hamiltonian (3.8) 
result in the relation (2.15), i.e., they reproduce the exact 
solution describing a uniformly rotating string with quarks 
at its ends. However, the Hamiltonian (3.8), calculated on 
the solution of the equations of motion, generated by it, 
and on the solution (2.15) as well, is not an energy for the 
initial system (2.11). One could reconcile oneself to this 
fact as there is known the proper formula (2.11) for the ener- 
gy in the string model. But all the solutions generated by 
the Hamiltonian (3.8), besides the solutions (2.15) and 
(3.9), violate the condition (3.4) that should be satisfied 
by the quark world trajectories in the string model. Indeed, 
we deduce from (2.2) and (3.4) 

But from the Hamiltonian (3.8) it follows that 

- 

5 I t  i s  really the consequence of the Catalan theor 'n the classical 
surface theory proved as long apro as the last century ~ 3 ~ .  The Catalan 
theorem reads: among a l l  the ruled surfaces there are only two minimal sur- 
faces, a plane and a helicoid. A ruled surface i s  obtained by a moving 
straight line in a space, i . e . ,  it i s  a surface of form ( 2 . 2 ) .  



Of course, the boundary conditions (3.3) do not only reduce 
to equation (3.4), nevertheless the relations (3.10) and 
(3.11) are not coordinated obviously. 

A decisive conclusion about the relationship of the quark 
radial dynamics described by the Hamiltonian (3.8) with the 
initial string model results from the check of the boundary 
conditions in each component in the string model with the use 
of the parametrization (2.2) and of the condition (3.7). 
It has been done in Ref. 16. The answer reads: the boundary 
conditions following from (2.1) result in Eqs. (3.9) and (2.15) 
unambiguously. Thus, the Hamiltonian (3.8) has in general no 
relationship with the initial string model. The equations I 

(2.15)-(2.11) except the two exact solutions in the string mo- 
del mentioned above go out of the framework of the string mo- 
del as well. 

The analysis of the dynamical system (2.5)-(2.11) represen- 
ted above gives us an invariant geomentical measure of the de- 
viation of the solutions to these equations from the initial 

I 
string model. For this purpose one can use a nonvanishing mean 
curvature of the string world surface (3.5) and the deviation 
of the curvature of the quark world trajectories calculated 
by (3.10) from y/m 

It should be noted that the dynamical system (2.5)-(2.11) 
and its simplified version with Hamiltonian (3.8) can be trea- 
ted independently of the string model as some new phenomenolo- 
gical description of the relativistic rotational and radial 
motions of quarks inside hadrons. For this purpose equation 
(3.10) can also be used. It determines the radial motion of 
quarks in a given rotation plane completely. 

4. CONCLUSION 

The results obtained above enable us to make an important 
conclusion concerning the phenomenological string models. 
We have shown that quarks tied by a string cannot move in the 
radial direction when the whole system rotates with a nonvani- 
shing angular velocity and there are no transverse string 
excitations (a straight-line string). This implies that it is 
impossible to separate the total Hamiltonian of the string 
model so that one term would describe the transverse string 
excitations and another term would be responsible for the 
radial motions of quarks, each of these addends being depen- 
dent on its own dynamical variables. In other words in the 
string model of hadrons it is impossible, in a consistent way, 

to separate the radial quark motions and the transverse string 
vibrations. Usually one assumes this separation in phenomeno- 
logical string models /3-5.8/ . In terms of the interquark po- 
tential we can say that all the corrections to the linearly 
rising potential are due to the transverse string vibrations. 
This is in accordance with direct calculations of the relati- 
vistic static interquark potential in the framework of the 
string model with fixed ends/23-26/. When the transverse 
string vibrations are neglected in this model, then the 
quark interaction is described in the static approximation on- 
ly by the linear potential 2 y r ,  which follows from (2.11) when 
i = 9 = 0. In quantum theory, this potential is modified due 
to zero-point fluctuations of the string oscillations. 
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HecTepeH~o B.B. 
0 pa,UHZlJIbHOM nBl.MteH?i?i KBapKOB, 
CBR3aHHbIX C T P Y H O ~ ~  

C T ~ O ~ O  nOKa3aH0, 9TO KBaPKki He MOrYT COBePLUaTb Pa,UkiZlJIb- 
HbIe nBl.MteHUR, eCnH OHU CBRSi3Hbl npR~0JIkiHefi~0fi C T P Y H O ~ ~  H BCR 

CHCTeMa BpameTCfl KaK UeJ'IOe C He~yJ'Ie~ofi yrJ'I0~0fi CKOPOCTbH). 
 TO 0 3 ~ a q a e ~ ,  YTO npn nocnenosa~enb~o i i  TpaKToBKe C T P Y H H O ~ ~  

~dneJ'I?i a,UPOHOB HeJIb3R pa3nWIHTb P-HZlJIbHble nBUXeHWl KBap- 
KOB n nonepewble ~ 0 3 6 y ~ ~ e H W l  C T P Y H ~ I .  

P a 6 o ~ a  BbInOJIHeHa B n a 6 o p a ~ o p a n  T ~ o ~ ~ T H Y ~ c K o ~ ~  C & ~ ~ U K U  

OWRW. 

Nesterenko V.V. 
On the  Radial Motion of Quarks Bound 
by a String 

I t  is shown rigorously that quarks cannot move in the radial 
direction when they are tied together by a straight-line string and 
the system as a whole rotates with a nonvanishing angular veloci- 
ty.  This implies that in a consistent string model of hadrons the 
radial motion of quarks cannot be separated from the transverse 
string excitations. 
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