


1 . Introduction 
Reoently, we have proposed [I] new disorete gauge models having 

some resemblanoe to bosonio strings in the hamiltonian 

formulation. There were introduoed disorete analogs of the ohiral 

variables Z+ = p t q'  as well as of the reparametrization 

symmetry. The hamiltonians of the models are linear oombinations 

of first-olass oonstraints whioh are quadratio in Z+ and Z-. The 

oonstraints generate a subalgebra of sp(N,R)+ GI sp(N,IR)- (with 

respeot to the Poisson braokets) while the oorresponding m a n g e  

multipliers are transformed as the standard gauge potentials 

defined over the one dimensional base O<t<T, where t is the 

evolution parameter. These gauge models are nontrivial due to the 

important faot that the requirement of the gauge invarianoe of the 

aotion gives oertain boundary oonditiona on the gauge 

transformations at the boundaries t=O and t=T. Therefore, we oan 

not fix the gauge in whioh all gauge potentials vanish and there 

exist some gauge-invariant parameters oonstruoted from the gauge 

potentials and defining nontrivial dynamios of the system (like 

the Teiohmuller parameters in string theory). 

Having in mind all these analogies we used for our models a 

generic name "disorete strings". In faot, the standard theory of 

the olosed bosonio string may be presented in the same gauge form. 

the gauge algebra being a very special subalgebra V~C~(S') (D 

(D Vect (s' ) of the inf inite-dimensional linear oanonioal algebra 



Sp(2ol.R). see Ref. (1 1. This also was demonstrated in Ref. 12 I. 

where some examples of disorete gauge models were proposed and 

disouesed. The new idea of Ref.[l] is to introduoe a ohiral 

("oomplex") struoture in these models as well as to consider 

arbitrary subalgebras of sp(N.IR) O sp(N.R) as gauge algebras. This 

has been aohieved by introduoing a disorete analog of the 

derivative Sa= 8/88 (8 is the string parameter. 0<8<2r), whioh is 

some skew-synnnetrio matrix aab. The phase spaoe (pa.qa). 

a = 1. ....N. is naturally split into left and right seotors by 

introducing the variables 2: - = pa + aabqb. The analogy with the 

bosonio string is completed by considering pa = P- and qa = 4, 
as Lorentz D-veotors (p = 0.1 , . . . .E-1 ) . As the Lorentz symmetry 

is, in our approaoh. oompletely disoonnected from the canonioal 

symmetry we usually suppress the Lorentz indioes p (the Lorentz 

invarianoe ie trivial to satisfy at least at the olassioal level). 

One may try to use our "discrete strings" as finite dimensional 

approximations to continuous strings. Then rather severe 

restriotions on the gauge groups must be satisfied. To obviate 

reduoing the relativiati0 phase space to the physical phase spaoe. 

we require the gauge group to have not less than N mutually 

oomting generators. This means that the rank of the group is 

equal to the rank of the original oanonical group in whioh it is 

imbedded. Then one may use N mutually oommuting oonstrainta and N 

oorresponding gauge-f ixing oondit ions to express the time 

I The ohiral variables Z+ are transformed by the generators of the 
ohiml subalgebras sp(m,R) O ~p(m,R). 

components of p* and qw (a = 1 , . . . , in terms of physioal 

ooordinates and momenta. Roughly speaking. the generators of this 

abelian (Cartan) subgroup in the oontinual limit have to beoome 

the generators p2+ qv2, giving t-reparametrizations of the world 

lines qp(t,3) for different s. The rest of the generators, pq'. 

oorrespond to 8-reparametrizations. One oan make a somewhat more 

preoise statement using a naive discretization of the olosed 

string in whioh it is replaced by a system of N partioles (N-even) 

with coordinates qa and momenta pa. Then it is easy to construct N 

mutually oommuting generators: 

So we expeot that any ."discrete string" having a ohanoe to 

approximate the oontinual string for large N should have a gauge 

group with 2N generators (N of them mutually oommuting ).  Such a 

group will certainly be not semisimple. As we also expeot it to 

oontain S1(2,R).~Sp(2,lR) subgroups, the group will be nonoompaot. 

The models with oompaot gauge groups and Lorentz-vector 

ooordinates are interesting for desoribing relativistio bound 

states (see Ref.[21). The most general ohiral models introduoed in 

Ref.[l] might possibly be considered also as discrete analogs of 

two-dimensional oonformal field theories [gl. In view of suoh 

applications the term "disorete strings" seems to be somewhat 

misleading. However, our imediate aim is to oonstruot disorete 



gauge models in closest possible parallel to bosonic and fermionio 

strings and, in this context, using the term is justifiable.' 

In this letter we construot fermionio analogs of the gauge 

models proposed in [I] by adding anticommuting degrees of freedom 

(Grassmann variables ) .  From the preceding remarks it must be 

clear that the gauge algebras of these models are some subalgebras 

of the ohiral algebra, osp(NIK,R) O osp(NIX.R). imbedded into the 

canonioal symmetry algebra osp(2NI2K.R) (such an extension for 

compact nonohi-ral gauge algebras has been discussed in Ref.l2l). 

With all above reservations, we will call these models "fernionic 

discrete strings". 

2. Classical Hamiltonian Formulation of Fermionic Discrete 

"Stringew . 
Consider a system described by coordinates zA = (za,Za) and its 

conjugate momenta zA = (Za, Za) where (za, Za) and (Za. za) are 

even and odd variables, respectively (a = 1.2, ... N, U = 1.2, ... K). 
Introducing a compact notation for sign factors. 

(-)A = +I if A = a, (-)A = -1 if A = a, 

we can write the commutation relations for these variables as 

z,z, = (-)"%,z,; zA2, = (-)mZBzA; ZAZB = (-)"~BzA. (1 ) 

Remark that Za = qa, Za =' pa are the standard real coordinates and 

momenta while za and Za are nonhermitian Grassmann variables, see 

[41.[51. In terms of these variables the action has the form [51 

We postpone a discussion of attempts to construct a sequence 
of models with gauge groups CN giving in the limit N +a, the 

standard closed bosonic string theory. It requires rather involved 
considerations even at the classical level. 

where the dot denotes the t-derivative, and the oomesponding 

Poisson superbraokets are [41 

{X.YI = x&azA &a/Bi"y - ( - ) A  x&i@ $/~z,Y. ( 3 )  
{zA,P) = 62, CZ~,Z~) = {/Bi",P) = 0. 

It is well known that the kinematioal part of this aotion is 

invariant with respeot to the rigid (super)oanonioal 

transformations belonging to the superpup Osp(2N12K.R). In 

Ref.[21 it has been swested to oonstruot a gauge theory by first 

ohoosing some hamiltonian H(2.Z) and then gauging the 

(super)oanonioal transformations leaving H(5.Z) invariant. This 

approaoh has led to some interesting disorete gauge models but 

failed to reproduoe, in a natural way, the ohiral struoture of the 

string theory and gave no disorete string model whioh oould be 

oonsidered as a good approximation to oontinual string theory (an 

example is a "disorete string" model with nonsemisfmple but 

compact gauge group (UZ )N/Z, [6 1 ). 

For this reason we ohose in Ref.[l I a somewhat different route 

which will be followed here. Consider the "aotion" (2) with zero 

hamil tonian ( "kinematioal aotionw ) and introduoe the ohiral 

variables < ("left and right movers1* ) , 

< = (i@ f FzB)(fi )(A)/2, ( 4 )  
where (A) = 0 if A = a,(A) = 1 if A = a, and (-1 )'I2 = - 1  (this 

somewhat strange factor is introduced to make 2: hemitian). The 

(super)matrix oan be ohosen so as to split the kinematioal 

aotion (2) into two pieoes depending on Z+ and Z-, respeotively. 



To simplify our discussion we assume here that the Grassmann 

elements of the supermatrix DRB vanish and that it is invertible. 

Then it oan be shown to have the form 

The Poisson superbrackets for Z1 oan be oalculated by using ( 3 ) .  

{<. $1 = 2 P  = *I, {<, ZfI1 = 0. ( 5 )  

and the kinematioal aotion (2) in terms of Z, ia: 
T 

where = 6:. DL = DBA. We regard the action (6 ) as the 

starting point for constructing gauge theories by gauging some of 

its rigid symmetries. We only oonsider the linear oanonioal 

transformations preserving the chiral ptruoture of So. They have 

to commute with the chiral reflection -. +z!, and so 2': and 2 
are transformed by independent osp(NIfi,R) transformations whioh 

form a ohiral subalgebra, osp(NIK.R)+ cD osp(NIK.R)-, of the full 

linear supercanonioal algebra osp(2N12fi.R). 

Introducing the supermatrices. F+ = (F+ ):. of the corresponding 

infinitesimal transformations we have 

6z1 = Flzt. CD, + D,F, = 0. 

where D+ = Dm, D- = DL (we reserve for the matrix DRB the 

notation D-I ) , and the standard supermatrix transposit ion rule is 

used. (9); = Up to this point our consideration has 

been oompletely independent of any particular ohoice of the matrix 

F. From here we will use that, for our choice of fl, the matrix 
Dm is a direot sum of the matrioes gab and a whioh are inverse 

a8 

for bb and aae. respectively. Accordingly. flM = DBA and DTT = D. 

However, as F T ~  # F,, the conditions defining F+ and F- are not 

identioal. One oan easily show that they are related by the 

following involution: F- = F?' . F+ = FT~'. where T' means the 

usual simple transposition. (9' ); = c, for which, of course. 
FT'T' = F (the involution relations follow from the identities 

FY'T = f'. DT'= DT. (D F )T'= f'DT'). - + *  - - 
It is convenient to write F+ in terms of independent o-number 

matrioes (Ti):. 

+ A F, = < (T;):. ( ~ i ) ~  # o only if ( M )  = ( A )  + ( B ) ,  

where ( M )  is the Grassmann parity of the transformation parameter. 

From the involution relation we find that (T-)~ = (-)MtB(~i);. In 
4 B 

this notation the symmet~y transformations are 

6 4  = (Ti); -f (7) 
and (Ti): satisfy the condition8 defining osp(NI K.R), algebras. 

(-)dlA(Ti)i DiB t D;~ (T* )C = 0.  
dl B (8) 

As the transformations (7) are c~losed with respeot to the standard 

oommutation, 0102 - 6 6 = 63, the generator8 T; satisfy a graded 2 1 

oommutation relation. 

[T',T'} T' " 
Y N  -(-)dlNT3; = (+)MNt;& . ( 9 )  

To stress that the left and right superalgebras defined by Eq.(9) 

are in faot isomorphio, we express the oorrespondent struoture 

constants in terms of one set, tEN (remind that t:N depend on the 

ohosen basis and satisfy the well known symmetry and (super)Jaoobi 

identities). To demonstrate the isomorphism, one oan introduce a 

second-kind (conjugate) commutation relation for Ti, 

[r,.lr,IC 5 (-)dlN~T; - %Ti = t;N~K- , 



as proposed by Berezin [71. This simple observation might possibly 

provide a more deep foundation for oonsidering ohiral variables 

but we will not pursue this idea here. 

To construct gauge models from the action So, we choose some 

maximal subalgebra3 of OSp(NiX.R) with generators T: satisfying 

the oomutation relations (9). Then, considering t-dependent 

parameters, Pf -. (t 1, introducing the "gauge potentialsw, 

A+ (t ): s ~ r ( t )  (T;): . and replacing the t-derivative, a,, by the - - 
oovariant derivative, V+ = 0,  - A,, we obtain the new aotion, 

in which rigid symmetries of the aotion (6) are localized. The 

lagrangian in Eq.(10) is invariant under the gauge transformations 

62+ = F + ( t ) z t ,  6A+ = F +  + [F+,A,l, (11) 

or. in the component notation, 

z = t z 6 = t + t t ~ t  (12) 

A general variation of the action (10) may be written as 

+ $[z+D 6z+ + z_DT6z-1 (13) 

(recall that D = DB, D~ = DBd). The first four terms give the 

equations of motion, 

Note that Z: form a reducible representation of this subalgebra. 
it is called a reduced representation of the algebra OSp(NIK.R) on 
the subalgebra. This fact is very important for understanding our 
gauge models. 

v,z, = (a, - A,)z, = 0. ( 14 )  

and the oonstraints whioh we disouss later. The last two tern in 

Eq. (13) determine the boundary conditions z,(O).z,(T)are fixed.(Phe& 

conditions are, of oourse, unphysioal and we are better to ohange 

the aotion ( 1 3 )  by adding some boundary terms giving reasonable 

boundary oonditions. 

In our problem, the most natural boundary oonditions fix 

bosonio oanonioal ooordinates Za while for fermionio variables. 

one has to fix initial ( 1 )  "ooordinates" Za and final ( f )  

"momenta" Za: 
C I 

Z (0) = Zar za(T) = za; a 

za(0) = 2:. Za(T) = Zfa. 

The oonditions (16) for the fermionio variables are necessary for 

a oomeot definition of the path-integral quantization [El; in the 

context of string theory they have reoently been disoussed in 

Ref. [9]. To inolude the boundary oonditions (15). (16) into the 

variational prinoiple, we add, to the aotion (10). the boundary 

terms thus defining the following new aotion: 

S, = S, + Za(T) - z: Za(0)l - ;[Zfa za(T) + ~~(0)z;l. (17) 

The variational prinoiple 6S2 = 0 now gives the equations of 

motion (4). the oonstraints, and the boundary oonditions 

(15).(16). The new aotion oan be rewritten in the form, 

T s2 = dt [ia(t + f (zyaaBDLB;! + z:aa,;' ) - Z:T~ - Z~T;I - 
0 

-fa z,(T) + Z~(O)Z;I. - z[Z 
where the oonstraints. 

7; = i < ( ~ ; ) ~ $  . (lab) 

are expressed in terms of the new matrioes T; (D+= DM, D-= : 



(ri)RB = -(T+)~ A D+ CB , T = - gcA. M BC t (lac) 
These matrioes generalize the oorresponding r-matrioes introduoed 

in [l I. Renark that = (-)AEtAtB (rL)4B and, according to 

~ q .  (8). (ri)RB = (-)m(ri)BA. Note also that 

+ o only if ( M )  = ( A )  + (B). \ l d )  

The Poisson bmokets for 7; are easily obtained f m m  Eq. (5): 

CT;,T~I = ( ~ ) ~ ~ t h  T; , ~7L.7;) = 0. (20a) 

These relations are equivalent to the "oommutation" relations for 

the matrioes (ri)RB, which follow from Eqs. (lac) and (9): 
D-lr, 

M r+ - (-)m rr+ N ~-lr; t = (7)"tL h.: , (2Ob) 
where D;' = p, DI' = Following ideas of Ref. [l I we regard 

the matrioes and D;' as fundamental objeots defining the gauge 

gmup. The generators, Ti, of the oorresponding superalgebra are 

also expressed in tems of them (see Eq.(l80)), and the aotion S2 

depends on D, only trough a ~t follows that aab may be not an 
aP'  

invertible matrix having zero eigenvalues. As explained in [?I. 

this allows UE to intmduoe a oonsemed total momentum of the 

system. Recall that, to desoribe a relativistic "string", we 

simply define the relativistio phase superspaoe by extending 

(zA, Zd) to (22. *) where p is the D-dimensional spaoe-time 

index. p = 0.1 . . . . .D-1 . By oontmoting these indioes one trivially 
obtains Lorentz-invariant disorete strings. 

Returning to the aotion S2 (Eq. (18a)). we stress that it differs 

from S1 (Eq.(lO)) by boundary tems. Aooordingly. S2 is invariant 

under the gauge tranj3formations (7),(11) only if the following 

boundary oonditions are fulfilled: 

c(T) - r(T) = 0, T(0) - r(0) = 0; (21a) 

@T) + tf(~) = 0, c(0) + tf(0) = 0. (2lb) 

The conditions (21a) are identioal to the boundary oonditions in 

the bosonic disorete string models [I 1 and are analogous to the 

corresponding oonditions in the bosonio string theory [lo]. 

The oomplete system of equations of motion is given by the 

evolution equations (1 4) and by constraints 7; = 0. As in the 

bosonic oase [I], the Cauchy problem oan formally be solved, 

z+(t) - = V,(t.to) zt(to). (22) 
t 

v+(t,to) - = ~ e x p  { Idf 11:(t 1)~; . 1 (23) 

to 

The finite transformations corresponding to Eqs.(7),(ll ) oan be 

represented as 

z+(t) - U+(t) - z+(t). v, - U+(t) v+ - uyl(t). - (24) 

v+(t.t,) - U+(t) V+(t.to) UI' (9. U+(t) = exp(t(t)Ti). 

3. Ghoete and BRST 

lo oomplete a foundation for quantizing our supergauge models. 

we extend the phase space by adding ghost variables B; , Cf 

having the Crassmann parities opposite to those of the gauge 

potentials I? - . i.e. 
Bf B' - - (-)"+I "Ntl )B+ Bt q q- = (_)(art1 )(N+l )cN p 
M N  N I' - - f t' 

Following the general rules for treating hamiltonian systems with 

first-class constraints [ll 1 we oonsider the extended aotion. 

4 In Ref. [I I some unnecessary multipliers "1" and "-" signs 
appeared in formulas oontaining ghost variables. These should be 
oorreoted by using oorresponding relations of the present paper. 



M +  + - {z+B,,.~ 1 - {Z:B;.~-II -;itfa z,(T) + Z~(O)Z;I. (25) 

where n' = ( - ) N [ ~ i  - (*)MN1~' tL YIC? are the standard BRST N 2 L  MN + - 
charges corresponding to our constraints 7; .  and the Poisson 

superbrackets for the ghosts are 

{c?.B:) - = 6; . {B~C;) = O. ( 2 6 )  

The ghost equations of motion, 

.+ =(t)NL~: t!L c:, Bi = -(?lMNB' 1: tL - L - N M '  (27 ) 

can be solved explicitly: 

c,it) = i,ct,to) c,itor, ~ ' ( t )  =  ti ri+(t.to))-l. ( 2 8  

t 

itct.t0, = Pe, {pt.z:(tt)? 

to 
I* 

?'+ L 
where (Ti)N = (?)MNtiN are the generators a;.f the gauge group in 

the adjoint representation. 

In some applications (see [ I  1 ) it is convenient to change the 

chiral ghost variables B: and C: to the standard canonical 

coordinates (pM, PM) and momenta (7cM , i?): 
M M B: = a+& + btrM . C? = a,p + (-)"bi@, 

where a+b- + b+a- = 1. The new gllosts have the oanoniaal Poisson 

superbrackets {pM,rN} = {pN,@) = 8; , others being zero. To 

quantize fermionia discrete "strings", one can use, fro>m this 

point, the route outlined in Ref. [ I  I. Correspondiw oaloulations 

being rather lengthy will be published el, -ewhere . 

3. Cauge Formulation of Standard Closed Permlonlc String Theory 

Finally, we will demonstrate that the theory of the standard 

femionio string (FS) can be presented in the gauge f o m  by 

applying our approach to the infinite-dimensional case. Reoall 

that the action in the hamiltonian formulation of FS is [121. [I31 

- P 
where dl = 0.1; all the variables are funotiom of t and 9 (whioh 

are periodio or antiperiodic in 8.  0<9<271: ).  Us = a/Os. p is the 

Minkowski space-time index, and zy = 9 + agqk. The action (29) is 
invariant under the gauge transformations whioh are most clearly 

expressed in terns of the bosonic. 2: . and femionic, d)): , ohiral 
variables: 

Here m e  the gauge transformation functions depending on t and 

8. These transformations may be written in a more compact form by 

using the superf ield hamiltonian approach [ I  3 1 . Another 

transparent representation of the FS gauge symmetry has been given 

To complete the hamiltonian struoture, we write Poisson 

brackets for the dynamioal variables: 

+2a8 0(9-8')&~. {z+,z-} = 0 ;  {zy(9).z:(a1)1 = - 

( ~ ( 8 )  ,9:(sv)3 = -ta(s-~~)&", {++.$-I = o. (32) 

With the new variables, +(a)  = [z~(s) - .%(a) I ,  these equations 

can be presented in the form (5) where 



!The action (29) can now be rewritten similarly to Eq. (l8a) if we 

suppress the space-time indioes and treat 3.3' as the matrix 

indices A.A'. The formulation is completed by introducing the 

l'continual" analogs of the matrices (rM)u, : 

+6(S-3')0 (3-3" ) O 
(rf08)e's'. 

= [ 0 l161~-s')a$(~-s") - 6(3-3' ' )aS6(3-s') 1 1 - 
One may check that by substituting Eqs.(33),(34) into Eq.(18a) the 

FS aotion is obtained(up to a boundary term). 

4. Conclueion 

We have demonstrated that the igeas of Ref.[l I can be applied 

to constructing discrete analogs of the fermionio string, in the 

sense explained in the Introduction. We also have tried to clarify 

the meaning of the chiral decomposition of the dynamioal variables 

and gauge groups. Note that our gauge approach can be applied to 

construct chiral asymmetric models 1;y choosing different left and 

right fermionic variables. Then our starting point must be Eq.(6) 

rather than (2). with completely unrelated matrices a+ and a- 
..B aP 

# a;,). Such discrete analogs of heterotic strings will be 

oonsidered in subsequent publications. The results related to 

quantizing our fermionio models are being prepared for 

publication. 

The authors are obliged to D.Gangopadyay for valuable 

discussions. 
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