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1. Introduction 

Dirac Hamiltonians with external potentials have attracted a lot 

of attention recently (1,2). Of course, they require a fixed 

inertial frame and represent an approximative description of the 

true relativistic two-particle dynamics only, but nevertheless 

they can provide us with various useful and physically interesting 

models. Unfortunately, the number of situation when a 

Dira~-operator model is exactly solvable is very low comparin• to 

the non-relativistic quantum mechanics [3]. 

In the non-relativistic case many new solvable models have 

appeared recently as a result of extensive investigation of polnt 

and contact interaction phenomena cf.the monograph [4] for 

summary and further references. One of these models concerns the 

three-dimensional Schroedinger operator with the interaction 

formally given by the 6-shell potential 

g 6(r-R), R canst ( 1. 1) 

cf.(5-12] and [13-15] for some generalizations. The aim of the 

present paper is to investigate Dirac operator with this sort of 

interaction, and to add thereby a new item to the short list of 

exactly solvable problems of relativistic quantum mechanics. He 

are going to construct all rotationally invariant contact 

interactions supported by the sphere. and to ·specify those aiDong 

them which correspond to a mixture of electrostatic and Lorentz 

scalar 6-shell potentials with coupling constants gv and g
8 
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respectively: 

(1. 2) 

In distinction to the Schroedinger case, such a shell can confine 

a particle within it at finite values of the coupling constants 

provided its scalar component is strong enough: we will show that 

it happens if 

( 1. 3) 

Other properties of the corresponding Dirac operators, in 

particular, their spectra will be also discussed. In a sequel to 

this paper, we are going to diseuse Dirac operators with a 6-shell 

plue Coulomb potential, tbe non-relativistic limit and the 

approximation of the 6-shell interaction by short-range 

potentials. 

2. Partial wave decomposition 

Our construction starts from the Dirac Ham.'.ltonian on the Hilbert 

space ~ = L2 (~3 ).c4 defined by 

(2. 1) 

with the domain 

D(~) 

The Dirac matrices are taken as 
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0 ) (i [ 0 [ 0 

For the definitior, of other quantities related to the Dirac 

equation (spherical spinors, etc.) we follow the convention of 

[ 16 J . The operator H
0 

is self-adjoint and C~(IR 3 ) e c 4 
is its 

core. 00 3 4 Moreover, C
0

(1R \{0}) e <C is also a core of H0 as can be 

seen from its density in D(H0 } in the H1 •2 norm. It illustrates 

the known fa-:::t that there is nv non-trivial point interaction for 

a three-dimensional Dirac operator [17]. 

Our construction of the 6-shell interaction proceeds in a usual 

way: one restricts the starting operator to a set of functions 

with supports disJoint with the support of the interaction, and 

constructs self-adjoint extensions of the obtained operator. Since 

in our case the support ie the sphere SR = { J:: E IR 3 ; f:: I = R } • 

where R is a given positive number. 'We are interested in the 

operator 

(2. 2) 

From the technical reasons it is 'useful to consider also its 

restriction 

(2.3) 

Since H0 = H
1 

as one can check in the above mentioned way, the two 

operators have identical families of self-adjoint extensions. 
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The operators {2.2) and (2.3) have infinite Oeficiency indices and 

hence a vaet family of extensions. In this paper we reetrict our 

attention to ~hose of them which are rotationally invariant; it 

will give us a possibility of reducing the problem to analysis of 

ordinary differential operators, It doee not mean. however, that 

other self-adjoint extensions are not physically attractive. On 

the contrary, one should expect exietence of' intereetina: 

extensions which are rotationally non-invariant and at the eame 

time specified by local boundary conditions. These problems \lill 

be discussed else\lhere. In addition to the rotational symmetry 

requirement we shall consider only reflection-symmetric 

extensions, i.e., our group of symmetry will be the t.miversal 

covering group 50(2) of 0(3). 

These requirements mean that there ie a single-valued unitary 

representation 0 of S0(2) such that an arbitrary eelf-adjoint 

extension H of H0 
:rroa the considered class fulfills 

U(R) H U(RJ- 1 = H (2.4) 

for any R • SU(2). One can decompose the state Hilbert space into 

orthogonal sua of eube~acee referrina to the total anaular 

momentum j, its third component m and the parity (-1)
1 ae 

with 

.. 
1Jt = • 

j;l/2 

J+1/2 j 

• • 
l=J-1/2 ~=-! 

~jll-' : { ¥' E ~ ¥-(r,ih 

(2.5a) 

f,• • L
2

(1R.,r
2
dr) } ' 

(2.5b) 



where njlp are the spherical spinors [16] and l'=j+1/2 for 

l=j!:1/2. It follows from (2.4) that H commutes with all functions 

of the operator U(R), in .Particular, with the projection 

corresponding to the representation of U(2) with a given j ,p and 

parity. Hence we have the decomposition 

()) j+l/2 j 
H = • • • Hjl.u j=1/2 l=J-1/2 .u=-j 

(2.6) 

where the "component operators" Hjl,u a.re self-adjoint with the 

domains D(Hjl~) = D(H) n ~jl.u· 

In each subspace Jj!'jl,u' one can separate the radial part of the 

operator Jj!'jl,u· To this aim we introduce the isomorphisms 

by 

U .- - __ L2(=+J ,. -2 jlp'""jlf.l-.... "" .... 

·rf( r) 
(UjlJ.J¥')(r) = ( · 1 1/2 ) (-1)J- - rg(r) ' 

(2.7) 

where f,g are related to VI as in (2.5b). We want to check first 

the inclusion 

~ 

• 
J=1/2 

j+1/2 j 

• • 
l=j-1/2 1'=-J 

(0) -1 H(O) where the operators HJlJ.J are equal to Ujlf.l Jl 

named operator beina defined by 

5 

(2.8) 

ojlJ,J the last 



on 

- ( 0) 
Hjl . - [ m 

!!__+ 
dr 

d + :ttjl 
dr r 

~ 
r -m 

C~((O,R)u(R,w)).C2 with 

= (-l)j-1+1/2 (j+l/2) 

) (2.9a) 

(2.9b) 

(we note that here the capped quantities refer to the 

two-component space~). Now we want to prove that a decomposition 

analogous to ( 2. 8) holds for any rotatiOn-invariant self-adjoint 

operators on !Jf. 

2.1 Proposition. For a self-adjoint operator H in ~. the equality 

(2.4) holds for all R E SU(2) iff 

H 
00 

• 
j=l/2 

j+l/2 

• 
l=j-1/2 

j 

• 
!-1=-j 

-1 -
uJtp"JloJll-1 

where Hjl is a self-adjoint operator in « independent on 1-1. 

(2. 10) 

Proof: The sufficient condition is trivial. The requirement (2.4) 

implies the decomposition (2. 6) and one defines naturally 

-1 
Hjl!-I=Ujl!-IHJli-IUJlf.l' 

independence of 1-1-

so 1 t is only necessary to check 

' Let us show first that D(Hjl~) 

U(RJ [ 
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belongs to D(H) f~r any ~) E D(Hjl,i) and R E SU(2) according to 

(2.4). Since Xjlt.-~ .L g(jlJJ' for 1-1 ~ J.J- each term on the rhs.must 

belong to D(HjlJJ_)_ One always find R such that D~~~(R) ~ 0 due to 

the Burnside theorem (18]; then applying UJll-l' we find that 

[ g
f ) E D(HjlJ.J" 

for all 1-J. = -j,. , j. The index J.J = -j, .. , j can be chosen 

arbitrarilY so the equality of the domair.s is obtained 

Consider now a vector ~ E D(H) referring to fixed j,l, i.e., 

with 

• ~(r,n) 

for /J -j, ... ,j. Denoting 

(!) 
we can calculate easily 

U(R)HU(R)-l¥' = 

j 

= L: L: 
J.J.=-j v,o 

) 

[ 

ijCll (f,g) ) = jll-l 
- ( 2) 
Hjl~ (f,g) 

7 
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Since this should equal to Hw, we get the relation 

valid for any "'Jlp E Djl p = -j, ... ,j. Multiplying it by 

~(j)(R- 1 ) from the left and summing over~. we obtain 

"" 

for each R E SU(2). Using the Burnside theorem again we get 

for all p,c -J ....• J. I 

It follows now easily .troll the proved assertion and the 

decomposl tion ( 2. 8) that in order to construct all rotationally 

invariant 6-ehell interactions for the operator (2.1), one baa to 

construct all self-adjoint extensions Hjl of Hj~) in each partial 

wave subspace and to insert them into the formula (2.10) 

3. Self-adJoint extensions of the radial operators 

He have reduced the problem to analysis of: ordinary differential 

operators correspondina to the for•al expression 
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T o (
0,-l)d 
1, 0 dr + [ m 

-m ) ( 3. 1) r 

which can be handled by standard methods (e.g., that of ( 19), 

cha~.XIII ), because the coefficient of the derivative is a 

constant and non-singular matrix. The adjoint 

(2.9) acts as (3.1) on the domain ooij~'*> 

"(0)* operator H J 1 to 

consisting of the 

functions WE~ which are absolutely continuous in (O,R) and (R,oo) 

w-ith T\1' E Sl(, Since 'T is formally self-adjoint its deficiency 

indices are equal and self-adjoint extensions of the operator 

(2.9) exist. 

The deficiency indices fulfill d !> 4, because they correspond to 

solutions of a two-component first-order differential equation in 

the intervals (O,R) and (R,oo). In order to find them explicitly 

consider the equation 

( T - i) f> 0 (3.2) 

whose eolutione are obtained eaeily by analytic continuation of 

the well-known stationary solutione of the free rad~al Dirac 

equation to imaainary valuee of energy. 

= [ ] , (3.31 
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~here v=l+l/2, v'=l'+l/2 and the cylindrical function Zv stands 

for Jv or H~ 1 ), The first choice ~·ields a solution which is 

square integrable in (O,R) but not in (R,ro), while the reverse is 

true for the second case. Extending the square integrable 

solutions by zero in the other interval, we get d = 2. 

One could use this explicit form of deficiency vectors for 

construction of the self-adjoint extensions via the von Neumann 

formulae, but this ie. r,ot very practical. Instead, we are aoin& to 

characterize the extensions by suitable boundary conditione. Since 

H0 l C~CCR 3\{0}).C 4 is e.s.a .. there are no non-trivial boundary 

values at 0 and ~. 

3.1 Proposition: There is a complete set of four independent 

~ ( 0) * boundary values on D(Hjl ) , namely 

~ ~ ~(R±) = lim ~(r) 
r-R:t 

(recall that ~ is a two component vector) 

Proof; consider ~ = ~) e D<iij~}*). The functions f,g are 

absolutely continuous inside (O,R) and (R,oo) and square integrable 

on IR+ 1.tith TV' e L2 (1R+)e<:2 . Then, for instance, f is square 

integrable in a left neighbourhood of R and 

• 
I f(r) - f(e) I s lr-•11/21 J lf.(t) 12dt 11/2 

r 

so lim f(r) exist and in the same way one checks the existence 
r~R 

of the other three limits. Since we have 4=2d linearly independent 
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- ( 0) boundary values , they form a complete set for Hjl [191 I 

-(0) -(0)* Self adjoint extenBions of Hjl are restrictions of Hjl to a 
subspace of D(H;~)*) specified by a symmetric set of two linearly 
independent boundary conditions. We define the boundary form 

where To (0,-1) 
1' 0 . Integration by parts yield for any 

s 6 

r r 

provided R is not contained in the interval (r,s), Since the 
integrals on the ths converge in any subinterval of ~+' one can 
establish existence of the limits of F(~.P; .) at the points 0, R_, 
R+' oo similarly as in Proposition 3.1. Furthermore, 

lim F(>p,p;r) 
r-+0+ 

lim F('#,p;r) = 0 
r~oo 

for any 9,'# E ocHjf'*) since otherwise one could. define an 
additional independent boundary value in contradiction to 
Proposition 3.1. Hence we get 

( -,H-,<. 0
1 )* •) - (H-j(0

1
)*-,-) - F( - R ) F( • R ) .,. .,... .,. .... - lp,.,..; - ¥',..-; + (3.4) 

-(0)* for any ~.VI E D(H j 
1 

) and we have to choose those boundary 
conditions for which the rhs of (3.4) vanishes. 
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" ( 0) " 
3.2 Theorem: Any self-adjoint extension Hjl of Hjl in r~t acts as 

HJl"" = T¥' for \II e D(Hjl) where,.- is given by (3.1) and D(Hjl) 

conr3ists of the functions V' e: L 2 
(.IR + ).C2 which are absolutely 

continuous inside (O,R} and (R,~). T\11 E L2 (JR+)eC2 , and satisfy the 

following boundary conditione: 

1P(R J (3.5a) 

where a E [0,2n) and A is a real 2x2 matrix with det A 1, or 

cz ) ¥'(R ) 0 , (3.5b) 
0 

where c 1,c2 ,d1,d2 are real and both matrices are non-zero. 

Conversely, any operator of this form is a self-adjoint extension 

" ( 0) 
of H jl in Sit. 

Proof: It remains to check that { 3. 5) are all symmetric sets of 

pairs of linearly independent boundary conditione. Accordin& to 

the Proposition 3.1, the general form of such boundary conditions 

i• 

( 3. 6) 

where C,D are 2x2 matrices such that the 2x4 aatrix (C,D} hae rank 

two. The symmetry conditione accordina to (3.4) reade 

0 ( 3. 7) 

for any ~.~ • D<Hj~>*) aatiafyina (3.6). We diatinauiah the 

followin~ three caeea: 
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(i) C is non-singular, then (3.6) can be written as ~(R ) ~ B~(R+) 

and substitution into {3.6) gives 

Since this equation should hold for any ~(R+)' ~(R+)' we get 

+ BToB=-r:o· (3.8) 

So ldet Bl = 1 and B is non-singular. A simple algebra shows 

that (3.8) is equivalent to (3.5a) with B = exp(io)A. 

(ii) D ie non-singular, then (3.6) can be written ae ~(R+)=B~(R_). 

where B ie non-singular due to (3.7), so this case reduces to the 

previous one. 

(iii) Both C,D are of rank one but (C,D) has rank two. Multiplyin£ 

{3.6) by a suitable non-singular matrix, we can write it as 

0 • (3.9) 

where at least one of the nuabe.rs c
1 ,c

2 is non-zero. Since D
1 is 

&£ain a rank-one matrix, one can write it as 

with at least one .of the numbers d 1 ,d
2 non-zero (the other 

possibility when only the first row is non-zero is excluded 

because the combined 2x4 matrix should be ~frank two). It is easy 

to see that (3.9) ie in that case equivalent to {3.5b) or to 
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¥'(R ) = ( 0' ( 3. 5b') 

i.e., that the boundary conditione decouple in this case. The 

coefficiente c 1 
,c2

.ct
1 

,d2 
might be still complex. The condition 

(3.5b') however, means that the two-dimensional complex vector 

¥'{ R ) is for any "' E D(H'j(Ol)*> th 1 t r"1) i ~ or oaona o lCz , .e., 

Y'(R ) 

and the corresponding expression for ¥'( R+) in terms of ct 1 , ct 2 . 

Substituting 1 t to the expression ( 3. 7) where now both terms on 

the lhs muet be zero , we get Im C1c 2 = Im d1
ct 2 = 0. Thus c 1 ,c 2 

and ct 1 ,ct2 must have the same phases. I 

3. 3 Remark: In addition to the stated symsetry requirements, one 

may want the constructed Hamiltonians to be time-reversal 

invariant. The corresponding antiunitary operator T can be defined 

as in the free-particle case [16J 

where K means the complex conjugation. After the partial-wave 

decomposition. we see that H is time-reversal invariant iff D(Hjl) 

is invariant with respect to the complex conjugation for all j,l. 

The just proved theorem shows that this is the case when H j 1 are 

specified by the boundary conditions (3.5b) or by (3.5a) with o=O. 
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4. 6-shells 

As we have mentioned in the introduction, we are interested 
Primarily in the potentials (l.Z), i.e., a combination of the 
scalar external field gs~(r-R) and the vector field described in 
the given reference frame by ( gv6(r-R) ,<3 ) with real coupling 
constants. In the radial Hamiltonians Hjl' this interaction 
corresponds to the formal potential 

• 0 } 6(r-R) 
,gv-gs 

I 4. 1 I 

with gv,ge independent of j ,1. More generally one can consider the 
potential 

G6(r-R} (4.2) 

where G is a 2x2 matrix. Our aim is now to specify the 
self-adJoint extensions Hjl that can be associated with the formal 
Dirac operator with the potential (4.2}. Suppose that ~satisfies 
the equation 

(T + G6(r-R)]~ = E~ 

and the limits ~(R±) exist. Integrating over (R-c,R+c) and taking 
the limit c ~ 0+, we get 

(4.3) 

provided we have chosen the relation 
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R+< 

J 6(r-R)w(r)dr 

R-c 

(4.4) 

as a definition of the ~hs. Of course, only those matrices G are 

acceptable for which the boundarY condition ( 4. 3) is compatible 

with (3.5). As one expects, the following assertion is true. 

4.1 Proposition: BoundarY conditions (4.3) define a self-adjoint 

- ( 0) + 
extension of Hjl iff G = G. 

Proof: The matrix (1-T 0G;2,l+ToG/2) has rank two since the sum of 

the submatrices is nonsingular. It remains to check that (4. 3) 

implies {3. 7) iff G+ = G. We start with the necessary condition 

1 
and distinguish four cases denoting B = 2T

0
G 

(1) 1-B is nonsingular, then (4.3) is equivalent to 

w(R+l=(l-B)-l(l+B)w(R_); substitutinl it into (3.7) we cet after 

a simple algebra G+ = G. 

(11) l+B is nonsincular, then the same procedure with the 

interchange G ~ -G can be used. 

(iii) 1-B =0 or l+B =0; in that caae Q;±2T
0 

• G+, but the 

condition (4.3) reads \"(R±) = 0, while .,(R;:> is arbitrary. Hence 

the rhe of (3. 7) equals +.,(R±)+T0p(R±) ao these boundary 

conditions cannot define a self-adjoint extension. 

(iv) both l+B and 1-B have rank one. As in the proof of the 
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Theorem 3. 2, one can find a nonsingular matrix V which 

converts them into non-zero matrices of the following form 

V(l+B) = ( cl 
0 

cz ) 
0 

, V(l-8) ~ ( 
0 ' 0 ) 

dl' d2 

one can express V and VB form there. Furthermore, V is nonsingular 

so one can calculate B and 

2 
[ 

2c 1 d 1 , c 1d 2 + c 2d 1 ] 

c
1

d 2 + c 2d 1 , 2c 2d 2 

( 4. 5) 

Since we can choose V so that the numbers c 1 ,c2 ,ct1 ,d2 are real, G 

is real symmetric. and therefore Hermitean. 

On the contrary, assume G+=G and let us prove that (4.3) defines a 

self-adJoint extension. For the cases (i) and (11). we have done it 

already, the case (111) does not occur. It remains to complete the 

proof for the case (iv). AnY Hermitian G is of the form 

with a,c real. It gives 

l+B = ( 1-'6/2 , -c/2 ) 
a/2 , l+b/2 1-B ( 

t+E/2 
-a/2 

c/2 ) , 
1-b/2 

Since det(l+B) = det(l-B) =0, b must be real and b 2=4+ac. For any 

a,b,c satisfying this restriction, one can choose c 1 ,c2 .d1 .d2 so 

that G is expressed 'in the form (4.5) ,e.g., by taking c 1 = d
1

= 1 

for a~O and c 1=0 or d 1 =0 for a=O. I 
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Let us return now to the physically interesting case ( 4. 1). The 

corresponding matrix G is Hermitean and the boundary conditions 

(4.3) read 

[_ 1 

•v •s 

] [ 1 
•s - •v 

] 2 
¥'(R+) - 2 

¥'( R- J = 0 • 
gv + •• •v + •s 

2 1 2 1 (4.6) 

It is clear that tt1ey can be cast into the form (3 .5a) iff 

otherwise they belong to the type (3.5b). Remark 

3. 3 shows the cot'respondins operators, as uell as the more general 

Hamiltonians referring to the 6-shell interaction (4.2) with 

G, are time-reversal invariant. They do not cover, of 

course, the class of all self-adjoint extensions HJl described by 

Theorem 3. 2; a poe:sible interpretation of the remaining ones is 

discussed in the Appendix. 

5.Confinement 

In some cases, the conta,~t interaction of the sphere may separate 

the two spatial regions fully, i.e., the particle under 

consideration is either confined in the ball BR={ x E ~:Iii :S R } 

or lives outside BR and cannot enter it. In other words, the 

sphere SR is impenetrable for the particles. 

Let us denote "'• = { ¥'EI1t ' supp ¥' c BR J ; we are interested in 

the situation when "'• is invariant under exp( -iHt) for all t EIR 

or equivalently ERR c HER where KR is the projection onto "'• 
in "" 
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In the sphericallY symmetric case it is further equivalent to 

for all j,l, where ER ie the projection into L2 (0,R)eG:: 2 in Sit_ 

Combining the last requirements with Theorem 3.2, we arrive at the 

following conclusion. 

5.1 Proposition:· Let H be a rotationally and space-reflection 
symmetric Dirac operator with contact interaction on the sphere 

then SR is impenetrable for the particles iff the 

corresponding partial-wave operators Hjl are defined by the 

boundary conditions {3.5b) for all J.l. 

As an example. consider again the physically interesting case of 

the interaction ( 4. 1) corresponding to the boundary condi tiona 

( 4. 6). The ob~ervation made at the end of the previous section 

shows that the sphere SR is impenetrable in this case iff 

2 gs + 4 ::: 0 . {5.1) 

Notice that presence of the scalar component is essential here, 

In particular a purely scalar 6-shell confines the particles iff 

g
8 

:: ± 2. We remark also that the relation (5 .1) hae been found 
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recently (on a heurletic level) as the impenetrability condition 

for a 6-shaped s~parable potential in one-dimensional Dirac 

operator {20] 

6. Spectral propertie6 

6.1 Point spectrum 

In order to solve the eigenvalue problem Hjl"' 

find ¥' = {f,g) e D(Hjl) so that the equations 

A¥', one has to 

-g +~g+mf 
r 

f - + • f r - m g 

' f ( 6. la) 

' g 
(6 .lb) 

are fulfilled in (O,R) and (R,oo) together with the appropriate 

boundary condi tion6 coupling the solutions at the point R for 

simplicity we write • = •jl" 

6.1 Propoeition: For any of the boundary conditione (3.5), the 

operator Hjl has at most two eigenvalues (with account of 

multiplicity) in [-m,m]. 

Proof: One hae only to modify slightly the argument 1eadin11 to 

CorollarY 1 to Proposition 8.19 in [211. Denote by A
1

.A2 
two 

exteneione Hjl' where the first corresponds to the free Dirac 

Hamiltonian, and suppose there are more then two eigenvalues in 

(-m,m]. Since both the the operators A
1

• A
2 

are self-adjoint 

extensions of an operator with deficiency indices {2,2). ·there lHJ:s 

to exist a nonzero vector we Fan EA ([-m,m]) 
2 

20 
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~. I')) J A '-d(JP, E~ ~ '1-') ::; 

IR 

where we have denoted by {E~j)} the spectral decomposition of Aj. 

At the same time, the spectrum of A1 is contained in (-oo,-m)u(m,oo) 

and the endpoints !m are not its eigenvalues so 

II A1'1' d = 
( -oX•, -m )u[ m, oo) 

A
2

't1 since l'e ncHj~)) so we arrive at a contradiction.l 

The points i'l. ±m can be eigenvalues of Hjl for particular 

boundary conditions. For instance, consider i'l. = -m and l=j-1/2, 

i.e. , ~-t ::: - ( 1+1). The equations ( 6. 1) have then the following 

square integrable solutions 

f(r) = 

f(r) 

-· ar g(r) 

0, g(r) 

= 2ma ~-JC ,.. 
l-Zx r ror re<O,RJ 

br" for r e (R,ao). 

Substituting them into the boundary conditions (3.5) one can find 

the cases when >..=-m is an eigenValue. In particular, for the 

boundarY conditions {4.6) this is true if 

g 2 _ ~2 _ 4 + 8mR ( ) 0 v •a I'='5 «v -gs · 

Similarly one can handle the remaining cases. 

Let us turn now to eigenvalues A e (-m,m) for fixed boundary 
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conditione ( 3. 5) which we shall write for simplicity in the form 

I 3. 6), 

C>.p(R ) + D>.p(R+) ::. 0 • 

It is clear from ( 6 .1) that the functions f, g are continuously 

differentiable to any order in (O,R) and (R,~). Expressing g from 

(6.1b) and substituting into (6.1a), we get the Bessel equation 

whose solutions in (O,R) and (R,~) are of the form (3.3) with i+m 

ro:.t:laced by ).=m Substi t~.:ting tho:!m into the boundary conditions. 

we get the fullowing eigenvalue equation 

(6. 2a} 

where 

[ 
J (i(m2->..2)1/2R) ] 9(-) (>..) 

v (6.2b) 

( _ 1 ) j-1+1!2 1 (m->..) 
112 

J , ( i(m2->.. 2) l/2R) 
m+>- v 

[ 
H(l)(i(m2->..2)1/2R) ] 9( +) (>..) 

v (6.2c) 
= 

( -1) j-l+1/2i (m->..) 1/2 H( ~) ( i(m2->.. 2) 1/2R) 
m+>- v 

with v=l+l/2, v'=l'+l/2 and l'=j+1/2 for l=j±l/2, according to 

Proposition 6.1, it has at most two solutions, or even less if 

some of the points >-=±m is an eigenvalue. 

Similarly one can proceed for 1>--1 >m. There are non-zero square 

integrable solutions in (R,oo) in this case and therefore Hjl 

referring to the boundary conditions (3.5a) has no eigenvalues of 
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that type. On the other hand, the boundary conditions (3.5b) yield 

the eigenvalue equation 

It is clear that it has for any real c
1 , c 2 two infinite sequences 

of solutions accumulating at A = ±oo. 

6.2 Continuous spectrum 

The spectrum of the free Dirac operator ie known (22) to be purely 

(and absolutely) continuous and equals to (-oo,-m] u [m,oo). We are 

going to show that the same is true for the operators with the 

6-sbell interaction. 

The resolvents of the self-adjoint extensione Hjl with fixed j, l 

differ mutually by a rank-two operator (this fact follows 

immediately from the Krein resolvent formula [4)) and have 

therefore the same continuous spectrum 

(-oo,-m] U [m,oo) 

for all j,l , where Hj~) denotes the partial-wave "component" of 

H
0

. The essential spectrum of Hj~) can be easily computed just 

solving the equations (6.1) in~+ for each A E (-oo,-m] U [m,oo) and 

taking a suitable sequence of cut-off functions. Moreover, the 

spectrum of H<DJ 
Jl 

is absolutely continuous 

follows immediately from the decomposition 
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for all j, 1. this 



u 
j,l 

{ -oo, -m] u [m,oo) • 

It remains in such a way to check that 

for all j,l and all self-adjoint extensions Hjl' To this purpose 

we use once more the Krein resolvent formula which yields the 

following relation for the resolvent of Hjl 

( H )-1 ~ (HJ(Dl)_z)-1 j 1-z 

2 
+ \ 1-l(jl)(z) L m,n 

m.n=l 

where the matrix ~(jl)(z) is meromorphic and represents a solution 

to the equation 

and the vect<'rB gm(z) solve 

being therefore analytic in p(Hj~))_ Let us now take z ~(a, b) 

(-oo,-m] V [a,oo) where a,b are chosen in such a way that 

is analytic in (a,b) for all~ e 

(6.4) 

C00(~ ).C2 ; the above areument 
0 + 

shows that it is always possible. Then the known criterion (23) 
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shows that (a,b) n asc(Hjl) =·e. Since the poles of (6.4) are 

isolated it follows that a
6
c(Hjl) = 0. Summarizing the above 

results we get 

6.2 Theorem: For any of the boundary conditions (3.5), the 

operator Hjl has at most two eigenvalues (with the account Of 

multiplicities) in (-m,m]. For (3.5a), there are no eigenvalues in 

(-oo,-m) u (m.~) while for (3.5b) there are two infinite sequences 

of eigenvalues accummulating at A = ±ro. Furthermore, one has 

(-oo,-m] V (m,ro) 

Appendix: Asymmetric 6-ehells 

The 6-shells do not exhaust the class of extensions covered by 

Theorem 3.2. Though it might be physically not irrterestina-. we are 

going to demonstrate that the remaining extensions correepond to 

"asym11etric" 6-shells with (4.2) replaced by G6a(r-R), vhere G ie 

aiain a 2x2 matrix and 6
8 

is defined by 

R+& 

J 68 (r-R)~(r)dr = a~(R+) + (1-a)~(R ) 
R-& 

(A.l) 

for w. ncHj~'*>. vhere a is a complex number. Condition (4.3) is 

nov replaced by 
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0 • (A.2) 

where we have denoted B ::: T 0G and b = 1-a. Let us denote further 

H<G,a) the restriction of ff<OJ* to the subset of its domain 
Jl Jl 

specified by the boundary conditions (A.2) 

A.l Proposition: HjiG,a) is a Self-adjoint extension of H}~) iff 

G - G.._ (A. 3) 

Proof: The rP.l.'lt.i_on (A. 2) represents two lir1early independent 

boundary conditions since rank(l-aB,l+aB} rank(l-aB,B) 

rank(l,B) = 2. It remains to check that it is symmetric iff <A.3) 

is valid. We distinguish again several cases: 

(i) l-aB is nonsingular. Then >p(R+)=(l-aB)- 1 (1+aB}¥'(R } so the 

requirement gives 

0 (A.4) 

multiplying this relation by (1-88+) and (l-aB) from the left and 

right, respectively, we arrive after a short calculation at the 

relation (4.9) 

(11) An analogous argument can be used if l+bB is nonsingular 

(iii) Suppose that rank{l-aB)=l and H~~,a) is self-adjoint. Then 

(A.2) must be equivalent to (3.5b), i.e., there is a nonsinaular V 

such that 
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V(l+bB) (
cl, cz) 

, V( l-aB) 
0- ' 0 

(A.SJ 

by a sui table choice of V one can have one of the following 

possibilities: 

(a) c
1

=d
1

=1 

(b) c 1=d 2=1, d 1=o 

(c) c
2

=ct
1
=1, c

1
=o. 

One can calculate the matricel3 VB and V from here obtaining, in 

particular. detV 

has a ~ 0,1 and c
2 

~ d
2 

in the case (a). Furthermore one can 

calculate 

G - -T rfl = 1 
de tV 

Thus one has to check that this matrix fulfills the condition 

(A.3) iff all the coefficients c 1 ,c2 ,d1 ,d2 are real. For each of 

the possibilities this can be done by a straightforward algebra. 

(iv) The case 1-aB=O is excluded similarly as in the proof of 

proposition ·~.1. I 

The operators Hji·a) with a e (0, 1) cover almost all extensions 

covered by Theorem 3.2: 

. - (G J A.2 Proposition: The set of the self-adjoint operators Hjl,a as 

well as its subset corresponding to a e (0,1) coincides with the 

set of self-adjoint extensione H j 1 from Theorem 3. 2 with the 

exception of those given by the boundary conditione (3.5b) with 
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Proof: First we check that the condition (A.2) with det(l+bB) ~ 0 

is equivalent to (3.5a). Using (A.4l one can check that l-aB is 

also nonsingular, and therefore (A.2) is equivalent to 

~(R_)=A 1~(R+) for a nonsingular A1 . Since the (A.2) defines 

self-adjoint operator by definition, it must hold 

for some a, A. Conversely, consider ( 3. 5a) with 

Al ::: ei
0

A 

io 
some A

1
::e A. 

Since A1 is nonsingular and det is a continuous function. 

det(al+bA
1 
)~0 for all Jaj small enough. We choose such an a and 

-1 -1 -1 
set B=(t-A

1
)(al+bA

1
) . Then l+bB=<al+bA

1
> and A1=Cl+bB) (l-aB) 

sc we arrive back at (A.2). It is clear that there are many pairs 

of a,B corresponding to a given A
1

. 

Next one has to check that (A.~) with det(l+bB)=O is equivalent to 

(3.5b) with c 1¢dl or c 2 ~ct 2 . As in the previous proof, there is a 

nonsingular V such that the relation (A.5) holds. From here, one 

can calculate VB and V, and also detV = a(a-1Hc 1d 2 - c
2

ct
1

J. The 

last relation shows that it cannot hold for c 1 =d 1 and c 2 =d 2 . 

Conversely, Consider (3.5b) with c 1~ct 1 or c 2.-=d 2 . Choosing a""'O,l 

and 

we can define 

B .-1 ( 

and G=-~ 0e so we arrive back at (A.5) and (3.5b) implies (A.2) I 
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Finally, let us remark that the remaining extensions of Theorem 

3. 2 can be described as "asymmetric" <.5-shells with the parameter a 

being a 2x2 matrix. 
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