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0AapTHOH 3aMKHYTOH (GepMHOHHOH CTDPYHbl. ['aMHIBTOHHEHBI 3THX
MozeJlell CTPOATCA NOCPenCTBOM JIOKalH3audH Kakux-nubo nog-
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Gauge Models of Fermionic Discrete "Strings"

A new class of constrained hamiltonian systems with a
finite number of bosonic and fermionic degrees of freedom
is proposed. Coordinates of these systems are divided into
two groups of independent variables analogous to the left
and right movers of the standard closed fermionic string
theory. Hamiltonians are obtained by gauging some subgro-
ups of the linear (super) canonical transformations for
the left and right variables. It is argued that some of
the new models can be regarded as discrete analogs of the
standard fermionic string theory. The extension of the mo-
dels obtained by adding ghost variables is also comnstruc-
ted as a prerequisite to quantizing them.

The invetiagation has been performed at the Laboratory
of Theoretical Physics, JINR.
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1. Introduction

Recently, we have proposed [1] new disorete gauge models having
some resemblance to bosonic strings in the hamiltonian
formulation. There were introduced disorete analogs of the ohiral
variables z, = p + q' as well as of the reparametrization
symmetry. The hamiltonians of the models are linear ocombinations
of first-olass constraints which are quadratio in z, and 2z _. The
constraints generate a subalgebra of sp(N,lR)+ ® sp(¥,R)_ (with
respeot to the Poisson brackets)while the corresponding Lagrange
multipliers are transformed as the standard gauge potentials
defined over the one dimensional bame O<i<T, where t is the
evolution parameter. These gauge models are nontrivial due to the
important faot that the requirement of the gauge invariance of the
action gives ocertain ©boundary oonditions on the gauge
transformations at the boundaries t=0 and t=T. Therefore, we can
not fix the gauge in which all gauge potentials vanish and there
exist some gauge-invariant parameters constructed from the gauge
potentials and defining nontrivial dynamios of the system (1like
the Teichmuller parameters in string theory).

Having in mind all these analogies we used for our models a
generic name "discrete strings". In fact, the standard theory of
the closed bosonic string may be presented in the same gauge form,
the gauge algebra being a very Bspecial subalgebra veet(s') @

@ Vect(S‘) of the infinite-dimensional 1linear ocanoniocal algebra




! This also was demonstrated in Ref.[2],

sp(ew,R), see Ref.[1].
where Bome examples of disorete gauge models were proposed and
disoussed. The new idea of Ref.[1] is +to introduce a ochiral
("oomplex") structure in these models as well as to consider
arbitrary subalgebras of sp(N,R) ® sp(N,R) as gauge algebrag. This
has been achieved by introducing a disorete analog of the
derivative Da= 8/8s (8 is the siring parameter, 0<9<2%), whioch is
some Bkew-symmetrio matrix a%?, The phase space (p“.qa),
a=1,...,N, is naturally split into left and right seotors by
introducing the variables 2% = p% = Oabqb. The analogy with the
bosonio string is completed by considering pa = pa“ and q, = qap
as Lorentz D-vectors (4 = 0,1,...,D-1). AB the Iorentz symmetry
is, in our approach, completely disoonnected from the canonical
symmetry we usually suppress the Lorentz indices | (the Lorentz
invariance is trivial to satisfy at least at the olassical level).

One may try to use our "disorete strings" as finite dimensional
approximations to oontinucus strings. Then rather severe
restriotions on the gauge groups must be satisfied. To obviate
reducing the relativistic phase space to the physical phase spaoce,
we require the gauge group to have not less than N mutually
oommiting generators. This means that the rank of the group is
equal to the rank of the original ocanonical group in which it is
imbedded. Then one may use N mutually.oommuting constraints and N

corresponding gauge-fixing oonditions to  express the time

! The ohiral variables z, are transformed by the generators of the
chiral subalgebras sp(«,R) @ Sp(»,R).

components of p® and an (@a=1,...,N) in terms of physiocal
coordinates and momenta. Roughly speaking, the generators of this
abelian (Cartan) subgroup in the continual limit have to beoome
the generators p2+ q'a, giving t-reparametrizations of the world
lines q“(t,s) for different s. The rest of the generators, pq’,
oorrespond to s-reparametrizations. One can make a somewhat more
precise statement using a naive disoretization of the olosed
string in which it is replaced by a system of N partiocles (N-even)
with coordinates q, and momenta p®. Then it is easy to construoct N

mutually commuting generators:

s _ a, patly | _ 2 -

¥ = [ (p™+ P ) s (qm1 qa/s)] s G=1,3,...,N-1.

So we expect that any -"discrete string" having a chance to
approximate the oontinual string for large N should have a gauge
group with 2N generators (¥ of them mutually commuting ). Such a

group will certainly be not semisimple. As we also expeot it to

oontain 8§1(2,R)~Sp(2,R) subgroups, the group will be nonoompaot.

The models with oompact gauge groups and Lorentz-vector
coordinates are interesting for desoribing relativistic bound
states (see Ref.[2)). The most general ohiral models introduced in
Ref.[1]) might possibly be considered also as discrete analogs of
two-dimensional oonformal field theories [3]. In view of such
applications the term "disorete strings" seems to be somewhat

misleading. However, our immediate aim is to oonstruot disorete



gauge models in closest possible parallel to bosonic and fermionio
strings and, in this context, using the term is justifiable.e

In this letter we construot fermionic analogs of the gauge
models proposed in [1] by adding anticommuting degrees of freedom
(Grassmann variables ). From the preceding remarks it must be
olear that the gauge algebras of these models are some subalgebras
of the chiral algebra, osp(N!K,R) ® osp(N1K,R), imbedded into the
canonioal symmetry algebra osp(2N!2K,R) (such an extension for
compact nonchiral gauge algebras has been discussed in Ref.(21]).
With all above reservations, we will call these models 'fermionic

discrete strings".

2. Classical Hamiltonian Formulation of Fermionic Discrete
"Strings”.
Consider a system described by coordinates Z, = (za,za) and its

conjugate momenta 4 = (2%, Z%) where (2, z*) and (2, 2%) are
even and odd variables, respectively (@ = 1,2,..,N, a = 1,2,..,K).

Introducing a compact notation for sign factors,

(-2 =+ it d=qa, (-)* =-1ir4d4-=aq,
we can write the commutation relations for these variables as
_ (_\AB R 5B _ (_\ABzB, . zAzB _ (_\AB3Bz4
2,2y = () 2gz,5 2,20 = (-Y72%2 5 22 (-)y*°2°z%. (1)

Remark that z_ = g, z® = p® are the standard real coordinates and
momenta while z, and 2% are nonhermitian Grassmann variables, see

[41,{5]. In terms of these variables the action has the form [5]

2 we postpone a discussion of attempts to construct a sequence
of models with gauge groups G, giving in the limit N »» the
standard olosed bosonic string theory. It requires rather involved
considerations even at the classical level.

T
S = %i[dt (BADE,(8) - BAt)2, (1) - H(z,2), )

where the dot denotes +the t-derivative, and the corresponding
Poisson superbrackets are [4]
XYY = 180z, Bro7* - (-4 Xos0z4 8r0z,, (3)

{2,,2%) = 68, (2,2} = (74,5} = 0.

It is well known that the kinematioal part of this aotion is
invariant with respect to the rigid (super)oanonioal
transformations belonging to the supergroup Osp(2N|2K,R). In
Ref.[2] it has been suggested to construct a gauge theory by first
choosing some hamiltonian H(Z,z) and then ' gauging  the
(super)oanonical transformations leaving H(Z,z) invariant. This
approach has led to some interesting disorete gauge models but
failed to reproduce, in a natural way, the ohiral structure of the
string theory and gave no disorete string model which oould be
oconsidered as a good approximation to continual string theory (an
example is a "disorete string" model with nonsemisimple but
compact gauge group (UZ)N/Z, [61).

For this reason we chose in Ref.[1] a somewhat different route
which will be followed here. Consider the "action" (2) with zero
hamiltonian ("kinematical action") and introduce the chiral
variables z: ("left and right movers"),

2§ = (2% + DBzp) (1) 472, (4)
where (4) =0 if 4 = a,(A) =1 if 4=a, and (-2 - 4 (this
somewhat strange faotor is introduced to make 2% hermitian). The
(super)matrix D*B can be chosen so as8 to split the kinematical

aotion (2) into two pieces depending on z, and 2z_, respeotively.



To simplify our discussion we assume here that the Grassmann
elements of the supermatrix D*? vanish and that it is invertible.
Then it ocan be shown to have the form

9% o

DAB 280 = _gba  gob _ gba
o a%)’ ’

The Poisson superbrackets for 2z, ocan be calculated by using (3),

(74, 28y = 2p*® = (28, 24, (24, Py = o, (5)
and the kinematioal action (2) in terms of z, is:
T
1 o T
Sy = 3[ar D,y 28 4 A 0 2B, (6)
(o]

where DACDCB = Gi. DiB = DBA' We regard the action (6) as the
starting point for oconstructing gauge theories by gauging some of
its rigid symmetries. We only oonsider the 1linear oanonioal
transformations preserving the chiral struoture of So. They have
to commute with the chiral reflection zf - tz:, and so zf and zf
are transformed by independent oSp(N|K,R) transformations which
form a chiral subalgebra, OSp(NIK,[R’)+ ® oSp(N!K,R)_, of the full
linear supercanonical algebra osp(2N|2K,R).

Introducing the supermatrices, F: = (Ft)g. of the corresponding
infinitesimal transformations we have

6z, = F,z,, F.D, + D,F, = 0,

where D, = D = DiB (we reserve for the matrix DA the

nL
notation D‘1), and the standard supermatrix transposition rule is
used, (Fm)g = (—)AE+AFﬁ. Up to this point our consideration has
been ocompletely independent of any partiocular ohoice of the matrix
D8, Prom here we will use that, for our choice of DAE, the matrix

D

n ie a direot sum of the matrices 8 and @__ whioh are inverse
ab a

P

NSO

for 8%P and 9°P, respectively. Accordingly, DﬁE = Dy, and DT = p.

However, as FET # F,, the conditions defining F_and F_ are not
identiocal. One ocan easily show that they are related by the
following involution: F_= FTT'. P; = F?T',
usual simple transposition, (Im')g = Fi,
F'T - F (the involution relations follow from the identities

=L o=l o)t B,

E

where T' means the

for which, of course,

It is convenient to write F, in terms of independent o-number
matrices (Ti)g,
P, = 1" (Ty)4, (T;)g # 0 only if (M) = (4) + (B),
where (¥) is the Grassmann parity of the transformation parameter.
From the involution relation we find that (T;)g = (—)AE+B(T;)3. In

this notation the symmetry transformations are

+. 4
oz, = 1} (T3 25 ()
+
and (T;)g satisfy the conditions defining oSp(N}K,R), algebras,
(¥4 Doy + D5, (TE)S = 0. (8)

As the transformations (7) are olosed with respeot to the standard
commutation, 6162 - 6261 = 63, the generators T; satisfy a graded
oommutation relation,

t mt
[Ty, T3}

ot MNpiot NN.K nt

Tyly ~ (VTN = ()MK 72 (9)
To stress that the left and right superalgebras defined by Eq.(9)
are in faot isomorphio, we express the oorrespondent structure

R K .

constants in terms of one set, tMN (remind that tﬁN depend on the
chosen basis and satisfy the well known symmetry and (super)Jacobi
identities). To demonstrate the isomorphism, one oan introduce a

second-kind (conjugate) commutation relation for T;,

C . (_\MNpo - _ 4K
[Ty, T} = (VT Ty - TeTy = tunTx »



as proposed by Berezin [7]. This simple observation might possibly
provide a more deep foundation for oonsidering ochiral variables
but we will not pursue this idea here.

To construct gauge models from the action SO, we choose some
maximal subalgebraa of osp(N{K,R) with generators T; satisfying
the oommutation relations (9). Then, considering t-dependent

parameters, f:-f:(t), introducing the "gauge potentials”,

A, (1)5 = l:(t)(T;)g » and replacing the t-derivative, 8,, by the
covariant derivative, v, = Ot ~ 4,, we obtain the new action,
T
= ifat 120,y 0B 2f 4 A Y 002 S, (10)
o}

in which rigid symmetries of the action (6) are localized. The

lagrangian in Eq.(10) is invariant under the gauge transformations

8z, = F (t)z,, o4, =F, + [F 4,1, (11)
or, in the ocomponent notation,

oz4 = ) 28, oty = Mty + O K. (12

A general variation of the action (10) may be written as
T
=1 L. _ _ T
oS, - Afdt (62,D v,z, +82 D% z_ - 2,D b4,z - 7 D"04 z_)

+3z,D0z, + z Dz 10T (13)
(recall that D =D = D ). The first four terms give the

equations of motion,

3 Note that Zf form a reducible representation of this subalgebra,
it is called a reduced representation of the algebra Osp(N!|K,R) on
the subalgebra. This fact is very important for understanding our
gauge models.

vz, = (0, -4,)z, =0, (14)
and the oconstraints which we disocuss later. The last two terms in
Eq.(13) determine the boundary conditions 21(0)’21 (T)are fixed.These
conditions are, of course, unphysical and we are better to ohange
the action (13) by adding some boundary terms giving reasonable
boundary conditions.

In our problem, the most mnatural boundary oonditions fix
bosonic canonical coordinates z, while for fermionic variables,
one has to fix initial (1) "ooordinates" z, and final (f)
"momenta" 2z%:

2,(0) = 25, z (1) = 27; (15)

z,(0) =z}, ZT) = 77% (16)
The conditions (16) for the fermionio variables are necessary for
a oorrect definition of the path-integral quantization [8]; in the
context of string theory they have recently been discussed in
Ref.[9]. To include the boundary oconditions (15), (16) into the
variational principle, we add, to the action (10), the boundary
terms thus defining the following new action:
S, = 8, + 2l 22(M) - zf 2201 - J127% 2 (D) + 2221, (17)

The variational principle GSE = 0 now gives the equations of

motion (4), the oonstiraints, and the boundary oonditions

(15),(16). The new action can be rewritten in the form,
T

_ — . 1 . By _ Myt gMy—-q _
. Idt [2%(£)2, (1) + 1(290,,2% + 2%6,,2%) - VT, - T )

15 S 1
- 3277z (1) + 27(0)z ], (18a)
where the oconstraints,
T, = 20T 120 » (18b)

are expressed in terme of the new matrioces I‘;'l (D*= DAB, D= DTAB):



T = TS By + TR = -Wppe 04 (160)
These matrioces generalize the corresponding I'—matrices introduced

in (1]. Remark that (Tp),; = (-)*Z**B(r}), and, according to

4B
Eq.(8), (Ty),p = (-)*2(Ty),,. Note also that
(Ty) 4 # 0 only it () = (4) + (B). 1)
The Poisson braockets for T: are easily obtained from Eq.(5):
(T Ty} = O, T8, (T),7;) = 0. (20a)

These relations are equivalent to the "oommutation" relations for
the matrices (P:)AB, which follow from Egs.(18¢) and (9):

Ty D;'Ty - (ML D'y = (o) ¥E T, ' {20b)
where D:1 = D48, D:1 = DP4, Following ideas of Ref.[1] we regard
the matrices P: and D;‘ as fundamental objeots defining the gauge
group. The generators, T:, of the oorresponding superalgebra are
also expressed in terms of them (see Eg.(180)), and the action 82
depends on Dt only trough Oap. It follows that §°%P may be not an
invertible matrix having zero eigenvalues. As explained in [1],
this allows us to introduce a oonserved total momentum of the
Bystem. Recall that, to desoribe a relativistic "string", we
simply define the relativistic phase superspace by extending
(zA, z4) to (zﬁ, Z*) where p is the D-dimensional space-time
index, B = 0,1,...,D-1. By ocontracting these indices one trivially
obtains Iorentz-invariant disorete strings.

Returning to the action S2 (Eq.(18a)), we stress that it differs
from S1 (Eq. (10}) by boundary terms. Aoocordingly, S

2
under the gauge transformations (7),(11) only if the following

is invariant

boundary oonditions are fulfilled:
T3 - XM =0, f2(0) - 7*(0) = 0; (21a)

10

A o+ /2 =0, 20 + 1520 = 0. (21b)

The oonditions (21a) are identical to the boundary oonditions in

the bosonic disorete string models [1] and are analogous to the
corresponding conditions in the bosonic string theory [10].

The ocomplete system of equations of motion is given by the

evolution equations (14) and by constraints T; =0. A8 in the

bosonic case [1], the Cauchy problem can formally be sBolved,

z,(t) = V,(t,10) 2,(t), (22)
t
V,(t,t,) = Pexp { fdt'zf(t')T; } (23)
t
Y]

The finite transformations corresponding to Egs.(7),(11) can be
represented as
z,(t) =~ U, (1) 2,(t), v, ~U, (1) v, U;'(1), (24)
Vo(t,ty) = U, (1) V, (1,t,) U;’(Q). U, (t) = exD(ff(t)T;)-

3. Ghosts and BRST

To oomplete a foundation for quantizing our supergauge models,
we extend the phase space by adding ghost variables B; . Cf
having the Grassmann parities opposite to those of the gauge

potentials 1¥ , i.e.

B: B; _ (_)(H+1)(N+1)B; B; , G: Cf _ (—)(M+1)(N+1)C§ C:.

Following the general rules for treating hamiltonian systems with

first-class constraints [11] we consider the extended aotion,4

4 In Ref.[1] some unnecessary multipliers "{" and "-" signs

appeared in formulas ocontaining ghost variables. These s8hould be
corrected by using corresponding relations of the present paper.
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T
i . 1 . : s
S, = i&t (2%(8)2, (8) + J(258,,2° + 2%0_,2%) + (B + ByoH) -

- BLa"y - (BT LIET 2 () ¢+ 2%0)zh], (o)
where (% = (—)N[TI‘; - (t)"N%Bz tﬁN C“;]CI:v are the standard BRST

charges corresponding to our constraints T;. and the Poisson
superbraockets for the ghosts are
N pty _ N +ANy
{C:.Bu} =06y » {B"G;} = 0. (26)

The ghost equations of motion,

M _ \NLiN (N AL pt MNpt N ,L
CA:l ()™ typ, Civ By = —(2) By 1y tay o

can be solved explicitly:

C.(1) =V, (t,tg) C,(ty), B (1) = BE(t) (V,(t,1,0)7", (28
t
Vi(tit) = pexp { [ar i) }.
t

0
MN,L
(%) tHN are the generators of the gauge group in

mi L _
where (TH)N =
the adjoint representation.

In some applications (see [1]) it is convenient to change the

s . +
chiral ghost variables Bu and C: to the standard canonical
goordinates (pu, 5") and momenta (T, , T¥):

= N =

BIl - a:pu + D:WH ’ C: = a;p" + (_)Hb;,,cll’
where Q,D_+ b, a_ = 1. The new ghosts have the canonisal Poisson

N -

superbrackets {p ,’ICN} = (pN,'rc"} = 6; s others being zero. To
quantize fermionic discrete "strings", one can use, from this
point, the route cutlined in Ref.[1]. Corresponding caloulations

being rather lengthy will be published elsewhere.

3. Gauge Formulation of Standard Closed Fermionic String Theory
Finally, we will demonstrate that the theory of the standard

12

fermionio string (FS) can be presented in the gauge form by
applying our approach to the infinite-dimensional oase. Recall

that the action in the hamiltonian formulation of ¥S is [12],[13]

T 2w
- , k) | L oy 1M g+ _ M -
Spe = [atfas 1P, + Ak b, + ¢ b - WL - T, o)
O O
+
Py 2o, el w 0, 0 7o 2t

where ¥ = 0,1; all the variables are funotions of t and 9 (whioh
are periodic or antiperiodic in 8, 0O<s<2w ), 68 = 3/09, p is the
Minkowski space—~time index, and z': = pp‘ + Osq“. The action (29) is
invariant under the gauge transformations whioh are most olearly

expressed in terms of the bosonio, z! , and fermionic, ¢* , ochiral

variables: ) )
01 wt0_f) 2" (30)
s, o2l
[ 0,19 - 2198, 211, 0 (31)
] TR T et - ute, 10,12 - 10|12

Here f: are the gauge transformation functions depending on t and
8. These transformations may be written in a more compact form by
using the Bsuperfield hamiltonian approach [13]. Another
transparent representation of the PS gauge symmetry has been given
in [2].
To oomplete the hamiltonian structure, we write Poisson
brackets for the dynamioai variables:
{z%(9),2(a")} = 220_ 0(s-8")g"", {2,,z_} = O;
(q):(s).<p:(8')) = -18(a-a")g"", {¢,,¢_} = 0. (32)
With the new variables, z:“(s) = [z';(s),(pt’(s)]. these equations

ocan be presented in the form (5) where

13



, 9 8(8 - 8") 0
pa'- s s . (33)
0 —56(3-3')
The aotion (29) ocan now be rewritten similarly to Eq.(18a) if we
suppress the space-time indioces and treat 3,3' as the matrix

indices 4,4'. The formulation is completed by introducing the

"ocontinual" analogs of the matrices (PM)

44°¢
+ t e O 1
(T*g)grqre = -210(a-8"8(8-0" ") [7 g]. (34)
+ +6(8-9")8(8-3"") 0
R :
68 0 116(e-8")0_0(9-3"") - 6(9-8"")3_6(s-3")]

One may check that by substituting Egs.(33),(34) into Eg.(18a) the
FS action is obtained(up to a boundary term). .
4, Conclusion

We have demonstrated that the ideas of Ref.[1] can be applied
to constructing discrete analogs of the fermionio string, in the
sense explained in the Introduction. We also have tried to clarify
the meaning of the ohiral decomposition of the dynamiocal variables
and gauge groups. Note that our gauge approach ocan be applied to
construct ohiral asymmetric models by choosing different left and
right fermionic variables. Then our starting point must be Eq.(6)
rather than (2), with completely unrelated matrices 6;

(8

and 8
af

;6 # O;a). Such discrete analogs of heterotic stringz will bz
considered in subsequent publications. The results related to
quantizing our fermionic wmodels are being prepared for
publication.

The authors are obliged to D.Gangopadyay for valuable

discussions.
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