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1. INTRODUCTION

Many problems of modern particle physics rely on the
spontaneous symmetry breaking as ,for instance, the electroweak
model with Higgs bosons (see,for example {1)),or the color
confinement in QCD which can be explained by a vacuum

? devoted to investigation

instubilityz.There are many paperu’q
of the problem of the vacuum phase structure for a scalar fleld

model with the Lagrangian
Ep) == (80" mip1- Loyt (1.2)

in R*.The theory 1is simple enough, and it i{s used widely for
testing new ldeas and methods in quantum field theory.

on the classical level for nf>0, the theory (1.1) is stable
and has a unique symmetric trivial ground state.On the other
hand, it has been tound’ that high-order quantum corrections can
give rise to the vacuum instability.A useful instrument for the
investigation of the vacuum {nstability due to quantum effects is

the method of the effective potential‘ which can be defined as
V(p )m-x-1im In{ I (¢ ) ),
] n n_’m n ©
Io (v )=[s0:8 (s - r‘,-[ﬂd’x-w(xn-exp([ndzx-n(w(xn>, (1.2)

where 0 is a finite volume in R® and v, is a vacuum expectation
value of the scalar fleld .A symmetry broken phase of a system is
associated with the absolute minimum of the effective potential,
for which wuto. As the effective potential V(wo) is described by

non-Gaussian functional integrals,one should use some
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approximation schemes.These may be perturbative loop-expansion
methods, variational approaches, or numerical calculations on a
lattice.

The effective potential has been calculated™® in the one-loop
approximation which predicts a phase transition in the
theory.Chang6 has got the effective potential as a partial sum of
"n-loop" diagrams only of the "cactus-type".This approximation
method gives a first-order phase transition.Nonperturbative
Gaussian approaches7 also lead to similar results.On the other
hand there exist mathematical theorems® proving that the second-
order phase transition takes place in this model. There are
papersmlm" where variational methods were used ‘ for
investigation of the vacuum stability problem and a correct
behaviour of the vacuum energy in the critical region was
obtained.The variational methods were applied to the Hamiltonian
of the system under consideration but not to the functional
integral (1.2) defining the effective potential.

In this paper, we obtain a variational estimation of the
effective potential in (1.2) wusing the variational method
introduced in [12].We show that there exists a second-order phase
transition in the wz model and give estimation for the critical
coupling constant.For this aim we consider the coefficient o(G)

in the expansion of the effective potential for small P.:
V(p,)=E(G) + a(G)-p> + O(p)) , (1.3)

where G=g/2r1m2 is a dimensionless coupling constant.We also
obtain that the "all-loop" approximation of the effective
potential gives only a first-order phase transition and cannot

explain the second order transition in principle.

2.THE EFFECTIVE POTENTIAL AND ITS LOOP APPROXIMATION
We will consider the scalar field theory (1.1).The theory is

supernormalizable in two—dimension. All ultraviolet divergences
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in this model can be removed readily by using the gquantum

Lagrangian density
2(p)= tp(x) - (o-m°)-p(x)~L-N_ o*(x) (2.1)
2 4 m ’

where N, denotes the normal product of the fields g(x) with mass
m ; g is the self-coupling constant.

We will investigate the effective potential V(wn) defined by
(1.2) and has the meaning of the¢ vacuum energy densitym”4 in
the vacuum state, the expectation value of the field over which

is p,- The functional integral in (1.2) is normalized in the

following way
Iote,)= ¢, [50-8(p, - 5-fnd2x-«p(x>>-exp<fnd2x~2(«p(x>>), (2.2)

where Cm=det“2(- o + mz).All integrations are performed here in
the Euclidean space.
Let us perform some transformations of the functional integral

In(wo) in (2.2).First, we can write
p(x) = ¢ + ¢(x) ' (2.3)
where ¢° is a constant field and ¢(x) satisfies the condition
_[ndzx-¢(x)=0. (2.4)

We can substitute (2.3) into (2.2) and perform integration over

d¢° taking into account the functional differential

6¢(x)=d¢;6¢(x). Then we obtain
Igte)=C, J'a¢(x)-exp(J‘nd2x-£(¢n+ 6(x))) - (2.5)

Second, we go to the normal product in the Lagrangian in (2.5)
with respect to the field with a new mass p and require the
coefficient of ¢2(x) in the Lagrangian density to be equal to u®.

Then after some calculations we get
Ig(e)=exp[-Q-V, (9 )]1-Ig(e), (2.6)
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where
2 2 2 2 2 2 2
m +3 - m 3 .2
4 (q)°)= %'- pf + %-w: - _Br; 99,.1n %2 SR g2‘[1n—:2j

loop

8n 64n
(2.7)

and

Jole, )=exp[-Q-V_(p ) ]=Cu"|‘6¢ exp (J'de~ [ % ¢ (a-p?)-¢

N, (ge 8’ x)+5 et ()Y (2.8)

Here the new mass g in (2.7) and (2.8) is defined by the equation

2
2_ 2 .g-02 - 39.1n_H
u'=m"+ 3-g 12 o 1n ) (2.9)

Thus, the effective potential consists of two parts

Vi) =V o (9) 7V (o) (2.10)

The function Vlwp(wo) in (2.7) will Dbe called the "all-loop"
potential because it corresponds to an infinite sum of all
cactus-type loop diagrams shown in Figure la.We call the second
function V“(wo) the "strongly-connected" potential, its

graphical representation is plotted in Figure 1b.
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Figure 1.Graphical representations of the
a)-"cactus-type"” and

b)-"strongly-connected" potentials.

At first let us consider the "all-loop"™ potential.It is

convenient to rewrite (2.7) using the following notation:

2
¢i= 4n-wf B =g/21rm2 and %2 =1+§ G-€ . (2.11)

The variables ¢° ,G and £ are dimensionless.Then substituting

(2.11) into (2.7) we obtain

2
Viopl BB (02 + 681 - 26-02In(1+36-€)+36 €

loop o
- 1n(1+36-£)+36 -[1n(1436-€) )%,

€ + In(1+%G-€)= ¢ (2.12)

The behaviour of Vmw( ¢.) is given in Figure 2, for different

values of coupling the constant G.

Viop! €
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Figure 2.The behaviour of V (9 )
loop o
for different coupling

strengths:G, <G;°°p

=G <G_.
c 3
When ¢f - 0, we have, for any G, the following asymptotic
behaviour of the "all-loop" potential

2
( 9,)=Fn L 62+ 008 ). (2.13)

loop o

This means that the loop potential (2.12) or (2.7) is not able to

describe the second order phase transition.The critical coupling

constant G'°°°

', at which the first order phase transition takes

place, is

Gl”“: 0.83.... (2.14)



3.VARIATIONAL ESTIMATIONS OF THE '"STRONGLY-CONNECTED" POTENTIAL

In the previous section we have seen that the loop approach

for the effective potential is responsible for the first-order phase

transition in this model although the mathematical theorems® give

the second-order one.In the method of the effective potential
this means that we have to take into account the second part ,the
"strongly-connected"” potential V“(wo) defined by (2.8).The
question is which kind of phase transition takes place then.As
stressed in Introduction, it 1is enough to investigate
the effective potential at small values of e, (i.e. ¢:<<1 ) in
order to answer this question.We will investigate the coefficient
a(G) in the representation of the effective potential (1.1).0ur
aim is to show that «a(G) is positive at small G and negative as G
> . As the functional integral (2.8) 1is non-Gaussian, its
explicit computation is impossible at present .We will use the
variational method suggested in [12].

Let us rewrite (2.8) in the form, which is correct for small

Jﬂ(wo)=cu~j6¢-exp(jndx-[ Lo (o) e 00 ~IN 90 ()

+ ia%° [jndx-rvu-f(xnz ) = exp[-Q-V_(v)]. (3.1)

o

This representation can be obtained easily due to validity of the
following transformation in (2.8)
2 4
exp(-p W) = ch(p W) = exp(; ¢ W+0(pl))

for infinitesimal e, and finite functional W. Then applying to

the integral (3.1) the variational techniquesu, one can get

1 . +
Ve (9)== ‘ﬁ'élm In( Jale) ) = V_(e) :

' 2
V;(wo) = min (% J [1n(1l+g (k%)) - Igé%ﬁlyl .

d’k
q.2 (am)?

*2° 4 2 2
+ 4,9 [ A -6 A Aq+ 3 Aq] -

z t 3
- 3% jﬂjndxdy[D:(x—y).uzoj(x—y). 2a'n (x-y))),  (3.2)
where
s ] e 48Ry Bo

d’k eik(x—Y)~ 2

D (x-y) = 3 THg (R D(k°)

(2m)

Bk?) = —1 . (3.3)

4 K2
Here u° is defined by equations (2.11) and (2.12).The constant
A and function q(kz) are variational parameters (see Appendix

A). The optimal form of the function q(kz) is
q(k’) = £u*-B(k’) (3.4)
as it follows from the variational equation.Here f is a

variational parameter.

For wi« 1 the equation (2.9) gives

3 G
2+3G

wW=md 1+ 4mpj + 0@ 1 . (3.5)
All integrals in (3.2) and (3.3) for the function q(kz) are
calculated explicitly and the upper bound of the
"strongly-connected" potential can be written for ¢3< 1 in
notation (2.11)
N 2 m2 + + 2 4
Ve () = gg C E (G) + a (G)-¢_ +0(s ) ), (3.6)

where

E'(G)= min {f-In(1+f)+B° + g-{(52—3~1n(1+f))2— 6-1n2(1+f)} ,
f,B

(3.7)
2 4
o, () =355 £(G)-1n(1+£(G))+B*(6))-5r3rarayy@+3B (6)+ 5Ly,
(3.8)

Q=J‘“d"“md75 (1-a-B=7) - [aB+ay+BY] '=2.3435...
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The functions f(G) and B(G) define the minimum Es;(G) in

(3.7) .They satisfy the following equations

f- 3 G-[B*-1n(1+f)]=0,

Q N

1+% [(B?-3-In(1+£)]=0 . (3.9)

Equations (3.9) have nontrivial real solutions for

. f+3 _
G>Go—mf1n Tn(:m =1.43....

When G<G , the solutions are trivial: f=B=0.

Finally, for the effective potential we have the upper

estimation

Vip)= Vip) =V (p) + V (p). (3.10)

The behaviour of V'(wo) is shown in Figure 3. Substituting (2.13)

and (3.6) into (3.10) one gets finally for ¢f« 1 (i.e.¢2< 1):
. °

2
(92) = F= (EL(G) + a *(6)-¢2 .+ 0cs%) ), (3.11)

+

v

a '(6) =1 + as:(G) .

V* (%)
G [G" yG”

Figure 3.The upper bound of the effective
potential for different couplings.

Here G’<G;<G’ ’<1.63<G’"".

Our estimation are undoubtedly true at large couplings Gow. In

this limit we have

2
+ 2 m 3 2 15 2 4

V7' (¢) — gy (- 3G InG- =7 G InG ¢ + O(4_) ) , (3.12)

i.e. o' (G)=- 1%-6-1nG<0. It means that in the region of strong

coupling the second-order phase transition takes place in the ¢;
field model due to the contributions of the "strongly-connected"
part of the effective potential.

The numerical value of the critical coupling constant can be

found from our formulae.In critical region

£(G)=0 , B(G )=0
and
a *(ey= 1 - 2-6%g
2
becomes negative for
b 2 1/2_
G > (;c—[T = 0.53.... (3.13)

or

(—'%2);= 2nGl= 3.35....

We believe that the true critical coupling G, lies not far from
G; , although

G =G (3.14)

< <
in any case.Besides we want to pay attention to that

6" < g'°®
<

< .

<>

/

083

‘<w>
¢ 053 G
a) b)
Figure 4.Field expectation values
corresponding to the a)-V

loop

and b)—V+ potentials.
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This means that the second-order phase transition occurs earlier
than the first order one.Figure 4 exhibits the field expectation
values corresponding to the Vlwp(wo) and Vs;(wo) potentials as

functions of the coupling strength G.

CONCLUSION

In this paper, we have investigated the problem of phase
transition in a two-dimensional ¢* quantum field theory.The
functional integral describing the effective potential is
estimated by a variational approximation.We have obtained
expressions for the "cactus-type" expansion and upper bound of
the effective potential. We show that the loop potential qu
describes only the first-order phase transition and is not able
to explain the second order one on principle.By contrast the
"strongly-connected" part of the effective potential gives
contributions leading to the second-order phase transition at a
large coupling constant.Thus, in the theory under consideration

the symmetry ¢ — -~ ¢ turns out to be spontaneously broken

through the second-order phase transition.
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APPENDIX A
Here we formulate our variational techniques (for details, see
[15]), i.e. show how to obtain (3.2) and (3.3) from (3.1). We

work in a Euclidean space volume Q >R>. Let integral (3.1) be

given
Jn(g)=J-d0'¢-exp{- g J'de-unb)} (A.1)
dog= C,-58-exp(- ! jﬂdx 8- (- o+ u%) -9}, (A.2)
10

where U(®) is a real functional, Cu=detU2(—n+u2) and &(x)
satisfies (2.4).
Let us diagonalize the quadratic form in (A.2) by introducing

the functional variables ¢(x):

o(x)=(-o+u®) VPp(x)= jndy A(X,y)-#(Y)=(A,¢)(x) , (A.3)

where

d

K P+u?) V2 expl-ik(x-y) ] ,
(2m)

A(x,y)=j

2
[ ar-ecyi-o . (a.4)
Q .
Then (A.1) can be rewritten
Ig(@)= [do,-exp(- g jnqu[(A,w(x)J} .

do = C~5¢-exp(—%j Lax 8% x )} (A.5)

C obeys the condition Ida¢=1.
Now we proceed to the variational estimation of integral
(A.5) .Let us introduce new variables v(x) and A(x)

#(x)=(1+q(n))

-1/2 2,172

v(x)+(-oru®) 2 arx), ,(A.6)

where the variational function g(k) satisfies the condition

f Ik (k) < » « T (@A)

Substituting (A.6) into (A.5) we have the equivalent form of

Eq. (A.1):

-1/2

Io(@)=n(1+a(8))™"* [do exp(} [ dx v(x)a(err1+a(a) v ix)
q Q

- 1 [ ax [2a0x) (=ons®) (A v )(x )+ ACx ) (~ai®) A(x) ]
9] q

- g [ axvrese)xrracn g, (a.8)
Q q
where
Aq(x)=j dsz [ (K+u®) (1+q%) 7% exp(-ikx) . (3.9)
(2m)

11



Now we choose the function A(x) in the form:

I dx-A(x) = 0 \ A(x)=A* . (A.10)
n

where A is an arbitrary number.let us use the unegquality:
Idc-exp(-ﬂ)t exp: (- Idc LA

which is valid for any positive definite measures do and any real

functionals W.Then taking into account (3.1) one can obtaln as

n —R?
1 0
v, (9 )5 min g (L{q}+ﬁ;-n+ g Ida I dx U[(A,v)(x)+A(x)]} ,
s ‘o q.4 v a ‘ 9
Q[ dk 2, q(k?
Liq)=3- | Ty LIn(ara ) i (A.11)

After integration over Idcv we obtain (3.2).
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E¢umoB I'.B., Tanbonp T. E2-89-729
0 dpasoBOM nepexofie B OBYMEDHOH ¢4 TeOpPHH

HayuaeTcAa yCTOHUNMBOCTHL BaKyyMa B [OBYMEPDHOM cCKalsipHOH ¢4
TeopHH. llonyueHa BapHalUHOHHAasi ONEHKAa (YHKUHOHANBHOT'O HHTe-*
rpana, onpepenawuero s3¢p¢peKTHBHEIT NOTeHIHan B HAHHOR MOOesH.
HmeeT MecTO ¢a3o0BHH nepexon BTOPOI'o pola NPH CHWIBHOH CBASH,
YTO HAXOOHTCH B NOMHOM corjlacHH ¢ Teopemoii CaliMmoHa - I'pud—
¢urca. [lokasaHo, uUTO neTrneBoe NpHOJIHKEeHHe BelneT K Henpa—-
BHIIBHOMY MNOBeHeHHI0 3¢pHEeXTHBHOrO NOTEeHHHana B KPHTHUYECKOH

PaGora BeinonHeHa B JlaBopaTOpHH TeOpeTHuYeCcKOH GH3IHKH
OMUAH.

IMpenpunt O61enHHEeHHOro HHCTHTYTa AflePHLIX HeolenoBanuit. lly6ua 1989

Efimov G.V., Ganbold G. E2-89-729
On the Nature of Phase Transition
in a Two Dimensional ¢4 Theory

The vacuum stability of a scalar ¢* theory in two
dimensions is studied. A variational approach is applied
to estimate a functional integral defining the effective
potential in this model, We find that the second-~order
phase transition takes place in the theory under conside-
ration, This is in complete agreement with the Simon -
Griffiths theorem, We show that the loop approximation
leads to a wrong critical behaviour of the effective po-
tential,

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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