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1. Intreduction

Dirac Hamiltonians with external potentials have attracted a lot
of attention recently (1,21. Of course, they require a Fixed
inertial frame and repreeent an approximative description of the
true relativistic two-particle dynamics only, but nevertheless
they can provide us with various useful and physically intereating
models. Unfortunately, the number af situation when a
Dirac-operator model is exactly solvable is very low comparing to

the non-relativistic quantum mechanics [3].

In the non-relativistic case many new solvable modeles have
appeared recently as a result of extengive investigation of point
and contact interaction phenomena - ¢f.the monograph [4] for
summary and further references. One of these models concerns the
three-dimensional Schroedinger operator with the interaction

-

formally given by the &-shell potential
g &(r-R}, R = const (1.1)

ef.{5-12] and [13-15] for eome generalizations. The alm of the
pregent paper ie to ilnvestlgate Dlrac operator with thie Eort of
interaction, and to add thereby a new item to the short list of
exactly solvable probleme of relativistic quantum mechanics. We
are going to construct all rotationally invariant contact
interactions eupported by the sphere, and to ‘gpecify those among
them which correspond to a milxture of electroetatic and Lorentz

scalar &-ghell potentlials with coupling conatantas g, and gs



respectively:

g, S(r-R) + g, AS(r-R) . (1.2)

in distinctlon to th2 Schreedinger case, guch a shell can confine
a particle within 1t at finite values of the coupling constants
provided it scalar compenent is strong enough: we will show that

it happens if
gs - gr + 4 =0 . 1.3)

Other properties of the corresponding Dirac operators, in
particular, their spectra will be alsc discussed. In a sequel to
this paper, We are going to discuss Dirac operators with a é-shell
plue Coulomb potential, the non-relativistic 1limit and the
approximation of the &-ghell interaction by short-range

potentials.

2. Partial wave decomposition

Cur construction starts from the Dirac Ham.ltonian on the Hilbert

space ¥ = LZ(Rs)OC‘ defined by

Hyw=-i&d Py +pov (2.1)
with the domain

4

Dehy) = KD E®Y e €

The Dirac matrices are taken as



0o & I ¢
S E R T
3 0 o -1

For the definition of other quantities related to the Dirac
equation (sphericel spinors, etc.) we follow the convention of

[i16}. The operator H, is self-adjoint and CEJ(IR‘?') ® G:4 is its

4

In]
core. Moreover, C;(Ra\{O}) @ € is alsc a core of HD ag8 can be
seen from ite density in D(HD) in the }-ll’2 norm. It illustrates
the known fact that there is no non-trivial point intersction for

a three-dimensicnal Dirac operator [17].

Our construction of the &-shell interaction proceeds in a usual
way: one regtricte the starting operator to a set of functionse
#ith supporte disjoint with the support of the interaction, and
constructe self-adjoint extensions of the obtalned operator. Since
in our case the support is the sphere SR = { 3 e l'RS; i;i = R },
where R ie a given positive number, we are interested in the

operator

H, := H

) ChiR\Sp) @ ¢f (2.2)

p |

From the technical resseons it ie useful to consider alsc itse

restriction

@, 3 4
0 Hp | CotR \(Sp v {01)) e €™, (2.3)

Since ﬁo = Hl as one can check in the above mentioned way, the two

operators have lidentical families of self-adjoint extensions.



The operatore {2.2) and (2.3) have infinite deficiency indices and
hence a vest family of extensions. In thils paper we restrict our

attention to those of them which are rotatlonally invariant; it

will give us a possibility of reducing the problem to analysis of
ordinary differential operators. It does not mean, however, that
other eelf-adjoint extenslons are not physically attractive. On
the contrary, one should expect existence of Iintereeting
extensions which are rotationally non-invariant and at the same
time cpecified by local boundary conditicne. These problems will
be digcussed eleewhere., In addition to the rotational symmetry

requirement we chall conslider only reflection-symmetric

extensions, i.e., our group of symmetry will be the universal

covering group SU(2) of 0Q(3).

These requirements mean that there 1s a single-valued unitary
repreesentation U of SU(2) such that an arbitrary self-adjoint

extension H of "D from the considered class fulfills

uR) Ho(R) L = H (2.4)

for any R & SU(2). One can decompose the state Hilbert space into
orthogonal sum of subspaces referring to the total angular

momentum }, its third component m and the parity (-1)1 as

© v1/z 3
x= o . . LW (2.5a)
j=1/2 1=§-1/2 u=-§
with
£(r)yng, ()
L {v e ®: wir,n) = J1u ] ; t.a « L3R, ,r%dr) },

(2.5b)



where Qle are the sphe?ical spinors [16] and 1°=2j¥1/2 for
1=j*1/2. It follows ffom (2.4) that H commutes with all functions
of the operator U(R}, 4in  particular, with the projection
corresponding to the representation of U(2) with a given j,p and

parity. Hence we have the decomposition

@ 172 3
H=zwe Y @ H. (2.8)
32172 124-1/2 p=-j I

where the “component operators” H. are gelf-adjoint wilith the

Jlu

= D(H) n 2,

domains D(HJ 5

lu)

In each subspace ﬂalu. one can separate the radial part of the

operatocr mjlu' To this aim we introduce the isomorphisms

. » ~ T2 2
Ujl.u'le,u—’ =z L {R+) & C

by

(U, %) (r) [ reee) ] (2.7)
L ¥)(r) = . .
Jlp (_1)3-1"1/2 ra(r) 4’

where f,g are related to v ae in (2.5b). We want to check firat

the inclueion

© j+1/2 3 (0)
@ - . Hjl s (2.8)
33172 1z§-1/2 p=-} H

(0) -1 L(0)
where the operators Hjlp are egual to Ujly Hjl )] the laet

J1lu
nared operator belng defined by



d 1
- Mo - S 4 e
H;E) i= [ dr = r ] (2.9a)
4, ML,
dr r
on D(ﬁgg)) . c:(go,a)u(a,w))acz sith
w o= (~13TMY2 (a2 (2.9b)

Jjl

{we note that here the capped quantities refer to the
two-component space ¥ ). Now we want to prove that a decompoeition
analogous to (Z.8) holds for any rotation-invariant self-adjoint

operators on .

2.1 Proposition : For a self-adjoint operator H in #, the egquality
(2.4) holds for all R « SU(2) iff

® i+1/2 3 g
H = . ° - Ujlijlujlp y

(2.10)
3=1/2 1=3-1/2 w=-] .

where Hjl is a self-adjoint operator in ® independent on M.

Proof: The sufflicient condition is trivial. The requirement (2.4}

implies the decomposition (2.6) and one defines naturally

- 1 .
H UjlpHleUjlg’ go it ie only necessary to ‘check ite

Pl
independence of o

A ~
Let ve show first that D(H,, ) = D(Hj, ). The operator Ujiy

mape D(Hjlp) opto D(Hjlp) and the vector

-1

3 -1
r £fo r “f Q. .
U(R)[ $Lu ] : E: 249) (R)[ 31 ]
(-1 lg g

L am1-172_-1
e w=-g -1 TOE Ay



belongs to D(H) fqr any [:] < D(ﬁjlyl and R & SU{(2} according to

(2.4}. Since a%l for 4 # p° each term on the rhs.must

L g,
M jip

belong to D(H .}. One alwaye find R such that 3;4;(8) = 0 due to

Jlp
the Burneide theorem {18); then applying UJlM' we find that
£
[g ] € D(Hj) )
for all pu” = -},... ,j. The index ko= -3,....J can be chosen

arbitrarily so the equality of the domains ie obdtailned

Consider now a vector y « D(H) referring to fixed j,1, i.e.,

_1 -
wir,n) = [ T T LY ]
j-1-1/2 -1 -
peg - (-1 LI PERIE SR NG Y
with
V.. = [fjl“ ] e D., = D(H,
Jlp €51, j1 Flm
for p = -3,...,3. Denoting
- [f ] [Hji’ (£.2) ]
e ls 12 (r.0
we can calculate eagily
U(RIHO(R) "1y =
J -1gtl) ,
- z Z 23y o gy [ F Hite $5107851-07 510
g ve 3-1-1/23(2) ) '
H=-} »,o0 1 le (fj a’gjl’o'} njl'.u



Since this should equal to Hy, we get the relation

. {3 (3,51, 4 - _
Z ﬂuu (R) Dvo (B 5 Hj].vvjla - Hj lyvj 1p
v, o

valid for any lep ] Djl , 2 = =3,.-..3. Multiplying 1t by

D;i)(R_i) from the left and summing over u, we obtain

Doty (6 o a5 .
Z”m (5 [“le‘”jla ":.10‘"310] =0

o
for each R « SU(2). Using the Burnside theorem again we get

Bi10%510 = Bi10%i10

for all pooe = -3,...,3. B

It follows now easily from the proved assertion and the
decomposition (Z.8) that in order to construct all rotationally
jnvariant S-shell interactions for the operator (2.1), cne haa to
construct all mself-adjoint extensione ﬁJl of ﬁ;g) in each partlal
wave subspace and to insert them into the formula (2.19)

3. Self-adjoint extensions of the radial cperators

We have reduced the problem to analysls of ordinary differential

operators corresponding to the formal expresesion



. 6, -13 4 w1
T o= [ T ] & o+ [ e ' T ] (3.1)

which can be handled by standard methods (e.g., that of {[19],

chap.XIII ), becasuse the coefficlent of the derivative 1is a

constant and non-singular matrix. The adjoint operator H;g)* to

(0)*
J1

functions ¥ « % which are absolutely continuous in (0,R) and (R,®)}

(2.8) acts as (3.1} on the domaln D(ﬁ } conslesting of the
with r;' < & Since T is formally self-adjoint ite deficlency
indices are equal and eelf-adjoint extensions of the operator

(2.8) exint.

The deficiency indices fulfill d < 4, because they correspond to
solutions of a two-component firet-order differentisl equation in
the intervals (0,R) and (R,®)}). In order to find them explicitly

consider the equation

(T -1) ¢ = 0 (3.2)

whose solutions are obtalned easily by analytic continuation of
the well-known stationary solutione of the free radlal Dirac

equation to imaglnary values of energy.

r1/%z (101402 V)
v (x) = " , (3.

CufTEELENE Y T i) %)

T-im



where v=1+41/2, v =1"+1/2 and the cylindrical function ZV stands

for J, or Hil). The first choice yieids a solution which is
square integrable in (0,R) but not in (R,«), while the reverse is
true for the esecond case. Extending +the esgquare integrable

solutione by zere in the other interval, we get d = 2.

One could use thie explicit form of deficiency vectors for
construction of the eelf-adjoint extenslons via the von Neumann
formuiae, but this is not very practical. Instead, we are going to
characterize the exteneslons by suitable boundary conditions. Since
HD | C:(Rs\{c})e‘t4 is e.s.a., there are no non-trivial boundary

values at 0 and .

3.1 Propogition: There 18 a complete 3et of four independent

boundary values on D(égg)*}, namely
W — w(R:) = lim w(r)

r—-ﬁR1

{recall that w is a two component vector)

Proof: consider w = [;] e D(ﬁgg}*). The functions £,g are
absolutely continuoue inside (0,R) and (R,w} and square integrable
on m+ with 7Ty € LZ(R*)OCZ. Then, for instance, f is gquare

integrable in a left neighbourhood of R and

8
| £(r) - £(8) | = {e-a| 2] [ |27ty %ae |2

r
BO lim f{r) exist and in the same way one checks the exlstence
r—R .

of the other three limits. Since we have 4=2d linearly independent

10



boundary values , they form a complete set for ﬁgg) [187 .

Self adloint extensione of égg) are regtirictions of ﬁjg)* te a
subspace of Dcﬂgg)*) specified by a symmetric set of two linearly

independent boundary conditions. We define the boundary form
Fly,e;r) := w+(r) Ty P(r).

where T, = [?'61]. Integration by parts yield for any

©, v < D(H;g)*) the equality

=3 <]
[ w're dt - J ev)Te at = Fiw,pi8) - Fv.esr)
r r

provided R ie not contained in the interval (r.e). Since the
integrals on the ths converge in any subinterval of R+, one can
establish existence of the limits of F(w.9;.) at the points 8, R_,

R+, % gimilarly as in Proposition 3.1. Furthermore,

lim Fl{w,pir) = lim F{y.e;r) = 0

r—40+ T

for any e,y e D(ﬁ§g)*) since otherwise one could. define an
additiona} independent boundary value in contradiction to

Proposition 3.1. Hence we get

DT 0) - D0 = FveiR) - BrimiR,)  (3.4)

for any g,y = D(ﬁgg)*) and we have to choose those boundaxry

conditions for which the rAs of (3.4) vanishes.

11



3.2 Theorem: Any self-adjoint extension ﬁjl of &gg) in & acts as

Hjlw = Ty for v € D(Hjl) where 7 is given by (3.1) and D(ﬁ

31
consiste of the functione w € LZ(R*)OCZ which are absclutely

continuous inside (0,R) and (R,»}, Ty € LZ(R+)0C2, and satisfy the

following boundary conditions:
wR) = o' A ¥(R,): (3.5a)

where a « [0,2n) and A is a real 2x2 matrix with det A = 1, or

cy , C
(2 2Ywwro+ (3 18 Jwro =00 @so
a , 0 1 72

where °1'°2'd1'd2 are real and both matricee are non-zero.
Conversely, any operator of thle fore is a eself-adloint extension
of I:igg) in s}

Proof: It remains to check that (3.5) are all symmetric sete of
pairs of linearly independent boundary conditlons. According to
the Propoeition 3.1, the general form of auch‘boundary conditions

is

Cy(R_) + Dv(R.) = 0, (3.8)

where C,D are 2x2 matrices such that the 2x4 matrix (C.D) has rank

two. The symmetry conditions according to (3.4) reads
w(R_)'rw(R.) - w(R ) Tge(R) = 0 (3.7)

a(0)*
H ™)
tollowing three capes:

for any e,v & D{ patisfying (3.6). We distinguish the

12



(i) C ia non-singular, then (3.8} can be written as w(R_) = Bw(R+)

and substitution into (3.6) gives

w(R)M (BB - 7 )e(R,) = 0-

Since thie equation should hold for any W(R+), p(R+), we get

Br Bz, - (3.8)

So |det B] = 1 and B is non-singular. A simple algebra shows

that (3.8) is equivalent to {3.5a) with B = expl(ic)d.

{ii)} D ie non-eingular, then (3.6) can be written as v(R*)=§w(R_),
where ﬁ is non-singular due to (3.7), soc this case reduces to the

previoue one,

(iil) Both C.,D are of rank one but (C.D) has rank two. Multiplying
{(3.6) by a suitable non-singular matrix, we can write it ae

c ¢
1 v2
w{R_) + D, w(R,) =0 - (3.9)
[0,0] " 1o

where at least one of the numbars C1.Cq is non-zero. Since D1 1=
again a rank-cne matrix, one can write 1t as .
Do = [ Adl . Adz ]
1 d1 , d2
with at least one of the numbers dl’dz non-zero {(the other
posslbility when only the firet row 18 non-zero ig excluded
because the combined Zx4 matrix should be of rank two). It ia easy

to see that (3.9} is Iin that case equivalent to {3.5b) or to

13



[ ey Zz ] w(R_) = [ 31 . g , ] w(R) = 0, (3.5b7)

i.e., that the boundary conditions decouple in thie case. The

coefficiente °1’°2'd1'd2 might be still complex. The condition

(3.5b") . however, means that the two—dimensionq} complex vector
w{R ) is for any w € D(Hgg)*) orthogonal to [;1], i.e.,
- 2

<
WIR_) = o, (¥) [FZ ]
+ -

and the correasponding expression for w(R+) in terme of dl’dZ'
Substituting it tc the expression (3.7) where now both terms on
the lhe wust be zerc , we get Im C4¢y = Im d1d2 z (0, Thus Cy:€y

and dl,dz wust have the same phases. l

3.3 Remark: In addition to the etated symmetry requirements, one
may want the constructed Hamiltonians to be time-reversal
invariant. The corresponding antiunitary operator T can be defined

as in the free-particle case [16]

o , 0
Ty = z | S
o, s
where K mneans the cobplex conjugation. After the partial-wave
decompoeition, we see that H 1s time-reversal invariant 1ff D(Hjl)
is invariant with respect to the complex conjugation for all j.l.

The Jjuet proved theorem shows that this is the case when Hjl are

specified by the boundary conditions {3.5b) or by (3.5a) with a=0.

14
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4, S-ghells

A8 we have mentioned in the introduction, we are interested
primarily in the potentiales ¢1.2), il.e., &8 combination of the

scalar external field gsﬂé(r—R) and the vector field described in

the given reference frame by ¢( gvé(r—R).ﬁ } with real coupling
constants. In the radial Hamiltonians &31' thiz interaction
cerresponds to the formal potentis)
[ € +&,. . O
[ vos ] S5(r-R) (4.1)
o B E

with B, 8, independent of J,1. More generally one can congider the

potential
G&(r-R} (4.2)

where G is a 2x2 matrix. Qur aim is now to epecify +the
self-adjoint extensions ﬁjl that can be associated with the formal
Dirac operator with the potential (4.2). Suppose that yw satisfies

the equation

(= + G&(r-R)Jw = Eyw

and the limits ¥(R,) exist. Integrating over (R-£,R+£} and taking

the limit & — 0+, we get
1 1 -
[ X ] w(R,) - [ 1+ 1 ]w(R_) =0 (4.3)

provided we have chosern the relation

15



R+e
J s(e-Ryw(r)dr = 5 (w(R,) + ¥(R.)) (4.4)
R-#

1

as a definition of the lhs. Of course, only those matrices G are
acceptable for which the boundary condition (4.3) 1e compatible

with (3.5). As one expects, the following assertion ls true.

4.1 Proposition: Boundary conditione {4.3) define a aelf-adjoint

s

extension of Hg?) 1ff G+ = G.

Proof: The matrix (1—705/2,1+TGG/2) has rank two since the sum of
the eubmatrices is nonsingular. It remaine to check that (4.3)
implies (3.7) iff G+ = G. We start with the neceasary condition
and distinguish four cases denoting B = %TDG

(1) i-B is noneingular, then (4.3 ise equivalent to
W(R,)=(1-B) 1(14B)¥(R_); substituting it into (3.7) we get after

a simple algebra gt = 6.

(i) 1+B is nonsingular, then the same procedure with the

interchange G — -G can be used.

(11i) 1-B =0 or 14B =0; in that case G=*2v, = Gg*, but the
condition (4.3) reads w(R,) = 0, while w(R ) is arbitrary. Hence
the rhae of (3.7} equale 3V(R:)*709(Rt) so these boundary

conditions cannct define a self-adjoint extenaion.

(iv) both 1+B and 1-B have rank one. As in the proof of the

16



Theorem 3.2, one c¢an find a nonsingular matrix V which
converts them into non-zero matrices of the following form

V(1+B) = [c; ' :2] , v<.1—s) z [21: 22]

one cen exprese V and VB form there. Furthermore, V i8 nonsingular

80 one can calculate B and

P S [ 2c-ld1 f c1d2 + c2d1 J (4.5
. Chpdy - ¢ )
271 172 eyd, + cpd;, 2e,d,
Since we can chooee ¥ so that the numbere °1’°2’d1'd2 are real, G

is real symmetric, and therefore Hermitean.

On the contrary, agsume G'=G and let us prove that (4.3) defines a
self-adjoint exteneion. For the cases (1} and (11),wé have dcne 1t
already, the case {iil) does not occur. It remains to complete the
proof for the case (iv). Any Hermitian G is of the form

- (302)

»

with a,c real. It gives

_ f 1-brs2 , «c/2 o 1+6/2 , er2 .,
1+B = [a/z . 1+bs2) 1-B = [—a/z . 1—b/2]

Since det(1+B) = det(1-B) =0, b must be real and b2=4+ac. For any
&.b,c esatisfying thls restriction., one can choose °1'°2‘d1'd2 5O
that G 1s expreesed in the form (4.5) ,e.g., by taking e = d1= 1

for a=0 and c1=0 or d1=0 for a=0. |

17



Let us return now to the physically interesting caee (4.1}. The
correeponding matrix G is Hermitean and the boundary conditions

(4.3) read

w(R_) = 0~
1 (4.6)

It is clear that they can be cagt into the form ({3.5a) 1ff
gsfg§+4 = [ ; otherwise they belong to the type (3.5b). Remark
3.3 shows the corresponding operators, as well as the more general
Eamiltonians referring to the &-shell interaction (4.2) with
real G, are time-reversal invariant. They do not cover, of
course, the class of mnll self-adicint exteneions ﬁJl described by
Theorem 3.2; & poseible interpretation of the remaining ones 1is

discussed in the Appendix.

5.Confinement

In some cases, the contact interaction of the ephere may separate
the twoe epatial regions fully, 4i.e., the particle under
consideration ie either confined in the ball Bp={ x e quif SR}
or livees outeide BR and. cannot enter it. In other worde, the

sphere SR ig impenetrable for the particles.

Let us denote RR = { w & ® : supp ¥ < BR } ; we are interested in
the situation when XR is invariant under exp(-iHt) for all t € R
or equivalently ERH < HER , where ER is the projection onto *R

in &

18



(Egw)(X) = @(R-|Xw(#) .

In the spherically symmetric case it is further equivalent to
ERD(Hjl) < D(Hjl)

for all §,1, where E, ie the projection into LZ(0,R)eC? in .
Combining the last requirements with Theorem 3.2, we arrive at the

following conclusion.

8.1 Proposition:: Let H be a rotaticnally and space-reflection

eymmetric Dirac operator with contact interaction on the ephere
SR, then SR is impenetrabdle for the particles iff the
corresponding partial-wave operators HJl are defined by the

boundary conditions {(3.5b) for all j,1.

As an example, conslider sgain the physically interesting case of
the interaction (4.1) correeponding to the boundary conditione
(4.6). The observation made st the end of the previous esection

shows that the sphere SR ie impenetrable in thie case 1iff
-gZ+a=0. (5.1)

Notice that presence of the gcalar component is egsential here,
Ig|:[g§+4]1/222

8

In particular a purely scalar &-shell confines the particles iff

g, = * 2. We remark also that the relation (5.1) has been found

19



recently (on a heurlstic level) as the impenetrability condition
for a &-shaped separable potential in one-dimensional Dirac

operatcr [20]

6. Spectral properties

6.1 Point spectrum
in order to solve the eigenvalue problem ﬁjlw = Ay, one has to

find w = (f,8) € D(ﬁjl) so that the equatione
. x
-g +;g+mf=>&f (6.1a)

f’+;f~mg:7\g (6.1b)

are fulfilled in (0,R) and (R,w) together with the appropriate
boundary conditions coupling the solutions at the point R ; for
simplicity we write = = le.

6.1 Proposition: For any of the boundary conditions (3.5), the

operator I-l.11 has at most two eigenvalues (with account of

multiplicity) in (-p,m].

Proof: One has only to modify slightly the argupent leading to
Corollary 1 to Proposition 8.19 in {21]. Denote by “1"‘2 twe
extensions ﬁjl' where the first corresponds to the free Dirac
Hemiltonian, and suppose there are more then tiwo eigenvalues in
{-m,8). Since both the the operators Al. Az are self-adjoint

extensions of an operator with deficiency lndices {2,2)., there has

o,

1 - We have

to exist a nonzero vector w € Ran EA ({-m,m]) & D(H.(i
2

20



Al - : fz
Wy IF = [ 2"aw, B w) s w? 11y 1P
®

where we have denoted by {Eij)} the spectral decompogition of Aj.

At the same time, the spectrum of A1 ig contained in (-o,-m]U[m,x)

and the endpoints *m are not its eigenvalues zo
HawIf = §22acw 8% > wl 11y P
(-, ~miu[m,w)

but Alw = Azw since }',e D(Hgg)) B0 wWe arrive at a contradiction..

The points A = *pm can be eigenvalues of ﬁj 1 for particular
boundary conditione. For instance, consider X = -m and l=j-1/2,
i.e., » = -(1+1). The equationa (6.1) have then the following

square lntegrable solutlons

- 1-%
fir) = ar ", @(r) = 220" fr reo.®)

f(r) = 0, g(r) = br™ for r « (R, ).

Substituting them into the boundary conditions (3.5) one can find
the cases when A=-p is an eigenvalue. In particular, for the

boundary conditions (4.6) this is true if

z 2 8mR _
g, - 8g ~ 4+ {7z (g,7g,) = 0.
Similarly one can handle the remalning cases.

Let us turn now to eigenvalues A & (-m,m) for fixed boundary

2]



"conditions (3.5} which we ghall write for simpliclty in the form
(3.8),

Cw(R_) + Dy(B,) = 0

It ie clesar from (6.1) that the functions f,g are continuocusly
differentiable to any order in {0,R) and (R,w). Expressing g from
(6.1b) and subetituting intc (6.1a), we get the Bessel equation
whose solutions in (0,R) and (R,®») are of the form (3.3) with i¥m
r=piac=d by **m. Substituting them inte the beoundary conditicns.

we get the following elgenvalue squation

det[c.o("{x).np‘”m] =0, (6.2a)

where

5 cimia2)1/2g)
oy = (6.2b)

vz
(~1)3"L1*i/2y [mﬁ] (1(w2-nZy1l/2p,

Hil)(i(mz—Kz)l/zR)
p{+)(k) = (6.2c)

1/2
(o1y3-141/2, [nm] B (1n2-22) /2R

with w»=1+1/2, +'=1"+1/2 and 1 =j%1/2 for 1=j*1/2, according to
Proposition 6.1, it has at most twe solutlone, or even lees 1if

some of the points A=*m is an eigenvalue.

Similarly one can proceed for |Aj>m. There are non-zero esgquare
integrable solutiona in (R,®) in 'this case and therefore Hjl
referring to the boundary conditicens (3.5a)} has no eigenvalues of
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that type. On the other hand, the boundary conditions {3.5B) vield
the eigenvalue equation

A2g2yLr2

e T (0 F-0P)R) 4 o (1) T1H1/2 12

I, (00?2 = 0. (6.3)

A+m

It is clear that it hes for any real Cys Cp two infinite sequences

of solutions accumulating at A = w,

6.2 Continuous spectrum

The epectrum of the free Dirac cperator is known (22] to be purely
(and absolutely) continuous and equals to (-o,-m] © {m,m). We are

going to show that the ssme 1s true for the operators with the

&-shell interaction.

The resolvente of the eelf-adjoint extensiones Hjl with fixed 3,1
differ wutually by a rank-two operster (thig fact follows
immediately from the Erein resolvent formuls [4]) and have

therefore the same continucue gpectrum

1 - i - gD}y - o
oc(Hjl) = oess(Hjl) = aess(Hjl ) = (-»,-m] V [m,®)

for all §,1 , where ﬁ(D) denotee the partial-wave “component” of

il
HD' The essential spectrum of HEE) can be easily computed Jjust

-
solving the equations (6.1) in R+ for each A ¢ (~®,-m] V [m,o) and
taking a suitable sequence of cut-off functions. Morecover, the
spectrum of HEE) ig absolutely continuous for ail j,l1. ; this

followe immediately from the decomposition
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v o BT = o () = o () = (-w,-m) U [m,®) -
5 :

It remaine In such a way to check that

“eesBy1) = 74 o(Hy))

for all j.1 and all self-adjoint extenslone HJI' To thls purpose
we use once more the EKreln resolvent formula which yields the

following relation for the regolvent of ﬁjl

2
(Hjl—z)-l = (Hgg)—z)“l + E: u;fi)(z) lg ¢z)><g _(Z)] »
m,n=1

where the matrix u(Jl)(z) is meromorphic and represents a solution

to the equaticn
el = w21 - ez g (B) e (20
and the vectore gm(z) eolve
ﬁ(D) -1

8,(2) = 8lzg) + (2 - 25) (Hy)) -2)7" g (3)

being therefore analytic in p(ﬁgg)). Let us now take z € (a,b) <=

(~o0,-m] W [m,»} where a,b are chosen in such a way that

(e, (Hy,-2)"Pe) (6.4)

is analytic in (a,b) for all v = cg(m*)ecz ; the above argument

showe that it is always possible. Then the known criterion [23)
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shows that {a,b) N OEC(Hjl) = 'd. Since the poles of (6.4) are
isolated it follows that osc(ﬁjl} = &, Summarizing the above

resulte we get

6.2 Theorem: For any of the boundary conditions (3.5), the
oparator ﬁjl has at most twe elgenvalues (with the account of
multiplicities) in [-m,m}. For (3.5a), there are no eigenvalues in
(-®,-p] U [m,) while for (3.5b) there are two infinite geguences

of eigenvalues accummulating at A = *w, Furthermore, one has

ac(Hjl) = oess“!jl) = oac(Hjl) = (-w,-m] v [m,®)

and gsc(Hjlj = @.

Appendix: Asymmetric S-shells

The é-shelles do not exhaust the class of extensions covered by
Theorem 3.2. Though it might be physically not interesting. we are
going to demonstrate that the remaining extensions correspond to
"asymmetric” S-shells with (4.2) replaced by G&a(r—R), where G is

again a 2x2 natrix and 6a ia defined by

R+«
J 6, (r-Riw(r)dr = aw(R,) + (1-a)¥{R_) (a.1)
R-e

for v = D(ﬁ;g)*), where a is a complex number. Condition (4.3) is

now replaced by
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(1-aB)w(R+) ~ {1+bB)w(R_) = 0« (A.2)

where we have denoted B = TOG and b = l-a. Let us denote further
ﬁg?’a) the restriction of ﬁgg)* to the egubeet of its domain

specified by the boundary conditions (4.2)

A.1 Proposition: ﬁjig‘A) 1z a Belf-sdjoint extension of ﬁ§2) 11

G -G = (1—2Rea)G+r0G- (4.3}

Proof: The ralation (A.2) represents two linearly independent
boundary conditions since rank(1-aB,1+aB) = rank{(1-aB,B) =
rank{(1,B) = 2. It remains to check that 1t is symmetric iff (A.3)

is valid. We distinguish again several caees:

(i) 1-aB is nonsingular. Then w(R+)=(1—aB)_1(1+aB)v(R_) 8¢ the

requirement gives

+.-1

o - (1+BBY)(1-38%) " 1e (1-aBH) 7

T

(1+6B*) = 0 (A.4)

mualtiplying thle relation by (1-EB+) and (1-aB) from the left and
right, respectively, we arrive after a short calculation at the

relation (4.9)
{(11) An analogous argument can be uged if 1+bB ie nonsingular

(1ii) Suppose that rank{l-aB)=1 and ﬁj?'a) is self-adjolnt. Then
(A.2) pust be equivalent to (3.5b), 1.e., there is a nonsingular V

sauch that
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<

V(1+bB) = [&1’ 22] , V(1-aB) = [ (A.5)

by a suiteble choice of V one can have one of tﬁe following
possibilities:
(a}) 2,7d,=1
{b) c1:d2=1. d1=0
(c) c2=d1=1, cl=0.
One can calculate the patrices VB and V from here obtaining, in

particular, detV =‘a(1—a)(c2d1 - cld2)< Since it is nonzero, one

has a = 0,1 and c2 = d2 in the case (a). Furthermore one can
calculate
i [ cldl , (1—a)c2d1+c1d-2 ]
G='_TQB= -
detV _
(1 a)cld2+ac2d1 B czd2

Thus one has to check that this matrix fulfille the condition

(A.3) iff all the coefficlents °1’°2'd1’d2 are real. For each of

the pogsibilitiee this can be done by a stralghtforward algebra.

{1v) The case 1-8B=0 ie excluded simiisrly as in the proof of

propogition 4.1. |

(G, al
1

The operators Hj with a'e (0,1} cover almoat all extensions

covered by Theorem 3.2:

A.2 Propoeition: The set of the self-adjoint operatére ég?,a) as

well as its subset correeponding to a € (0,1) coincides with the
get of gelf-adjoint extensione Hj1 from Theorem 3.2 with the
exceptlon of those glven by the boundary conditiones (3.5b) with

c1=d1.-cz=d2.
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Proof: First we check that the condition (A.2) with det(l+bB) = 0
ig equivalent to (3.5a). Using (A.4) one can check that 1-aB is
also nonslngular, and therefore (A.2) is equivalent to
w(R_):Alw(R+) for a nonsingular A,. Since the (A.2) defines

ia

self-adjoint operator by definition, it wmust hold Al = e A

for some a, A. Conversely, consider (3.5a) with some A1:ela

A.
Since Al is mnonsingular and det is a continucus function,
det({al+bA =0 for all laj small encugh. We choose such an a and
set B=(1-AI)(a1+bA1)_1. Then 1+bB=(a1+ba1)'1 and al=(1+bB)-1(1—aB)

gc we arrive back at (A.2). It is clear that there are many palre

of a,B correaponding to a given Al.

Hext one has to check that (A.3) with det{1+bB)=0 is equivalent to
(3.5b) with Cizdl or c2=d2. Ag in the previoua proof; there is a
nonsingular V such that the relation (A.5) holds. From here, one
can calcuiate VB and ﬁ, and also detV = a(a—l)(cldz - czdl). The
last relation shows that it cannot hold for c1=d1 and ¢ =d2.
Converaely, consider (3.5b) with ¢, =d, or czﬂdz. Choosing a=0,1
and

ac ac
L (%1 2
V= [(lase,canay)

we can define

Cy,C
B - y-1 [ d1 dz ]
1'72

and G=—T0B s0 we arrive back at (A.5) and (3.5b) implies (A.2) .
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Finally, let us remark that the remaining extensions of Theorem

3.2 can be described as "asymmetric” S-shells with the parameter a

bteing a Zx2 matrix.
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