$89-699$

объединенный
 институт
 ядерных исследований
 дубна

A.T.Filippov, A.P.Isaev

GAUGE MODELS
OF FERMIONIC DISCRETE "STRINGS"

Submitted to "Modern Physics Letters A"

1. Introduction

Recently, we have proposed [1] new disorete gauge models having some resemblance to bosonio strings in the hamiltonian formulation. There were introduoed disorete analogs of the ohiral variables $z_{ \pm}=p \pm q^{\prime}$ as well as of the reparametrization symmetry. The hamiltonians of the models are linear combinations of first-olass oonstraints whioh are quadratio in \boldsymbol{z}_{+}and z_{-}. The constraints generate a subalgebra of $\mathrm{sp}(N, \mathbb{R})_{+} \oplus \mathrm{sp}(N, \mathbb{R})_{-}$(with respeot to the Poisson brackets) while the oorresponding Lagrange multipliers are transformed as the standard gauge potentials defined over the one dimensional base $0<t<T$, where t is the evolution parameter. These gauge models are nontrivial due to the important fact that the requirement of the gauge invariance of the aotion gives oertain boundary conditions on the gauge transformations at the boundaries $t=0$ and $t=T$. Therefore, we can not fix the gauge in whioh all gauge potentials vanish and there exist some gauge-invariant parameters constructed from the gauge potentials and defining nontrivial dynamios of the system (like the Teiohmuller parameters in string theory).

Having in mind all these analogies we used for our models a generic name "disorete strings". In faot, the standard theory of the olosed bosonio string may be presented in the same gauge form, the gauge algebra being a very special subalgebra Vect (S^{1}) © $\oplus \operatorname{Vect}\left(S^{1}\right)$ of the infinite-dimensional linear oanonioal algebra
$\operatorname{sp}(2 \infty, \mathbb{R})$, see Ref.[1].' This also was demonstrated in Ref.[2], where some examples of disorete gauge models were proposed and discussed. The new idea of Ref.[1] is to introduoe a ohiral ("oomplex") structure in these models as well as to consider arbitrary subalgebras of $\operatorname{sp}(N, \mathbb{R}) \oplus \operatorname{sp}(N, \mathbb{R})$ as gauge algebras. This has been aohieved by introduoing a disorete analog of the derivative $\partial_{s}=\partial / \partial s$ (s is the string parameter, $0 \leqslant s \leqslant 2 \pi$), whioh is some skew-symmetrio matrix $\partial^{a b}$. The phase space $\left(p^{a}, q_{a}\right)$, $a=1, \ldots, N$, is naturally split into left and right seotors by introducing the variables $z_{ \pm}^{a}=p^{a} \pm \partial^{a b} q_{b}$. The analogy with the bosonio string is completed by considering $p^{a}=p^{a \mu}$ and $q_{a}=q_{a p}$ as Lorentz D-veotors ($\mu=0,1, \ldots, D-1$). As the Lorentz symmetry is, in our approach, oompletely disoonnected from the canonioal symmetry we usually suppress the Lorentz indioes μ (the Lorentz invariance is trivial to satisfy at least at the olassioal level).

One may try to use our "disorete strings" as finite dimensional approximations to continuous strings. Then rather severe restriotions on the gauge groups must be satisfied. To obviate reduoing the relativistio phase space to the physical phase space, we require the gauge group to have not less than N mutually commuting generators. This means that the rank of the group is equal to the rank of the original oanonical group in whioh it is imbedded. Then one may use N mutually oommuting oonstraints and N corresponding gauge-fixing conditions to express the time

[^0]components of p^{a+4} and $q_{a \mu}(a=1, \ldots, N)$ in terms of physioal coordinates and momenta. Roughly speaking, the generators of this abelian (Cartan) subgroup in the continual limit have to beoome the generators $p^{2}+q^{\prime 2}$, giving t-reparametrizations of the world lines $q^{\mu}(t, s)$ for different s. The rest of the generators, $p q$ ', correspond to s-reparametrizations. One oan make a somewhat more preoise statement using a naive disoretization of the olosed string in whioh it is replaced by a system of N partioles (N-even) with coordinates q_{a} and momenta p^{a}. Then it is easy to construct N mutually commuting generators:
$$
\mathbf{w}^{ \pm}=\left[\left(p^{a}+p^{a+1}\right) \pm\left(q_{a+1}-q_{a} / \varepsilon\right)\right]^{2}, a=1,3, \ldots, N-1
$$

So we expeot that any "discrete string" having a chanoe to approximate the continual string for large N should have a gauge group with $2 N$ generators (N of them mutually commuting). Such a group will certainly be not semisimple. As we also expeot it to contain $S l(2, \mathbb{R}) \sim S p(2, \mathbb{R})$ subgroups, the group will be nonoompaot.

The models with compaot gauge groups and Lorentz-vector coordinates are interesting for desoribing relativistio bound states (see Ref.[2]). The most general ohiral models introduoed in Ref.[1] might possibly be considered also as discrete analogs of two-dimensional conformal field theories [3]. In view of suoh applications the term "disorete strings" seems to be somewhat misleading. However, our immediate aim is to oonstruot disorete
gauge models in closest possible parallel to bosonic and fermionio strings and, in this context, using the term is justifiable.?

In this letter we oonstruot fermionio analogs of the gauge models proposed in [1] by adding anticommuting degrees of freedom (Grassmann variables). From the preoeding remarks it must be olear that the gauge algebras of these models are some subalgebras of the chiral algebra, $\operatorname{Osp}(N \mid K, \mathbb{R}) \oplus \operatorname{Osp}(N \mid K, \mathbb{R})$, imbedded into the oanonioal symmetry algebra $\operatorname{osp}(2 N \mid 2 K$, (R) (such an extension for compact nonchiral gauge algebras has been discussed in Ref.(2]). With all above reservations, we will call these models "fermionic discrete strings".
2. Classical Hamiltonian Formulation of Fermionic Discrete "Stringe".
Consider a system described by coordinates $z_{A}=\left(z_{a}, z_{\alpha}\right)$ and its conjugate momenta $\bar{z}^{A}=\left(\bar{z}^{\alpha}, \bar{z}^{\alpha}\right)$ where $\left(z_{a}, \bar{z}^{a}\right)$ and $\left(z_{\alpha}, \bar{z}^{\alpha}\right)$ are even and odd variables, respeotively ($\alpha=1,2, \ldots, N, \alpha=1,2, \ldots, K$). Introducing a compact notation for sign factors,

$$
(-)^{A}=+1 \text { if } A=a, \quad(-)^{A}=-1 \text { if } A=a
$$

we can write the commutation relations for these variables as

$$
z_{A} z_{B}=(-)^{A B} z_{B} z_{A} ; \quad z_{A} \bar{z}^{B}=(-)^{A B} \bar{z}^{B} z_{A} ; \bar{z}^{A} \bar{z}^{B}=(-)^{A B} \bar{z}^{B} \bar{z}^{A}
$$

Remark that $z_{\alpha}=q_{a}, \bar{z}^{\alpha}=p^{a}$ are the standard real coordinates and momenta while z_{α} and \bar{z}^{α} are nonhermitian Grassmann variables, see [4],[5]. In terms of these variables the action has the form [5]

[^1]\[

$$
\begin{equation*}
S=\frac{1}{2} \int_{0}^{\mathrm{T}} d t\left(\bar{z}^{A}(t) \dot{z}_{A}(t)-\dot{\bar{z}}^{A}(t) z_{A}(t)\right)-H(z, \bar{z}) \tag{2}
\end{equation*}
$$

\]

where the dot denotes the t-derivative, and the corresponding Poisson superbraokets are [4]

$$
\begin{gather*}
\{X, Y\}=X \stackrel{\leftarrow}{\partial} / \partial z_{A} \vec{\partial} / \partial \bar{z}^{A} Y-(-)^{A} X \stackrel{\leftarrow}{\partial} / \partial \bar{z}^{A} \vec{\partial} / \partial z_{A} Y \tag{3}\\
\left\{z_{A}, \vec{z}^{B}\right\}=\delta_{A}^{B}, \quad\left\{z_{A}, z_{B}\right\}=\left\{\bar{z}^{A}, \vec{z}^{B}\right\}=0
\end{gather*}
$$

It is well known that the kinematioal part of this aotion is invariant with respeot to the rigid (super)oanonioal transformations belonging to the supergroup $\operatorname{Osp}(2 N \mid 2 K, \mathbb{R})$. In Ref.[2] it has been suggested to oonstruot a gauge theory by first ohoosing some hamiltonian $H(\bar{z}, z)$ and then gauging the (super)oanonioal transformations leaving $H(\bar{Z}, z)$ invariant. This approach has led to some interesting disorete gauge models but failed to reproduce, in a natural way, the ohiral struoture of the string theory and gave no disorete string model whioh could be considered as a good approximation to continual string theory (an example is a "disorete string" model with nonsemisimple but compact gauge group $\left.\left(\mathrm{U}_{2}\right)^{N / 2},[6]\right)$.

For this reason we ohose in Ref.[1] a somewhat different route which will be followed here. Consider the "aotion" (2) with zero hamiltonian ("kinematical aotion") and introduce the ohiral variables $z_{ \pm}^{A}$ ("left and right movers"),

$$
\begin{equation*}
z_{ \pm}^{A}=\left(\bar{z}^{A} \pm D^{A B} z_{B}\right)(\pm 1)^{(4) / 2} \tag{4}
\end{equation*}
$$

where $(A)=0$ if $A=\alpha,(A)=1$ if $A=\alpha$, and $(-1)^{1 / 2}=-1$ (this somewhat strange factor is introduced to make $z_{ \pm}^{\alpha}$ hermitian). The (super)matrix $D^{A B}$ oan be ohosen so as to split the kinematical aotion (2) into two pieces depending on z_{+}and z_{-}, respeotively.

To simplify our discussion we assume here that the Grassmann elements of the supernatrix $D^{A B}$ vanish and that it is invertible. Then it can be shown to have the form

$$
D^{A B}=\left[\begin{array}{cc}
\partial^{\mathrm{ab}} & 0 \\
0 & \partial^{\alpha \beta}
\end{array}\right], \partial^{\mathrm{ab}}=-\partial^{\mathrm{ba}}, \partial^{\alpha \beta}=\partial^{\beta a}
$$

The Poisson superbrackets for $Z_{ \pm}$oan be calculated by using (3),

$$
\begin{equation*}
\left\{z_{+}^{A}, z_{+}^{B}\right\}=2 D^{A B}=\left\{z_{-}^{B}, z_{-}^{A}\right\}, \quad\left\{z_{+}^{A}, z_{-}^{B}\right\}=0 \tag{5}
\end{equation*}
$$

and the kinematioal action (2) in terms of $z_{ \pm}$is:

$$
\begin{equation*}
S_{\mathrm{O}}=\frac{1}{4} \int_{0}^{\mathbf{T}} d t\left(z_{+}^{A} D_{A B} \dot{z}_{+}^{B}+z_{-}^{A} D_{A B}^{T} \dot{z}_{-}^{B}\right) \tag{6}
\end{equation*}
$$

where $D_{A C} D^{C B}=\delta_{A}^{B}$. $D_{\Delta B}^{T}=D_{B A}$. We regard the action (6) as the starting point for oonstruoting gauge theories by gauging some of its rigid symmetries. We only consider the linear canonioal transformations preserving the chiral struoture of S_{0}. They have to commute with the chiral reflection $z_{ \pm}^{A} \rightarrow \pm z_{ \pm}^{A}$, and so z_{+}^{A} and z_{-}^{A} are transformed by independent $\operatorname{Osp}(N \mid K, \mathbb{R})$ transformations whioh form a ohiral subalgebra, $\operatorname{osp}(N \mid K, \mathbb{R})+\oplus \operatorname{osp}(N \mid K, \mathbb{R})$, of the full linear supercanonioal algebra osp $(2 N \mid 2 K, \mathbb{R})$.

Introducing the supermatrices, $F_{ \pm}=\left(F_{ \pm}\right)_{B}^{A}$, of the corresponding infinitesimal transformations we have

$$
\delta z_{ \pm}=F_{ \pm} z_{ \pm}, \quad F_{ \pm}^{T} D_{ \pm}+D_{ \pm} F_{ \pm}=0
$$

where $D_{+}=D_{A B}, D_{-}=D_{A B}^{T}$ (we reserve for the matrix $D^{A B}$ the notation D^{-1}), and the standard supermatrix transposition rule is used, $\left(F^{T}\right)_{B}^{A}=(-)^{A B+A} P_{A}^{B}$. Up to this point our consideration has been oompletely independent of any partioular ohoice of the matrix $D^{A B}$. From here we will use that, for our choice of $D^{A B}$, the matrix $D_{\Delta B}$ is a direot sum of the matrices $\partial_{a b}$ and $\partial_{\alpha \beta}$ whioh are inverse
for $\partial^{a b}$ and $\partial^{\alpha \beta}$, respectively. Accordingly, $D_{\Delta B}^{T}=D_{B A}$ and $D^{T T}=D$. However, as $F_{ \pm}^{\mathrm{TT}} \neq F_{ \pm}$, the conditions defining F_{+}and F_{-}are not identical. One oan easily show that they are related by the following involution: $F_{-}=F_{+}^{T T^{\prime}}, F_{+}=F_{-}^{\mathrm{TT}^{\prime}}$, where T, means the usual simple transposition, $\left(F^{\top}\right)_{B}^{A}=F_{A}^{B}$, for which, of course, $F^{T^{\prime} T^{\prime}}=F$ (the involution relations follow from the identities $\left.F_{ \pm}^{T T^{\prime} T}=F_{ \pm}^{\mathrm{T}^{\prime}}, D_{ \pm}^{T^{\prime}}=D_{ \pm}^{T},\left(D_{ \pm} F_{ \pm}\right)^{T^{\prime}}=F_{ \pm}^{T^{\prime}} D_{ \pm}^{T^{\prime}}\right)$.

It is convenient to write $F_{ \pm}$in terms of independent o-number matrices $\left(T_{M}^{ \pm}\right)_{B}^{\Delta}$,

$$
F_{ \pm}=f_{ \pm}^{M}\left(T_{M}^{ \pm}\right)_{B}^{A}, \quad\left(T_{M}^{ \pm}\right)_{B}^{A} \neq 0 \text { only if }(\boldsymbol{M})=(A)+(B)
$$

where (\boldsymbol{V}) is the Grassmann parity of the transformation parameter. From the involution relation we find that $\left(T_{M}^{-}\right)_{B}^{A}=(-)^{A B+B}\left(T_{M}^{+}\right)_{B}^{A}$. In this notation the symmetry transformations are

$$
\begin{equation*}
\delta z_{ \pm}^{A}=f_{ \pm}^{M}\left(T_{M}^{ \pm}\right)_{B}^{A} z_{ \pm}^{B} \tag{7}
\end{equation*}
$$

and $\left(T_{M}^{ \pm}\right)_{B}^{A}$ satisfy the conditions defining $\operatorname{osp}(N \mid K, \mathbb{R})_{ \pm}$algebras,

$$
\begin{equation*}
(-)^{\boldsymbol{K} A}\left(T_{\boldsymbol{M}}^{ \pm}\right)_{A}^{C} D_{C B}^{ \pm}+D_{A C}^{ \pm}\left(T_{\boldsymbol{M}}^{ \pm}\right)_{B}^{C}=0 \tag{8}
\end{equation*}
$$

$A s$ the transformations (7) are olosed with respeot to the standard ommutation, $\delta_{1} \delta_{2}-\delta_{2} \delta_{1}=\delta_{3}$, the generators $T_{M}^{ \pm}$satisfy a graded oommutation relation,

$$
\begin{equation*}
\left[T_{\boldsymbol{M}}^{ \pm}, T_{\boldsymbol{N}}^{ \pm}\right\} \equiv T_{\boldsymbol{M}}^{ \pm} T_{N}^{ \pm}-(-)^{\boldsymbol{M} N_{T_{N}}^{ \pm} T_{\boldsymbol{M}}^{ \pm}}=(\pm)^{\boldsymbol{N N}} t_{\boldsymbol{M}}^{K} T_{K}^{ \pm} \tag{9}
\end{equation*}
$$

To stress that the left and right superalgebras defined by Eq. (9) are in fact isomorphio, we express the oorrespondent struoture constants in terms of one set, $t_{M N}^{K}$ (remind that $t_{M N}^{K}$ depend on the ohosen basis and satisfy the well known symmetry and (super) Jaoobi identities). To demonstrate the isomorphism, one oan introduce a second-kind (conjugate) commutation relation for T_{M}^{-},

$$
\left[T_{\boldsymbol{M}}^{-}, T_{N}^{-}\right\}^{c} \equiv(-)^{\boldsymbol{U} \boldsymbol{N}^{\prime}} T_{\boldsymbol{M}}^{-} T_{N}^{-}-T_{N}^{-} T_{\boldsymbol{M}}^{-}=t_{\boldsymbol{U} N}^{K} T_{K}
$$

as proposed by Berezin [7]. This simple observation might possibly provide a more deep foundation for oonsidering ohiral variables but we will not pursue this idea here.

To construct gauge models from the action S_{0}, we choose some maximal subalgebra ${ }^{3}$ of $\operatorname{Osp}(N \mid K, \mathbb{R})$ with generators $T_{M}^{ \pm}$satisfying the commutation relations (9). Then, considering t-dependent parameters, $f_{ \pm}^{M} \rightarrow f_{ \pm}^{M}(t)$, introducing the "gauge potentials", $A_{ \pm}(t)_{B}^{A} \equiv l_{ \pm}^{M}(t)\left(T_{M}^{ \pm}\right)_{B}^{A}$, and replacing the t-derivative, ∂_{t}, by the covariant derivative, $\nabla_{ \pm} \equiv \partial_{t}-A_{ \pm}$, we obtain the new aotion,

$$
\begin{equation*}
S_{1}=\frac{1}{4} \int_{0}^{T} d t\left[z_{+}^{A} D_{A B}\left(\nabla_{+}\right)_{C}^{B} z_{+}^{C}+z_{-}^{A} D_{A B}^{T}\left(\nabla_{-}\right)_{C}^{B} z_{-}^{C}\right] \tag{10}
\end{equation*}
$$

in which rigid symmetries of the aotion (6) are looalized. The lagrangian in Eq. (10) is invariant under the gauge transformations

$$
\begin{equation*}
\delta z_{ \pm}=F_{ \pm}(t) z_{ \pm}, \quad \delta A_{ \pm}=\dot{F}_{ \pm}+\left[F_{ \pm}, A_{ \pm}\right], \tag{11}
\end{equation*}
$$

or, in the oomponent notation,

$$
\begin{equation*}
\delta z_{ \pm}^{A}=f_{ \pm}^{M}(t)\left(\mathbb{T}_{M}^{ \pm}\right)_{B}^{A} z_{ \pm}^{B}, \quad \delta z_{ \pm}^{M}(t)=\dot{f}_{ \pm}^{M}(t)+(\pm)^{N K} J_{ \pm}^{N}(t) t_{N K}^{M} l_{ \pm}^{K}(t) \tag{12}
\end{equation*}
$$

A general variation of the action (10) may be written as

$$
\begin{align*}
\delta S_{1}=\frac{1}{4} \int_{0}^{\mathrm{T}} d t & \left(\delta z_{+} D \nabla_{+} z_{+}+\delta z_{-} D^{\mathrm{T}} \nabla_{-} z_{-}-z_{+} D \delta A_{+} z_{+}-z D^{\mathrm{T}} \delta A_{-} z_{-}\right) \\
& +\frac{1}{4}\left[z_{+} D \delta z_{+}+z_{-} D^{\mathrm{T}} \delta z_{-}\right]_{t=0}^{t=T} \tag{13}
\end{align*}
$$

(recall that $D=D_{A B}, D^{T}=D_{B A}$). The first four terms give the equations of motion,

[^2] gauge models.
\[

$$
\begin{equation*}
\nabla_{ \pm} z_{ \pm} \equiv\left(\partial_{t}-A_{ \pm}\right) z_{ \pm}=0 \tag{14}
\end{equation*}
$$

\]

and the constraints whioh we disouss later. The last two terms in Eq. (13) determine the boundary conditions $z_{ \pm}(0), z_{ \pm}$(T)are fixed. These conditions are, of course, unphysioal and we are better to ohange the action (13) by adding some boundary terms giving reasonable boundary conditions.

In our problem, the most natural boundary oonditions fix bosonio oanonioal coordinates z_{a} while for femionio variables, one has to fix initial (i) "coordinates" z_{α} and final (f) "momenta" \bar{z}^{α} :

$$
\begin{align*}
& z_{a}(0)=z_{a}^{i}, \quad z_{a}(T)=z_{a}^{f} \tag{15}\\
& z_{\alpha}(0)=z_{a}^{i}, \quad \bar{z}^{\alpha}(T)=\bar{z}^{f a} \tag{16}
\end{align*}
$$

The oonditions (16) for the fermionio variables are necessary for a correot definition of the path-integral quantization [8]; in the context of string theory they have reoently been disoussed in Ref.[9]. To include the boundary oonditions (15), (16) into the variational prinoiple, we add, to the aotion (10), the boundary terms thus defining the following new aotion:

$$
\begin{equation*}
S_{2}=S_{1}+\frac{1}{2}\left[z_{a}^{f} \bar{z}^{a}(T)-z_{a}^{\ell} \bar{z}^{a}(0)\right]-\frac{1}{2}\left[\bar{z}^{f \alpha} z_{a}(T)+\bar{z}^{\alpha}(0) z_{a}^{i}\right] \tag{17}
\end{equation*}
$$

The variational prinoiple $\delta S_{2}=0$ now gives the equations of motion (4), the constraints, and the boundary conditions (15),(16). The new aotion oan be rewritten in the form,

$$
\begin{align*}
S_{2}=\int_{0}^{T} d t & {\left[\bar{z}^{\alpha}(t) \dot{z}_{a}(t)+\frac{1}{2}\left(z_{+}^{a} \partial_{\alpha \beta} \dot{z}_{+}^{\beta}+z_{-}^{\alpha_{\alpha \beta}} \dot{z}_{-}^{\beta}\right)-\imath_{+}^{M_{M}} T_{M}^{+} l_{-}^{M_{M}} T_{M}^{-}\right] } \\
& -\frac{1}{2}\left[\bar{z}^{f \alpha} z_{\alpha}(T)+\bar{z}^{\alpha}\{0) z_{\alpha}^{\ell}\right] \tag{18a}
\end{align*}
$$

where the oonstraints,
are expressed in terms of the new matrioes $\Gamma_{\boldsymbol{M}}^{ \pm}\left(D^{+}=D_{\Delta B}, D^{-}=D_{\Delta B}^{\mathbf{T}}\right)$:

$$
\left(\Gamma_{\boldsymbol{M}}^{ \pm}\right)_{A B} \equiv-\left(T_{\boldsymbol{M}}^{ \pm}\right)_{A}^{C} D_{C B}^{ \pm}, \quad\left(T_{\boldsymbol{M}}^{ \pm}\right)_{B}^{A}=-\left(\Gamma_{\boldsymbol{M}}^{ \pm}\right)_{B C} D_{ \pm}^{C A}
$$

(18c)
These matrices generalize the oorresponding Γ-matrioes introduoed in [1]. Remark that $\left(\Gamma_{M}^{-}\right)_{A B}=(-)^{A B+A+B}\left(\Gamma_{M}^{+}\right)_{A B}$ and, acoording to Eq. (8), $\left(\Gamma_{\boldsymbol{M}}^{ \pm}\right)_{A B}=(-)^{A B}\left(\Gamma_{\boldsymbol{M}}^{ \pm}\right)_{B A}$. Note also that

$$
\begin{equation*}
\left(\Gamma_{M}^{ \pm}\right)_{A B} \neq 0 \text { only if }(M)=(A)+(B) \tag{i}
\end{equation*}
$$

The Poisson braokets for $T_{M}^{ \pm}$are easily obtained from Eq. (5):

$$
\begin{equation*}
\left\{\mathcal{T}_{M}^{ \pm}, T_{N}^{ \pm}\right\}=(\mp)^{M N_{N}} t_{M N}^{K} T_{K}^{ \pm}, \quad\left\{T_{M}^{+}, T_{N}^{-}\right\}=0 \tag{20a}
\end{equation*}
$$

These relations are equivalent to the "oommutation" relations for the matrices $\left(\Gamma_{M}^{ \pm}\right)_{A B}$, which follow from Eqs. (18c) and (9):

$$
\begin{equation*}
\Gamma_{M}^{ \pm} D_{ \pm}^{-1} \Gamma_{N}^{ \pm}-(-)^{M N} \Gamma_{N}^{ \pm} D_{ \pm}^{-1} \Gamma_{M}^{ \pm}=(\mp)^{M N_{i}} t_{M N}^{K} \Gamma_{K}^{ \pm} \tag{20b}
\end{equation*}
$$

Where $D_{+}^{-1}=D^{A B}, D_{-}^{-1}=D^{B A}$. Following ideas of Ref.[1] we regard the matrioes $\Gamma_{M}^{ \pm}$and $D_{ \pm}^{-1}$ as fundamental objeots defining the gauge group. The generators, $T_{\boldsymbol{v}}^{ \pm}$, of the oorresponding superalgebra are also expressed in terms of them (see Eq.(180)), and the aotion S_{2} depends on $D_{ \pm}$only trough $\partial_{\alpha \beta}$. It follows that $\partial^{a b}$ may be not an invertible matrix having zero eigenvalues. As explained in [1], this allows us to introduce a conserved total momentum of the system. Recall that, to desoribe a relativistic "string", we simply define the relativistic phase superspace by extending $\left(z_{A}, \bar{z}^{A}\right)$ to $\left(z_{\Delta}^{\mu}, \bar{z}^{A \mu}\right)$ where μ is the D-dimensional space-time index, $\mu=0,1, \ldots, D-1$. By contraoting these indices one trivially obtains Lorentz-invariant disorete strings.

Returning to the aotion S_{2} (Eq.(18a)), we stress that it differs from S_{1} (Eq. (10)) by boundary terms. Aocordingly, S_{2} is invariant under the gauge transformations (7),(11) only if the following boundary oonditions are fulfilled:

$$
\begin{equation*}
f_{+}^{a}(T)-f_{-}^{a}(T)=0, f_{+}^{a}(0)-f_{-}^{a}(0)=0 \tag{21a}
\end{equation*}
$$

$$
\begin{equation*}
f_{+}^{\alpha}(T)+i f_{-}^{\alpha}(T)=0, \quad f_{+}^{\alpha}(0)+i f_{-}^{\alpha}(0)=0 \tag{21b}
\end{equation*}
$$

The oonditions (21a) are identical to the boundary conditions in the bosonic disorete string models [1] and are analogous to the corresponding oonditions in the bosonic string theory [10].

The complete system of equations of motion is given by the evolution equations (14) and by constraints $T_{M}^{ \pm}=0$. As in the bosonic oase [1], the Cauchy problem can formally be solved,

$$
\begin{align*}
z_{ \pm}(t) & =V_{ \pm}\left(t, t_{0}\right) z_{ \pm}\left(t_{0}\right) \tag{22}\\
V_{ \pm}\left(t, t_{0}\right) & =\operatorname{Pexp}\left\{\int_{t_{0}}^{t} d t^{\prime} Z_{ \pm}^{M}\left(t^{\prime}\right) T_{\mathbf{M}}^{ \pm}\right\} . \tag{23}
\end{align*}
$$

The finite transformations corresponding to Eqs.(7),(11) can be represented as

$$
\begin{gather*}
z_{ \pm}(t) \rightarrow U_{ \pm}(t) z_{ \pm}(t), \quad \nabla_{ \pm} \rightarrow U_{ \pm}(t) \nabla_{ \pm} U_{ \pm}^{-1}(t) \tag{24}\\
V_{ \pm}\left(t, t_{0}\right) \rightarrow U_{ \pm}(t) V_{ \pm}\left(t, t_{0}\right) U_{ \pm}^{-1}\left(t_{0}\right), \quad U_{ \pm}(t)=\exp \left(f_{ \pm}^{M}(t) T_{M}^{ \pm}\right)
\end{gather*}
$$

3. Ghosts and BRST

To oomplete a foundation for quantizing our supergauge models, we extend the phase space by adding ghost variables $B_{M}^{ \pm}, C_{ \pm}^{M}$ having the Grassmann parities opposite to those of the gauge potentials $l_{ \pm}^{M}$, i.e.

$$
B_{\boldsymbol{M}}^{ \pm} B_{N}^{ \pm}=(-)^{(\boldsymbol{M}+1)(N+1)} B_{N}^{ \pm} B_{\boldsymbol{M}}^{ \pm}, C_{ \pm}^{\boldsymbol{M}} C_{ \pm}^{\boldsymbol{N}}=(-)^{(\boldsymbol{M}+1)(N+1)} C_{ \pm}^{N} C_{ \pm}^{\boldsymbol{M}}
$$

Following the general rules for treating hamiltonian systems with first-class constraints [11] we oonsider the extended aotion, ${ }^{4}$

[^3]$S_{3}=\int_{0}^{T} d t\left[\bar{z}^{\alpha}(t) \dot{z}_{\alpha}(t)+\frac{1}{2}\left(z_{+}^{\alpha} \partial_{\alpha \beta} \dot{z}_{+}^{\beta}+z_{-}^{\alpha} \partial_{\alpha \beta} \dot{z}_{-}^{\beta}\right)+\left(B_{\boldsymbol{N}}^{+}{\dot{\dot{C}_{+}^{M}}}^{\boldsymbol{M}}+{\dot{B_{\boldsymbol{M}}}}_{-\dot{C}_{-}^{\boldsymbol{\alpha}}}\right)-\right.$
where $\Omega^{ \pm}=(-)^{N}\left[T_{N}^{ \pm}-(\pm)^{\mu N} \frac{1}{2} B_{L}^{ \pm} t_{M N}^{L} C_{ \pm}^{M}\right] C_{ \pm}^{N}$ are the standard BRST charges corresponding to our constraints $\mathcal{T}_{N}^{ \pm}$, and the Poisson superbrackets for the ghosts are
\[

$$
\begin{equation*}
\left\{C_{ \pm}^{N}, B_{M}^{ \pm}\right\}=\delta_{\boldsymbol{M}}^{N},\left\{B_{M}^{ \pm} C_{\mp}^{N}\right\}=0 \tag{26}
\end{equation*}
$$

\]

The ghost equations of motion,

$$
\begin{equation*}
\dot{C}_{ \pm}^{M}=(\pm)^{N L} l_{ \pm}^{N} t_{N L}^{\boldsymbol{M}} C_{ \pm}^{L}, \quad \dot{B}_{M}^{ \pm}=-(\pm)^{\boldsymbol{N N}} B_{L}^{ \pm} l_{ \pm}^{N} t_{N M}^{L}, \tag{27}
\end{equation*}
$$

can be solved explicitly:

$$
\begin{gathered}
C_{ \pm}(t)=\tilde{V}_{ \pm}\left(t, t_{0}\right) C_{ \pm}\left(t_{0}\right), \quad B^{ \pm}(t)=B^{ \pm}(t)\left(\tilde{V}_{ \pm}\left(t, t_{0}\right)\right)^{-1}, \\
\tilde{V}_{ \pm}\left(t, t_{0}\right)=\operatorname{Pexp}\left\{\int_{t_{0}}^{t} d t^{\prime} l_{ \pm}^{\boldsymbol{u}}\left(t^{\prime}\right) \tilde{T}_{\boldsymbol{M}}^{ \pm}\right\},
\end{gathered}
$$

where $\left(\ddot{T}_{\boldsymbol{M}}^{ \pm}\right)_{N}^{L}=(\pm)^{\boldsymbol{M N}} t_{N N}^{L}$ are the generators of the gauge group in the adjoint representation.

In some applications (see [1]) it is convenient to change the chiral ghost variables $B_{M}^{ \pm}$and $C_{ \pm}^{M}$ to the standard canonical coordinates $\left(\rho^{M}, \bar{\rho}_{M}\right)$ and momenta $\left(\pi_{M}, \bar{\pi}^{M}\right)$:

$$
B_{\boldsymbol{M}}^{ \pm}=a_{ \pm} \bar{\rho}_{\boldsymbol{M}}+b_{ \pm} \pi_{\boldsymbol{M}}, \quad C_{ \pm}^{M}=a_{\mp} \rho^{M}+(-)^{M_{b_{\bar{F}}} \bar{\pi}^{M},}
$$

where $a_{+} b_{-}+b_{+} a_{-}=1$. The new ghosts have the canonical Poisson superbrackets $\left\{\rho^{M}, \pi_{N}\right\}=\left\{\bar{\rho}_{N}, \bar{\pi}^{M}\right\}=\delta_{N}^{M}$, others being zero. To quantize fermionio discrete "strings", one can use, from this point, the route outlined in Ref.[1]. Corresponding caloulations being rather lengthy will be published elsewhere.
3. Gauge Formulation of Standard Closed Fermionic String Theory Finally, we will demonstrate that the theory of the standard
fermionio string (FS) oan be presented in the gauge form by applying our approach to the infinite-dimensional oase. Reoall that the aotion in the hamiltonian formulation of FS is [12], [13]

$$
\begin{align*}
S_{F S}= & \int_{0}^{T} d t \int_{0}^{2 \pi} d s\left[p^{\mu} \dot{q}_{\mu}+\frac{i}{2}\left(\psi_{+}^{\mu} \dot{\psi}_{+\mu}+\psi_{-}^{\mu} \dot{\psi}_{-\mu}\right)-l_{+}^{M} T_{M}^{+}-l_{-}^{M} T_{M}^{-}\right] \tag{29}\\
& T_{0}^{ \pm}=\frac{1}{4}\left(\pm z_{ \pm}^{\mu} z_{ \pm \mu}+2 t \psi_{ \pm}^{\mu} \partial_{s} \psi_{ \pm \mu}\right), \quad T_{1}^{ \pm}=z_{ \pm}^{\mu} \psi_{ \pm \mu}
\end{align*}
$$

where $\boldsymbol{M}=0,1$; all the variables are funotions of t and s (whioh are periodio or antiperiodio in $s, 0<s<2 \pi), \delta_{s}=\partial / \partial s, \mu$ is the Minkowski space-time index, and $z_{ \pm}^{\mu}=p^{\mu} \pm \partial_{s} q^{\mu}$. The aotion (29) is invariant under the gauge transformations whioh are most olearly expressed in terms of the bosonio, $z_{ \pm}^{\mu}$, and fermionio, $\psi_{ \pm}^{\mu}$, ohiral variables:

$$
\begin{align*}
& \delta\left[\begin{array}{c}
z_{ \pm}^{\mu} \\
\psi_{ \pm}^{\mu}
\end{array}\right]=\left[\begin{array}{cc}
\partial_{s}^{f_{ \pm}^{0}} & \mp 2 l \partial_{s} f_{ \pm}^{1} \\
f_{ \pm}^{1} & \frac{1}{2} f_{ \pm}^{0} \partial_{s}+\frac{1}{2} \partial_{s} f_{ \pm}^{0}
\end{array}\right]\left[\begin{array}{l}
z_{ \pm}^{\mu} \\
\psi_{ \pm}^{\mu}
\end{array}\right] \tag{30}\\
& \delta\left[\begin{array}{c}
l_{ \pm}^{0} \\
l_{ \pm}^{1}
\end{array}\right]=\left[\begin{array}{c}
f_{ \pm}^{0} \\
\dot{f}_{ \pm}^{1}
\end{array}\right]+\left[\begin{array}{cc}
\partial_{s} l_{ \pm}^{0}-2 l_{ \pm}^{O_{ \pm}} \partial_{s} & \pm 2 l l_{ \pm}^{1} \\
\partial_{s} l_{ \pm}^{1}-\frac{3}{2} l_{ \pm}^{1} \partial_{s} & \frac{1}{2} \partial_{s} l_{ \pm}^{0}-\frac{3}{2} l_{ \pm}^{O_{a}} \partial_{s}
\end{array}\right]\left[\begin{array}{c}
f_{ \pm}^{0} \\
f_{ \pm}^{1}
\end{array}\right] . \tag{31}
\end{align*}
$$

Here $f_{ \pm}^{M}$ are the gauge transformation functions depending on t and s. These transformations may be written in a more compaot form by using the superfield hamiltonian approach [13]. Another transparent representation of the FS gauge symmetry has been given in [2].

To complete the hamiltonian struoture, we write Poisson brackets for the dynamioal variables:

$$
\left\{z_{ \pm}^{\mu}(\Omega), z_{ \pm}^{v}\left(s^{\prime}\right)\right\}= \pm 2 \partial_{s} \delta\left(s-s^{*}\right) g^{\mu \nu}, \quad\left\{z_{+}, z_{-}\right\}=0 ;
$$

$$
\begin{equation*}
\left\{\psi_{ \pm}^{\mu}(s), \psi_{ \pm}^{\nu}\left(s^{\prime}\right)\right\}=-\left\{\delta\left(s-s^{\prime}\right) g^{\mu v}, \quad\left\{\psi_{+}, \psi_{-}\right\}=0\right. \tag{32}
\end{equation*}
$$

With the new variables, $z_{ \pm}^{\mu^{\mu}}(s)=\left[z_{ \pm}^{\mu}(s), \psi_{ \pm}^{\mu}(s)\right]$, these equations oan be presented in the form (5) where

$$
D^{A A^{\prime}}=\left[\begin{array}{cc}
\partial_{s} \delta\left(s-s^{\prime}\right) & 0 \tag{33}\\
0 & -\frac{1}{2} \delta\left(s-s^{\prime}\right)
\end{array}\right]
$$

The aotion (29) can now be rewritten similarly to Eq. (18a) if we suppress the space-time indices and treat s, s^{\prime} as the matrix indioes A, A^{\prime}. The formulation is completed by introducing the "continual" analoge of the matrices $\left(\Gamma_{M}\right)_{A A}$:

$$
\begin{align*}
& \left(\Gamma^{ \pm}{ }_{\mathrm{O}}\right)_{s^{\prime}} s^{\prime}=\left[\begin{array}{cc}
\pm \delta\left(s-s^{\prime}\right) \delta\left(s-s^{\prime \prime}\right) & 0 \\
0 & i\left[\delta\left(s-s^{\prime}\right) \partial_{s} \delta\left(s-s^{\prime \prime}\right)\right. \\
\left.0\left(s-s^{\prime \prime}\right) \partial_{s} \delta\left(s-s^{\prime}\right)\right]
\end{array}\right] . \tag{34}
\end{align*}
$$ One may cheok that by substituting Eqs. (33), (34) into Eq. (18a) the FS aotion is obtained(up to a boundary term).

4. Conclusion

We have demonstrated that the ideas of Ref.[1] can be applied to oonstructing disorete analogs of the fermionio string, in the sense explained in the Introduction. We also have tried to clarify the meaning of the ohiral deoomposition of the dynamioal variables and gauge groups. Note that our gauge approaoh oan be applied to construct ohiral asymmetric models by choosing different left and right fermionic variables. Then our starting point must be Eq. (6) rather than (2), with completely unrelated matrices $\partial_{\alpha \beta}^{+}$and $\partial_{\alpha \beta}^{-}$ $\left(\partial_{\alpha \beta}^{-} \neq \partial_{\beta \alpha}^{+}\right)$. Such discrete analogs of heterotic strings will be oonsidered in subsequent publications. The results related to quantizing our fermionic models are being prepared for publication.

The authors are obliged to D.Gangopadyay for valuable discussions.

References

1. A.T.Filippov, A.P.Isaev, "Gauge Models of Discrete "Strings"", JINR preprint E2-89-280, Dubna, 1989 (Yodern Phys. Lett. A).
2. A.T.Filippov, JETP Lett. 46 (1987) 425;

Yodern Phys. Lett. A4 (1989) 463.
3. A.A.Belavin, A.M.Polyakov and A.B. Zamolodohikov, Nucl.Phys. B241 (1984) 333:
D.Friedan, Z.Qiu and S.Shenker, Phys.Rev.Lett. 52 (1984) 1575; E.Witten, Comm. Math. Phys. 92 (1984) 455.
4. R.Casalbuoni, Nuovo Cim. 33A (1976) 115;
F.A.Berezin and M.s.Marinov, Ann. Fhys. 104 (1977) 336.
5. J.Sohwinger, Quantum Kinematics and Dynamics (T.A.Benjamin, 1970).
6. A.T.Filippov, preprint NBI-HE-88-07, Copenhagen, 1988.
7. F.A.Berezin, Introduction to Algebra and Analysis with Ant icommuting Variables (Mosoow State University Press, 1983; in Russian).
8. L.D.Faddeev and A.A.Slavnov, Gauge Fields, Introduction to Quantum Theory (W.A.Benjamin, 1980).
9. L.Mesincesou, R.I.Nepomeohie and P.K.Townsend, "Path Integral Calculation of the Closed Spinning String Propagator", preprint UNTG-147 (1989).
10.A.P.Isaev, "On Quaritization of Relativistic String", preprint IHEP 82-193, Serpukhov, 1982; A.Neveu and P.West, Nucl.Fhys. B293 (1987) 266.
11.L.D.Faddeev, Teor. Mat. Flz. 1 (1969) 3;
E.S.Fradkin and G.A.Vilkovisky, Phys.Lett. 55B (1975) 224;
I.A.Batalin and G.A.Vilkovisky, Phys.Lett. 69B (1977) 309.
12.C.Marshall and P.Ramond, Nucl. Phys. B85 (1975) 375;
P.A.Collins and R.W.Tuoker, Nucl.Phys. B121 (1977) 307.
13.V.I.Borodulin and A.P.Isaev, Zs.Fhys. C38 (1988) 659.

[^0]: ${ }^{1}$ The ohiral variables $z_{ \pm}$are transformed by the generators of the ohiral subalgebras $\operatorname{sp}(\infty, \stackrel{ \pm}{\mathbb{R}}) \oplus \operatorname{sp}(\infty, \mathbb{R})$.

[^1]: 2 We postpone a discussion of attempts to construct a sequence of models with gauge groups G_{N} giving in the limit $N \rightarrow \infty$ the standard olosed bosonic string theory. It requires rather involved considerations even at the classical level.

[^2]: 3 Note that $z_{ \pm}^{A}$ form a reducible representation of this subalgebra, it is called a reduced representation of the algebra $\operatorname{osp}(N \mid K, \mathbb{R})$ on the subalgebra. This fact is very important for understanding our

[^3]: 4 In Ref.[1] some unnecessary multipliers "t" and "-" signs appeared in formulas containing ghost variables. These should be correoted by using oorresponding relations of the present paper.

