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1. INTRODUCTION 

Many problems of modern particle physics rely on the 

spontaneous symmetry breaking as ,for instance, the electroweak 

model with Higgs bosons (see,for example [l]),or the color 

confinement in QCD which can be explained by a vacuum 

instability2.~here are many paperm'-" devoted to investigation 

of the problem of the vacuum phase etructure for a scalar field 

model with the Lagrangian 

~ ( 9 )  .- f . [  (B,,P)~+ ma.pa]- f.9' (1.1) 

in   he theory is simple enough, and it is used widely for 

testing new idea6 and methods in quantum field theory. 

On the classical level for ma>O, the theory (1.1) is stable 

and has a unique symmetric trivial ground state.0n the other 

hand, it has been found3 that high-order quantum corrections can 

give rise to the vacuum instabi1ity.A useful instrument for the 

investigation of the vacuum instability due to quantum effects im 

the method of the effective potential' which can be defined am 

where n is a finite volume in R' and pO is a vacuum expectation 

value of the scalar field .A symmetry broken phase Of a system is 

associated with the absolute minimum of the effective potential, 

for which po:O. As the effective potential V(9,) is described by 

non-Gaussian functional integrals,one should use some 



approximation schemes.These may be perturbative loop-expansion 

methods, variational approaches, or numerical calculations on a 

lattice. 

The effective potential has been calc~lated~'~ in the one-loop 

approximation which predicts a phase transition in the 

theory.chang6 has got the effective potential as a partial sum of 

'In-loop" diagrams only of the "cactus-type".This approximation 

method gives a first-order phase transition.Nonperturbative 

Gaussian approaches7 also lead to similar results.0n the other 

hand there exist mathematical theoremss proving that the second- 

order phase transition takes place in this model. There are 

papers 9.10,11 where variational methods were used for 

investigation of the vacuum stability problem and a correct 

behaviour of the vacuum energy in the critical region was 

obtained.The variational methods were applied to the Hamiltonian 

of the system under consideration but not to the functional 

integral (1.2) defining the effective potential. 

In this paper, we obtain a variational estimation of the 

effective potential in (1.2) using the variational method 

introduced in [12].We show that there exists a second-order phase 

transition in the v: model and give estimation for the critical 

coupling constant.For this aim we consider the coefficient a(G) 

in the expansion of the effective potential for small vo: 

where ~=g/2n1,1~ is a dimensionless coupling constant. We also 

obtain that the "all-loop' approximation of the effective 

potential gives only a first-order phase transition and cannot 

explain the second order transition in principle. 

2.THE EFFECTIVE POTENTIAL AND ITS LOOP APPROXIMATION 

We will consider the scalar field theory (1.1) .The theory is 

supernormalizable in two-dimension. All ultraviolet divergences 

in this model can be removed readily by using the quantum 

Lagrangian density 

where Nm denotes the normal product of the fields p(x) with mass 

m ; g is the self-coupling constant. 

We will investigate the effective potential V((po) defined by 

(1.2) and has the meaning of the vacuum energy den~ity'~"~ in 

the vacuum state, the expectation value of the field over which 

is rpo. The functional integral in (1.2) is normalized in the 

following way 

where cm=detl"(- o + m2) .All integrations are performed here in 

the Euclidean space. 

Let us perform some transformations of the functional integral 

In('.) in (2.2).~irst, we can write 

where @o is a constant field and @(x) satisfies the condition 

We can substitute (2.3) into (2.2) and perform integration over 

d@o taking into account the functional differential 

6p(~)=d@~.6@(x). Then we obtain 

Second, we go to the normal product in the Lagrangian in (2.5) 

with respect to the field with a new mass u and require the 

coefficient of @"x) in the ~agrangian density to be equal to u2. 

Then after some calculations we qet 





3.VARIATIONAL ESTIMATIONS OF THE "STRONGLY-CONNECTED" POTENTIAL 

In the previous section we have seen that the loop approach 

for the effective potential is -risible for the first-order phase 

transition in this model although the mathematical theoremse give 

the second-order one.In the method of the effective potential 

this means that we have to take into account the second part ,the 

"strongly-connected" potential V S C ( q O )  defined by (2.8).The 

question is which kind of phase transition takes place then.As 

stressed in Introduction, it is enouqh to investioate 

the effective potential at small values of cpo (i.e. cp2<<1 ) in 

order to answer this question.We will investigate the coefficient 

a (G) in the representation of the effective potential (1.1) .Our 

aim is to show that a(G) is positive at small G and negative as G 

+ m. AS the functional integral (2.8) is non-Gaussian, its 

explicit computation is impossible at present .We will use the 

variational method suggested in [l2]. 

Let us rewrite (2.8) in the form, which is correct for small 

2 

'Po 

This representation can be obtained easily due to validity of the 

following transformation in (2.8) 

for infinitesimal cp and finite functional W. Then applying to 

the integral (3.1) the variational techniques12, one can get 

d2k 
v,:('P,) = min ( f  - [1n(l+q(k2) ) - Q(k2b-1  + 

q, A I (2n)2 1+q(k ) 

where 

Here u2 is defined by equations (2.11) and (2.12) .The constant 

A aqd function q(k2) are variational parameters (see Appendix 

A). The optimal form of the function q(k2) is 

q(k2) = f.u2.B(k2) (3.4) 

as it follows from the variational equation.Here f is a 

variational parameter. 

For cp2< 1 the equation (2.9) gives 

All integrals in (3.2) and (3.3) for the function q(k2) are 

calculated explicitly and the upper bound of the 

"strongly-connected" potential can be written for #:< 1 in 

notation (2.11) 

where 

G E sc +(G)= min r . 6  {f-ln(l+f)+~' + z.{(~2-3.1n(l+f))2- 6.1n2(l+f)) , 

(3.7) 








