

ОбЬеДИНЕННЫй
 ИНСТИTYT
 ЯдерНых
 Исследований
 дубна

A.A.Osipov, M.K.Volkov

па ${ }_{1}$ - TRANSITIONS AND THE LOW-ENERGY LIMIT IN THE LINEAR σ-MODEL WITH VECTOR AND AXIAL-VECTOR MESONS

Submitted to "Physics Letters B"

At present there are serioun reasons to believe that the effective Lagrangian for QCD in the medium-energy region is the generalised Nambu - Jona-Lasinio Lagrangian with four-quark interactions of the scalar, pseudoscalar, vector and axial-vector type [1-4]. The dynamic violation of the chiral aymatry allowa one to understand how the light current quarke that are present in the OCD Lagrangian acquire large masses and turn into heavy constituent quarks of which mesons are formed [5]. Besides, on the basis of the Lagrangian with the four-fermion interactions one can obtain the chiral Lagrangians which were good in description of low energy meson physics. In the sector of ecalar and pasudoscalar mesons there appears a linear o-model, in the eector of vector and axial-vector mesons there appears a model of the Yang-Mills type [5, 6].

Naturally, the involvement of vector and axial-vector mesona gives rise to the questions about the correct low-energy behaviour of this extended theory, eince the o-model alone is enough to reproduce the amplitudes describing pion physics in complete agreement with the requirements of the current algebra theorems. Yor example, it is well known that the direct consideration of the diagram with the intermediate p-meson in calculations of the $\pi \pi-$ acattering can lead to the doubling of the reault obtained within the standard o-model. An elegant solution of this problem, based on tha use of the non-linear chiral Lagrangian, was proposed by 8 . Weinberg [7]. For the case of the linear realisation of the chiral aymetry we know an inconvincing method [8] with the introduction of a formfactor in the prr vertex, this formfactor tending to zero at low energies.

In this paper we propose another solution of this problem. It is based on consideration of the $a \rightarrow \partial \pi$ transitions in the corresponding meson vertices. The existence of these transitions was pointed out in paper [9]. To make our considerations definite, we shall use the quark model of the superconducting type [5] in the calculations.

The phenomenological meson Lagrangian of the model can be obtained by means of the effective quark-meson Lagrangian
$\mathbf{L}=\overline{\mathbf{q}}\left[\hat{i}-\mathbf{M}+\mathbf{g}^{\prime}\left(\bar{\sigma}+i \gamma_{s} \bar{\phi}\right)+\frac{\mathbf{g}_{\rho}}{2}\left(\gamma_{\mu} \overline{\mathbf{v}}^{\mu}+\gamma_{s} \gamma_{\mu} \overline{\mathbf{a}}^{\mu}\right)\right] \mathbf{q}$,
if one uses the one-loop approximation with diverging quark diagrams cut at the upper limit. The cut-off parameter Λ characterises the energy region where the spontaneous breaking of chiral symmetry takes place, quark condensate is produced and light current quarks turn into heavy constituent quarks. In formula (1) $q=(u, d, s)$ are the colour quark fields; $\alpha_{\alpha}, \phi_{\alpha}, v_{\alpha}^{\mu}, a_{\alpha}^{\mu}$ are the fields of scalar, pseudoscalar, vector and axial-vector mesons; $\bar{a}=a_{\alpha} \lambda_{\alpha}$, where λ_{α} are the Gell-Mann matrices ($0 \leq \alpha \leq \theta$, $\left.\lambda_{0}=\sqrt{2 / 3}\right), M=\operatorname{diag}\left(m_{u}, m_{d}, m_{s}\right)$ is the mass matrix of the constituent quarks. Below only u and d quarks will occur; we shall consider that $m_{u}=m_{d}=m$.

Between the constants g_{ρ} and g^{\prime} there is the relation $g_{\rho}=\sqrt{6} g^{\prime}$, and they both are expressed through the logarithmically diverging integral I_{2} :
$g^{\prime}=1 / \sqrt{4 I_{2}}, \quad I_{2}=-3 i \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{\theta\left(\Lambda^{2}-q^{2}\right)}{\left(q^{2}-m^{2}+i \varepsilon\right)^{2}}$.
The constant g_{ρ} characterises the $\rho \rightarrow \pi \pi$ decay and is equal to $\mathbf{g}_{\rho}^{2} / 4 \pi=\alpha_{\rho} \cong \mathbf{3}$.

Using (1) one can easily obtain the phenomenological Lagrangian describing the interactions of the four above-mentioned meson nonets, and the corresponding mass formulae. As the details can be found in Ref. [5,6], we give its immediate form:

$$
\begin{align*}
\mathrm{L}= & -\frac{\mathbf{g}^{2}}{4} \operatorname{tr}\left\{\left[\left(\bar{\alpha}-\mathbf{M} / \mathrm{g}^{\prime}\right)^{2}+\bar{\phi}^{2}\right]^{2}-\left[\left(\bar{\alpha}-\mathbf{M} / \mathrm{g}^{\prime}\right), \bar{\phi}\right]_{-}^{2}\right\} \\
& -\frac{1}{8} \operatorname{tr}\left(G_{v}^{\mu \nu} G_{\mu \nu}^{v}+G_{a}^{\mu \nu} G_{\mu \nu}^{a}\right)+\frac{1}{4} \operatorname{tr}\left\{\left[D_{\mu}\left(\bar{\sigma}-M / g^{\prime}\right)+\frac{g_{\rho}}{2}\left[\bar{a}_{\mu^{\prime}} \bar{\phi}\right]_{+}\right]^{2}\right. \\
& \left.+\left[\mathcal{D}_{\mu} \bar{\phi}-\frac{g_{\rho}}{2}\left[\bar{a}_{\mu^{\prime}}\left(\bar{\alpha}-M / g^{\prime}\right)\right]_{+}\right]^{2}\right\}+\Delta L \tag{2}
\end{align*}
$$

Here $\quad \mathbf{G}_{\mu \nu}^{\mathbf{v}}=\partial_{\mu} \overline{\mathbf{v}}_{\nu}-\partial_{\nu} \overline{\mathbf{v}}_{\mu}-\frac{i}{2} \mathbf{g}_{\rho}\left(\left[\overline{\mathbf{v}}_{\mu}, \overline{\mathbf{v}}_{\nu}\right]_{-}+\left[\overline{\mathbf{a}}_{\mu}, \overline{\mathrm{a}}_{\nu}\right]_{-}\right)$,

$$
\mathbf{G}_{\mu \nu}^{\mathbf{a}}=\partial_{\mu} \overline{\mathbf{a}}_{\nu}-\partial_{\nu} \overline{\mathbf{a}}_{\mu}-\frac{i}{2} \mathbf{g}_{\rho}\left(\left[\overline{\mathbf{a}}_{\mu}, \bar{v}_{\nu}\right]_{-}+\left[\overline{\mathrm{v}}_{\mu}, \overline{\mathrm{a}}_{\nu}\right]_{-}\right),
$$

$$
D_{\mu} \bar{\alpha}=\partial_{\mu} \bar{\sigma}-\frac{i}{2} \mathbf{g}_{\rho}\left[\bar{v}_{\mu}, \bar{\alpha}\right]_{-}
$$

In ΔL there are finite parts of the quark loops which will not be considered in this paper. Besides, below we shall only deal with a specific case of formula (2) corresponding to the $S U(2)$ symmetry of strong interactions.

The quadratic part of Lagrangian (2) contains non-diagonal transitions $a \rightarrow O \pi$. We cancell this term by the standard method of the quadratic form diagonalisation with a shift $\overrightarrow{\mathbf{a}}_{\mu} \vec{a}_{\mu}-\varkappa \partial_{\mu} \vec{r}$, where $x=\sqrt{6} m / m_{a_{1}}^{2}$. In this case the pseudoscalar field π undergoes an additional renormalisation $\pi \rightarrow \mathrm{Z}^{1 / 2} \pi$, where (see [10])
$z=\left(1-6 m^{2} / m_{a_{1}}^{2}\right)^{-1}$.
The constant g^{\prime}, describing the interaction of pseudoscalar mesons with quarks, changes over into $g=Z^{1 / 2} g^{\prime}$. It is evident that in the
case of scalar mesons this renormalisation does not take place and we shall use the coupling constant g ' for them.

The Goldberger-Treiman relation $g=m / F_{\pi}\left(F_{\pi}=93 \mathrm{MeV}\right)$ and the formula
$\mathrm{z}^{1 / 2} \mathrm{~g}_{\rho}=\sqrt{6} \mathrm{~g}$,
allow a relation between the constituent u-quark and a_{1}-meson masses:
$m^{2}=\frac{1}{12}\left[1-\sqrt{1-\left(2 g_{\rho} F_{\pi} / m_{a_{1}}\right)^{2}}\right] m_{a_{1}}^{2}$.
Using (5) one can express the constant z only through the observable quantities
$z^{-1}=\frac{1}{2}\left[1+\sqrt{1-\left(2 g_{\rho} F_{\pi} / m_{a_{1}}\right)^{2}}\right]$.
Besides, it is seen from these formulae that the a_{1}-meson mass has the lower limit
$m_{a_{1}} \geq 2 g_{P} F_{\pi} \cong 1140 \mathrm{MeV}$.
This value corresponds to the mass $m=330 \mathrm{MeV}$. If one assumes that the mass formula $m_{a_{1}}^{2}=m_{\rho}^{2}+6 \mathrm{~m}^{2}$, obtained in this model, is exactly fulfilled, one can easily see that the equality $m_{a_{1}}=2 g_{\rho} F_{\pi}$ in (7) leads to the Weinberg sum rule $m_{a_{1}}^{2}=2 m_{\rho}^{2}[11]$ and can be transformed into $m_{\rho}^{2}=2 g_{P}^{2} F_{\pi}^{2}$, known as the KSFR-relation [12].

Let us go over to the consideration of the low-energy limit for the pion-pion scattering amplitude.The corresponding diagrams are shown in Fig 1. As distinct from the standard approach, we shall take into account the $a \rightarrow \theta \pi$ transition effects in the given

FIG 1. Born diagrams for the $\pi \pi-s c a t t e r i n g$ amplitude. The boldfaced point indicates that the $a \rightarrow \partial \pi$ transitions are taken into account in the meson vertices.

FIG 2. Born diagraws describing the $\tau \rightarrow \nu \tau 3 \pi$ decay. Like in Fig. 1, the bold-faced point indicates that the $a \rightarrow \partial n$ transitions are taken into account in the corresponding vertices. The four-pion vertex entering into 2 d is shown in Fig .1.
vertices. Diagrams 1a and 1 b are known from the linear o-model; they correctly describe the s-wave lengths of ris-scattering if there are no $a \rightarrow \partial \pi$ transitions ($\mathrm{Z}=1$). In this case diagram 1 c involves the double count difficulties.

Lagrangians of the main meson vertices have the following form:
$L\left(\pi^{4}\right)=-\frac{g^{2}}{2} \mathrm{z}\left\{\vec{\pi}^{4}-\left[\frac{\mathrm{z}-1}{\mathrm{z}}\right]^{2} \frac{(\vec{\pi} \vec{\pi})^{2}}{\mathrm{~m}^{2}}+\left[\frac{\mathrm{z}-1}{z}\right]^{4} \frac{\left(\partial_{\mu} \vec{\pi} \partial_{\mu} \vec{\pi}\right)^{2}-\left(\partial_{\mu} \vec{n} \partial_{\nu} \vec{n}\right)^{2}}{12 \mathrm{~m}^{4}}\right\}$,
$\mathrm{L}(\varepsilon \pi \pi)=2 \mathrm{mg} \mathrm{z}^{1 / \mathrm{z} \varepsilon} \varepsilon \vec{\pi}^{\mathrm{z}}+\frac{1}{2 \mathrm{~m}^{2}}\left[\frac{\mathrm{Z}-1}{\mathrm{z}}\right]\left[\vec{\pi} \partial^{2} \vec{\pi}+\left[\frac{\mathrm{Z}+1}{\mathrm{z}}\right]\left(\overrightarrow{\left.\left.\partial \vec{n})^{2}\right]\right\} .}\right.\right.$
$\mathrm{L}(\rho \pi \pi)=\mathbf{g}_{\rho}(\vec{\pi} \times \vec{\partial}) \vec{\rho}$.

Using the Lagrangians, taking into account the mass formula $m_{\varepsilon}^{2}=4 m^{2}+m_{\pi}^{2} \cong 4 m^{2}$, and confining ourselves to the terms with the minimum of derivatives, we obtain for diagrams 1 a and 1 b in the low-energy limit
$\mathscr{L}^{\prime}\left(\pi^{4}\right)=\frac{g^{2}}{2 \mathrm{~m}^{2} z}\left[(\overrightarrow{\pi \theta} \vec{n})^{2}+(\mathrm{z}-1) \vec{\pi}^{2}(\partial \vec{\pi})^{2}\right]$.
Similarly, one establishes for diagram 1 c that
$\mathscr{L} \cdot\left(\pi^{4}\right)=\frac{g_{\rho}^{2}}{2 m_{\rho}^{2}}\left[(\vec{\pi} \overrightarrow{\partial \vec{\pi}})^{2}-\vec{\pi}^{2}(\overrightarrow{\partial \vec{\pi}})^{2}\right]=-\frac{g_{\rho}^{2}}{2 m_{\rho}^{2}}(\vec{\pi} \times \overrightarrow{\partial \vec{\pi}})^{2}$.
As seen from formula (7) and the considerations that follow, in the region where the low-energy sum rules are valid the equalities $m_{p}^{2}=6 m^{2}$ and $z=2$ occur. In this case, uniting (9) and (10) and using relations (4), we obtain the effective Lagrangian

satisfying all requirements of the low-energy theorems for pion-pion scattering.

Another example we are going to dwell upon is related to determination of the chiral limit for the axial-vector hadron current \mathcal{F}, entering into the semileptonic $\tau \rightarrow \nu_{\tau} 3 \pi$ decay amplitude*)
$\mathbf{T}_{\tau \rightarrow \nu_{\tau} 3 \pi}=\left\langle g_{\rho}^{2} F_{\pi} G_{F} \cos \vartheta\left[\bar{\nu}_{\tau}\left(\mathbf{p}^{\prime}\right) \gamma_{\mu}\left(1-\gamma_{s}\right) \tau(p)\right] \gamma^{\mu}\right.$.
Here G_{F} is the Fermi constant; ϑ is the Cabibbo angle; $p-p^{\prime}=q^{\mu}$ is the momentum transfer to the hadron block.

Since the Lagrangian of the weak interaction of the τ-lepton with mesons had the form [15]
$L_{W}=\frac{G_{F}}{g_{\rho}}\left[\bar{\nu}_{\tau} \gamma^{\mu}\left(1-\gamma_{5}\right) \tau\right] \cdot\left[m_{\rho}^{2} \rho_{\mu}^{+}+z^{-1} m_{a_{1}}^{2} a_{1 \mu}^{+}\right]+$h.c.,
it is enough for us to obtain an expression for the current J^{μ} which describes the decay $a_{1} \rightarrow 3 \pi$ and is related to the weak hadron current μ as
$\xi^{\mu}=\frac{m_{a_{1}}^{2} g^{\mu \nu}-Q^{\mu} Q^{\nu}}{m_{a_{1}}^{2}-Q^{2}} J^{\mu}$.
Diagrams corresponding to this process are shown in Fig 2. To estimate their contribution to the effective chiral Lagrangian, we shall need the following Lagrangians in addition to the already known four-pion vertex (11), entering into diagram 2d :
*) Remember that a similar problem was considered in [13,14] for the case of the non-linear pion Lagrangian.
$L\left(a_{1} \pi\right)=g_{\rho} F_{\pi} z \overrightarrow{\mathrm{a}} \vec{\partial} \vec{\pi}$,
$L\left(a_{1} \varepsilon \pi\right)=-g_{\rho} z^{-1 / 2} \varepsilon[2 \vec{a} \partial \vec{\pi}+\vec{z} \vec{\pi} \vec{\partial}]$.
The former describes the $a \rightarrow \nrightarrow \pi$ transition, which was not considered in determination of the weak interaction Lagrangian (13). The latter corresponds to the $a_{1} \varepsilon \pi$ vertex which follows from (2) after diagonalisation.

The low-energy part of the effective Lagrangian appearing in the consideration of diagrams $2 a$ and $2 b$ has the form
$\mathscr{L}^{\prime}\left(\mathrm{ar}{ }^{3}\right)=g_{\rho} F_{\pi}^{-1}\left[(\vec{\pi} \partial \vec{\pi})(\vec{\pi} \vec{a})+(\mathrm{z}-2) / 2 \vec{\pi}^{2}(\vec{a} \partial \vec{\pi})\right]$,
for diagram 2c it is
$\mathcal{L}^{\prime \prime}\left(a \pi^{3}\right)=g_{\rho} F_{\pi}^{-1}\left[(\vec{\pi} \vec{\eta})(\vec{\pi} \vec{a})-\vec{\pi}^{2}(\vec{a} \vec{\pi})\right]$.
Making a sum of them, we obtain

$$
\begin{align*}
\mathscr{L}\left(\mathrm{a} \pi^{3}\right) & =\mathscr{\mathscr { L }}\left(\mathrm{a} \pi^{3}\right)+\mathscr{\mathscr { \prime }}\left(\mathrm{a} \pi^{3}\right)=g_{\rho} F_{\pi}^{-1}\left[2(\vec{\pi} \vec{\pi})(\vec{\pi} \vec{a})+(\mathrm{z}-4) / 2 \vec{\pi}^{2}(\overrightarrow{\mathrm{a}} \partial \vec{\pi})\right] \\
& =g_{\rho} F_{\pi}^{-1}\left[2(\vec{\pi} \partial \vec{\pi})(\vec{\pi} \vec{a})-\vec{\pi}^{2}(\vec{a} \vec{a} \vec{\pi})\right] . \tag{18}
\end{align*}
$$

Using Lagrangians (11),(15) and (18) we can find the form of the axial-vector current J^{μ} in the low-energy limit:
$J_{\lim }^{\mu}\left(q_{1}, q_{2} \mid q_{3}\right)=\frac{2}{3 m^{2}}\left[\frac{Q^{\mu} Q^{\nu}}{Q^{2}}-g^{\mu \nu}\right] q_{3}^{\nu}$.
Here q_{1}, q_{2} are the momenta of two similar pions, and q_{3} is the momentum of the pion that differs in its charge. The given current coincides with the current obtained in Ref.[13] to the accuracy of the available difference in the choise of the normalising factor, and thus satisfies all requirements of the chiral symmetry.

In conclusion we would like to point out that the full expression for the current J^{μ} and the results of its application in description of the $\tau \rightarrow \nu \tau 3$ decay will be discussed in our separate paper.

References

[1] Y.Nambu and G.Jona-Lasinio, Phys.Rev. 122 (1961) 345.
[2] Ulf-G.Meissner,Phys.Reports 161 (1988) 213.
[3] A.Dhar and S.R.Wadia, Phys.Rev.Lett. 52 (1984) 959; A. Dhar, R.Shankar and S.R.Wadia، Phys.Rev.D31 (1985) 3256.
[4] R.D.Ball, Proceedings of the Workshop on "Skyrmions and Anomalies" Magilany, Poland (1987).
[5] M.K.Volkov, Ann. Phys. 157 (1984) 282; Sov.J.Part. Nucl, 17(1986) 433.
[6] D.Ebert and M.K.Volkov, Yad.Fiz. 36(1982)1265; Z. Phys.C 16 (1983) 205.
[7] S.Weinberg, Phys.Rev. 166 (1968) 1568.
[8] A.N.Ivanov, Yad.fiz, $33(1981) 1679$.
[9] S.Gasiorowicz and D.A.Geffen,Rev.Mod.Phys. 41 (1969)531.
[10] M.K.Volkov and A.A.Osipov, JINR Communcation P2-85-390 Dubna 1985.
[11] S.Weinberg,Phys.Rev.Lett.18 (1967) 507.
[12] K.Kawarabayashi and M.Suzuki,Phys.Rev.Lett.16 (1966) 255; Riazuddin and FayYazuddin, Phys.Rev. 147 (1966) 1071.
[13] R.Fischex, J.Wess and F.Wagner, Z. Phys.C 3 (1980) 313.
[14] T.Berger,z.Phys.C 37 (1987) 95.
[15] D.Ebert and H. Reinhardt, Nucl. Phys. 8271 (1986) 188.

В работе обсушдается известная проблема, свяэанная с получением правильно низкоэнергтического предела, которая возникает при расширении линеймой рория аксиально-векторных мезонов. При персия промежуточными векторными (аксиально-
 корными) мезонами в облнй о-модели, и, таким образон, ведут к нежелательно
 му двойному счету. На примере амп что решить даннуо проблему можно, если учесть па,-переходы в соответствующих мезонных вершинах

Работа выполнена в Лаборатории ядерных проблем Оияи.

Oslpov A.A., Volkov M.K.

We discuss a known problem assoclated with obtalning a correct low-energy Imlt, which occurs in the extension of the llnear o-model because of vector and axlal-vector mesons included. In the nalve consideration the tree diagrams with intermedlate vector (axlal-vector) mesons In the low-energy region rams with andesirable double count. Taking the noscatterling and the semlleptonic undeslrable double counc as an example, the paper shows that this problem
 can be solved 1

The investigatlon has been performed at the Laboratory of Nuclear Problems, JINR

Received by Publishing Department
on October 13, 1989.

