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Quantum chromodynamics being a recognized candidate for 
the theory of strong interactions nevertheless is all the ti- 
me checked by confronting its predictions with still new ex- 
perimental data. The most convincing check may be achieved 
in such a kinematical region where the methods of the QCD 
perturbation theory can be applied and where the influence 
of the phenomenological parameters, inevitably entering into 
its theoretical formulae for observables, allows a clear and 
physical control. From this viewpoint, the deep inelastic 
processes with a large transfer momentum squared Q 2  = - q 2  = 

= - ( p - P ' )  have doubtless advantages as compared with ex- 
clusive processes*, for which the data are concentrated in 
the region of relatively small Q2. The theoretical apparatus 
for describing the behaviour of the structure functions (SF) 
of deep inelastic processes in the framework of QCD is well 
studied and has been applied many times for interpreting the 
experimental data. 

Future start of the LEP accelerator opens the possibility 
for continuing measurements started at DESY and SLAC 2 (see 
the reviews 4 / ) ,  of the photon structure functions F Y(x , Q 2 ) c  

- 
at higher of transfer momenta squared g2. The photon SF at 
large g2 contain the information about the transition of qu- 
arks and gluons into a photon or, as it is usually said, the 
distribution of quarks and gluons inside a photon. This infor- 
mation is of great interest because in a deep-inelastic lep- 
ton-hadron scattering the photon is considered as a point- 
like probe that allows the study of the quark structure of 
composite hadrons. The knowledge of the transition of a pho- 
ton into strongly interacting quarks and gluons would allow 
US to construct a more consistent physical picture of high 
energy processes involving photons. 

The nowaday status of QCD allows one to calculate only the, . 
g2-evolution of the SF. In QCD it has become customary to 

2 represent F ~ ( X , Q  ) as consisting of two parts 

* For discussion see . 



2 The hadronic part FYeHAD (x,Q )till the last few years was 
customary to represent on the basis of the vector meson domi- 
nance model (VDM) that describes the transition of a photon 
into vector mesons. The other part F Y' PL (x. Q2 ) is caused by 1 the possibility of the direct y *  q q  transition and is called 
the "point-like part". 

I It is just this component of F2 Y (x,Q 2 )that there has caused 
a stable interest to the photon SF during the last ten years. 

The reason for this interest was the discovery by  itt ten/^/ 
of an unusual behaviour of this SF in the framework of QCD. 

First, as it was shown inl5/, the asyrnptotical behaviour of 
F;Y1 PL(x ,Q ) at large Q2 -, - can be calculated completely in 
the framework of the QCD perturbation theory. So, the only pa- 

Y PL rameter that enters into the QCD formula for F2,;SyM (x,QP) 
is the QCD scale parameter A .  

Second, and it is also very important, the point-like part 
FT* PL (x ,Q2) appears to be proportional to the inverse power 
of the QCD running coupling constant, i.e., 

that predicts its increase with €i2 * - and guarantees its do- 
minance over FiY*  HAD(^, Q 2, at large Q2. 

Such a behaviour of F;ePL (x,Q2) is distingushed in QCD and 
differs from the behaviour of the lepton-hadron SF. These 
features of F$(x.CJ2) for many years served as a ground for the 
statement that the experimental measurement of (x, Q2 ) would 
provide a unique possibility of a model-independent definition 
of the QCD scale parameter/5-7/. 

This highly optimistic theoretical viewpoint is changed 
nowadays towards a more realistic one. During the last decade 
different groups have also tried to make measurements of 
F; (x,Q2) but the existing data, su porting the QCD idea about 
the growth of F2Y(x. G2) at large Q{ are not sufficiently accu- 
rate to make quantitative conclusions. 

2 So, the photon structure functions FiY(x,Q ) still remain a 
very interesting object for experimental and theoretical stu- 
dies. Their experimental study at LEP energies will give a 
nice possibility for checking one of the most transparent QCD 
prediction, the growth of F;(X,Q~) with increasing CJ2, which 
together with the measurement and analysis of the logarithmic 
decrease of the hadron SF at large will complete the QCD- 
check in deep inelastic processes. 

The present paper aimed at further developing the mathe- 
matical tcol of the QCD-analysis of the photon SF'S F" (x,CJ2). 
As mentioned before, the theoretical attitude to the role of 
the point-like part of F~(x.Q2) has changed. Namely, the exis- 
tence of nonphysical singularities in asymptotical F: PL (x, Q219 
collected in the region of small xl7/, leads the people to 
study the FzY (X , G ~ )  as a whole, and especially the interplay 

2 /8.9/ 
of point-like and hadronic parts of F~~(x ,Q ) . 

It is obvious that the necessity of the consideration of 
F Yv HAD (x, Q2) together with F:' PL(~, leads to the increase 
of the rlumber of parameters. In this case, A will not be a 
single parameter, but there will appear other phenomenological ' parameters that describe the distribution of quarks and gluons 
inside a photon. Then there arises the question concerning 
the sensitivity of the analysis to A considered among other 
parameters. So, the situation as a whole after including of 
FylHAD into analysis becomes closer to the one that holds in 
tRe QCD-analysis of the nucleon SF. 2 In what follows we shall 
apply to the QCD-analysis of F~~(X,Q ) the mathematical appara- 
tus developed earlier for lepton-hadron deep inelastic pro- 
cesses in /lo/ and applied in I / .  

The paper is organized as follows. In sect.2 we shall #' re - 
sent all the formulae needed for QCD-analysis for F;Y(X,Q ). 
Then in sect. 3 we shall discuss the main features of the me- 
thod of QCD-analysis/lO/ based on the expansion of SF in or- 
thogonal polynomials, and compare it with other approaches. 
In sect. 4 we shall introduce a new class of polynomials that, 
for instance, generalize the Jacobi polynomials used in /10*11/ . 
In sect. 5 the efficiency of this method will be demonstrated 
by applying it to particular functions used in the CD-an ly- 4, f sis of F~ (x,Q2): a) the parton model function for F' (x,Q 1 
and b) the interpolation function for F'~(x, Q2) obtained re- 
cently in/l2/-. The last sixth sect. is %evoted to the appli- 
cation of the developed method to the QCD-analysis of some ex- 
perimental data. It has only the illustrative character becau- 
se the present data on F'Y(x, Q2) have large statistical errors. 
So the quantitative checg of QCD with F~(X .Q') will become 
meaningful only after getting new precise data at higher €I2. 

2. QCD-PREDICTIONS FOR THE PHOTON 
STRUCTURE FUNCTION 

The structure function (SF) of a real photon is measured in 
the process, shown in fig. 1. In the range of applicability 
of the QCD perturbation theory, i .e., at large Q2, it can be 



Fig. 1. The diagram of the process of the e1ectron;positron 
scattering via the photon-photon interaction (k ( k l  ) and 
k, ( k; ) are the &-momenta of the electron (posiiron) in ini- 
tial and fina1,states). The square other v,irtual photon 4-no- 
menta q= kl - k is negative: qa = ( k,, - k 1 ) a < 0, while 
that of the 4-momenta of the second photon emitted by the po- 
sitron is close to zero: (k, - k; )a =O. 

represented as series in the strong coupling constant (in what 
follows we shall use the MS-scheme) 

16 n2 .iT,2(Q2) = ; '6 -11--f. 2 
0 3 (2.2) 

6, In ( - Q2 1 
A2 

To the leading order (LO) in a (Q2) the SF has the form/8/ 
S 

~ ~ ( x , ~ ~ ) = x . q ~ ~ ( x , ~ ~ ) + < e ~ > . x . ~ ~  (x.QP) , (2.3) 

2 where the functions qis(x.~2) and ZY(x.Q )describe the non- 
singlet (NS) and singlet (s) parton distribution~ inside a 
photon, and the symbol <ek > denotes the quantity <ek > sf'&Sek 

2 I 9' 
The function q i S  (x.6 ) obeys the following inhomogeneous 

Altarelli-Parisi equation/13/ (i = NS) (we shall follow the 
notation of ref. I8 9/ andl6/ * 

where the inhomogeneous term Kr: (x) is given by 

(0) The function PNS (x) =P(')(x) is a standard splitting func- 99 
tion of the Altarelli-Parisi equation. 

In the singlet case ( i  = a )  equation (2.4) becomes a matrix 
equation (it is a system of two coupled equations) with 

and 

The functions KI0)(x) stem from the parton function 

defined by a box-type diagram that describes the direct ' y + q T  
transition /a5 ~ 1 6 ~  . 

Explicit solutions in an analytical form for the QCD Alta- 
relli-Parisi equation are not yet found. Analytical expressi- 
ons are derived only for the moments of the SF'S: 

* We remind that the SF'S inla/, as compared with the definition 
in/8*Q*14/, contain an additional factor ea E 4 na. 



1 that in the leading order (LO) can be represented in the form 
(aNs =1 ; 8, = < e  >) /'/ : 

Y 2  2  F 2  ( n . Q  ) = a N S  q ' L S ( n , Q  ) + 8 ,  a x Y  ( n . p 2 )  , (2.10) 

where the moments of the parton distributions are defined in 
the following way ( i = N S . S )  : 

1 
q r ( n ; ~  2 ,  = I d. - n- 1 . ~ ; ( X . Q ~ )  . (2.11) 

0 
The following formula has been found by the renormalization 
group method / 8 s 9 /  : 

(0) 
2P (n) 

1 - 

4 n  as (Q2)  
0  

P: ( n . p 2 )  = . a  i  ( n )  . { I - [  I 1 + 
a ,(Q2 ) a , ( Q ; )  

where 

a a i  ( n )  =-. 
1 . K(P) ( n )  . 

2 n B o  l! - 2 ~ : ~ )  (.) / O 0  
The moments of the splitting functions p i O ) ( n )  (I = N S , S )  are I 
connected with standard anomalous dimensions y n  (used 

ij i 
in/617*17/) ) by the relation pj6)(n) = - f y  ! O ) l n  (see Is') and 

the functions K(:) are 

(0) 1 0',n (K , (n) = T K  , where K g v D  are the functions used in 16'). 
= - 

The functions q y  ( n ,  Q:) are the moments of the functions 2  of quark distributions s i Y ( x  ,go  ) ( i  = NS , S )  , that give the 
boundary conditions for the Altarelli-Parisi equation (2.4) 

2  at some reference point Q,,. 
It is useful to compare (2.14) and (2.15) with the formu- 

la for the moments of parton function (2.8) 

In the limit Q 2 > >  A2, p2 and after neglecting all terms 
2  

proportional to [ as (Q  /a s (Qo) l  . from (2.12) we get 

x ( l  + y ( 0 )  l n  1 2 f i0 ) -Y  . K ( O )  ( n )  . I n - .  Q  
i i h 2  

In this limit it is easy to see that QCD-expression (2.10) 
2  for the moments F ' Y ( n , Q  )will transform into parton expres- 2  

sion (2.16) (up to some constant factors) if one puts to 

zero all for anomalous dimansions P ( n )  = - y  ( )  . In this 
4 i  

way the correspondence between parton and QCD pictures is 
established. 

Asymptotic expression (2.17) for many years, starting 
from/5/, served fo,r attracting interest to study the photon 
SF, because on its ground the conclusion that the QCD-pertur- 
bation theory allows determination of the Q2-and x-depen- 
dence as well as the absolute normalization of ( x  , Q 2 )  at 
large Q2 was made. 

Due to this reason and to the fact of the presence of a 
single parameter, the scale arameter of QCD-A, the asymp- 
totic expression for V ( x . Q  & 

* Analogous behaviour of the moments of  in the asymptotics was es- 
tablished by the method of sumation of giagrams in ref. /la!/. 

7 



0 (where hiS = ,y in and hn are defined according to (A. 7) ) was 
considered to Pbe the mosft perspective for the model-indepen- 
dent (i.e., independent of the form of the parton distribu- 
tion functions qi (x,~:) that define the boundary conditions 
at Q: ) check of QCD. This asymptotic expression (2.18) as 
well as (2.12), has a unique property: it grows with increas- 

2 ing Q as 4nai1 (85=fln-h$: *A expression analogous to 
y  P L  - A- (2.18) for F2ieym. was derived in the second order of pertur- 

bation theory in / 6 f  see also / 7 / ) .  
This view point suffered an essential change because it. 

was found that the asymptotic function F'~' PL (n, Q2) being 
2, a w y -  transformed into the x-space by an inverse e lin transfor- 

mat ion 

acquires the singularities at small x. These singularities 
occur due to poles in variable n in the denomirlators 
(l + X  /2/3) in (2.18) ( i = N S f )  . Really, theexpressions 
d (n) = A  /2D0 have the following properties/9/: dNS(n = i 
= 0.3099) = -1, d-(11.1.596) = -1. Accordin ly F(X,Q~) has 
in the x-space poles (1 /x)0.3099 and (1111) 1-'96 "I. 
In the second order in as.(Q2) the formula for the moment 
is /8,9,14/ 

where the coefficient bi(n) has the form 

bi(n) = -  P:') (n) - - 4 pi') (n 3 . ai (nl + 
2@o 

' From (2.20) it follows that in 'the limit g2 + 

Y , S O  2 4n (n,Q 1 = . ai (n) + bi (n) . 
'i. asym. a, (Q2) 

This expression contains the single parameter A,  but its 
application for definition of the form of F:,':&, (x,QP) in 
the second order of perturbation theory meets, as in the case 
of (2.17), difficulties connected with the singular behaviour 
of the coefficients ai(n) and bi (n). Apart of the above-men- 
tioned pole singu1aritie.s of the coefficients ai(n), the co- 
efficients bi(n) that appear in the second order do contain 

the anomalous dimensions P?) (n) = - -,  Ovn in their denomina- 
4  Y, 

tors. These anomalous dimensions due to the following'proper- 
ties: dNS (n = 1 ) = 0 and d- (n =2) = 0 make the SO coeffici- 

I ents bi(n) to be singular just for the integer numbers, one 

1 of which d- (n = 2) = 0 takes part for the ~hysical value n = 2 
2 I that appears in the expansion of the SF F2 (x,Q ) in its mo- I ments. 

As shown in /la/, these singularities do not occur in the 
( case of the SF of a virtual photon, for which p2 LO. On the 
1 basis of this result it was suggested in/ls/that the singula- 
I rities of the asymptotical "point-like" part of F ~ ~ ~ ~ ( x , Q ~ )  
I should be cancelled with the singularities of the hadronic 
) part of FzlHADthat contains the dependence on Qt (see also 
1 the discussion in 
I A subsequent realization of this viewpoint was performed 
1 in /2a/ (see also /22*23/ ) where the regularization procedure 



based on introduction of only one new free parameter, was pro- 
posed. This procedure was applied in a number of programs of 
the QCD-analysis of the data on the photon SF'S /24/. 

But it is not necessary to introduce a further regulariza- 
tion procedure if, following'*.g/ , explicit solutions (2.12) 
and (2.20) (that contain the boundary conditions at Q:) are 
used instead of asymptotic expressions (2.17), (2.18) and 
(2.22) or, following . '25/,  the procedure of separating of had- 
ronic and point-like parts based on studying the pT-behaviour 
of jets in the final hadronic states. Let us discuss the 
first possibility. 

Really, the denominators that lead to the pole singulari- 
ties (1-27(0) (n) /O0)=(l +'y.O-n /2BO) = c + 0  and 

1 P(O)(~)=--~O*~ = € + O  in the functions ai(n) and bi(n) 
i 4 

appear in formulae (2.12) and (2.20) in the combinations 
\ 

and 
I 

- - 
that allow ts to apply the formula 

These formulae demonstrate the important regularization role 
of the boundary conditions at the point Q~ in general solu- 
tions (2.12) and (2.20). As mentioned i n  , general soluti- 
ons of evolution equations (2.3) in the n-space, given by 

I (2.12) and (2.20), automatically contain in themselves the I 
I regularization procedure in the same way as in the case of 

the virtual photon SF'r4/, where the role of the reference 
point Q: was played by p2 (see fig. 1). That is why the use 
of the general solution (i.e. without artificial separation 

I into point-like and hadronic parts and neglect of the last 
one) containing the boundary conditions at point Q: allows 

us to despense with the regularization procedure based on the 
introduction of a new free parameter A that has no direct me- 
aning /21/. 

It is also useful to mention that the situation with the 
discussion of the role of the boundary conditions in the for- 
mulae used for expressing the solutions of the renormaliza- 
tion group differential equation for the moments of FH(X,Q~) 
completely repeats the discussion that has taken place previ- 
ously in 1261 in connection with the solutions of the renormaliza- 
tion equations for the moments of the SF of lepton-hadron deep 
inelastic scattering (see alsp review /I7< p. 254). There ( 
for the solution of the renormalization-group equation that 
does not depend . on the reference point p 2 = ~ 2 0  the singula- 

rity was found in the SO in as (Qz) This singularity appe- 
ars in the coefficient Ed,;) at the point d:= d: + 1, The au- 

thors of '26117/ have mentioned that to avoid this singularity, 
one needs to introduce the functions depending on a reference 
point Q: that will serve for defining of boundary conditions. 

3. APPLICATION OF THE ORTHOGONAL POLYNOMIALS 
FOR THE QCD-ANALYSIS OF STRUCTURE FUNCTIONS 

The essence of the problems one meets in the QCD-analysis 
of the data on SF'S consists in the fact that the scale para- 
meter A enters into the QCD theoretical formulae under the 
sign of logarithm. This leads, as shown, for example, in /lo/, 
to the situation when large enough changes of A in QCD-for- 
mulae (by 50 , for example) result in a very small variation 
of the SF-s (about 1%) in the region x = 0.1 + 0.7. 

Then it following/lO/ that the application of the theore- 
tical methods of analysis that do not guarantee finding the 
solutions with accuracy better than 1% do not allow us to ob- 
tain reliable conclusions on the found values of A .  For this 
reason the question of the mathematical precision of the me- 
thod of the analysis becomes very important. 

Another aspect of the problem of the QCD-analysis consists, 
as mentioned above, in the fact that the exact analytic solu- 
tions of the QCD Altarelli-Parisi equations are not yet found. 
The analytic form is found only for the solutions of evolu- 
tions of moments of the SF 

1 
M.(Q*) = J  d x  .xn-2. F(x,Q~) 

0 
(see (2.12) for the LO and (2.20) for SO). 



But explicit analytic formulae for the moments in the QCD- 
analysis did not receive a wide use because the recalculation 
of the experimental data from F(x,Q~) to M ,(Q2) is connected 
with the extrapolation of F(x,Q~) into the region x 2 0 and 
x 1, where the data usually do not exist (see for discus- 
~ion'~" ). So such an extrapolation leads to the increase in 
the error of h ,  i.e., it leads to the decrease in the sense- 
tivity of the method to the scale parameter A .  

During the last years the number of high precise and reli- 
able programs for a numerical solution of the Altarelli-Pari- 
si equations was created (see, for e ~ a m p l e / ~ ~ * ~ ~ /  ). Never- 
theless, one should keep in mind a very essential remark, done 
in ref.1271, that the application of the method of the QCD- 
analysis, based on the Altarelli-Parisi equation, does not 
overcome the main difficulty of the moment method connected 
with the extrapolation of the SF into the experimentally non- 
observed region x =0.75 e 1.0. 

Really, as it is seen from (2.4), the integration of the 
SF in the right-hand side of the Altarelli-Parisi equation 
is performed up to the value x = 1, while the most of the da- 
ta is contained in the region x 5 0.6 + 0.75. The authors 12?/ 
of /27/using the typical quark model distributions have given 
a theoretical estimate of the error introduced by the extrapo- 
lation of SF into the integration region x = 0.65 + 1. They 
have show that the uncertainty introduced by this extrapola- 
tion can be quite sizeable. 

Unfortunately, in the most of publications devoted to the 
QCD-analysis with the help of the Altarelly-Parisi equations 
this inevitably introduced error connected with the extrapo- 
lation is not presented and discussed. (Probably it is inclu- 
ded, as in the moment method, into the statistical error 
+ AA). It is also not attainable for analysis, by a non-invol- 
ved reader, of the influence of a precision of the method of 
numerical integration of the Altarelli-Parisi equation on the 
found value of A or its error. 

Apart from these two methods developed historically first, 
i.e. the moment method and the Altarelli-Parisi integro-dif- 
ferential equation method, there exists a third method of the 
QCD-analysis developed in the last ten years starting from 
paper ' 291  (see also 130-32'). 

This method is based on the expansion of SF's in series of 
the polynomials. The Laguerre polynumials in y=lnl/x vari- 
able, was applied in/33/. The method of the QCD-analysis, ba- 
sed on the results of /33/ was realized in the program of the 
QCD-analysis used by the CHARM collaboration /34*  35/ . 

But in both these methods ( l3O 31/ and /33/) the expansion 
coefficients of F(x,Q2) into polynomials are infinite series. 
So these methods as applied require truncation of these seri- 
es, which necessitates further study (usually not presented 
in the papers on the QCD-analysis) of the influence of that 
truncation on the precision of the method (apart of the 
study of the influence of the truncation of the original se- 
ries in polynomials themselves). This situation arises, for 
example, in the method based on the expansion into the Laguer- 
re polynomials in y = ln 1 / x taken as an argument /33/. Really, 
in this case the polynomials could not be represented as fini- 
te series in x-variable. As a result, the coefficients of an 
expansion in the polynomials L, (In l/x) could not be represen- 
ted as combinations of moments of SF's as in the method propo- 

I sed by Parisi and Sourlas IS6/. 
The Parisi-Sourlas method is based on the expansion of the \ SF into the Jacobi polynomials in x-variable: 

k where C (a, 6) are known coefficients /36-38/. These polynomials 
are orthogonal in the interval X E  10.11 with the weight func- 
tion wap(x) = xa . (1 - x)B 

1 
aB a B f dx. waP(r) Ok (x) .-On (x) = Sk,, . 

0 

2 The expansion coefficients of F(x,Q ) 

I can be expressed with (3.3) and (3.2) as finite combinations 

1 of the moments of the SF 

by the formula 



So, the SF F (x,Q') can be represented by the following expli- 
cit formula/36/ 

2 
in which for the application of the QCD-analysis M(n,Q ) are 
substituted by analytical QCD-expressions of (2.12) and (2.20) 
type. In this case the influence of the truncation of the se- 
ries in k at some upper limit k = N M A X B  naturally needed for 
practical application of (3.6), can be easily studied, as it 
was done in /I0/, by varying NMAXor expanding some test func- 
tions in series of the Jacoby polynomials and studying the ap- 
proximation precision by series (3.4) for differentNMAX in 
dependence of parameters of the weight function waB(x). 

The Jacobi polynomials are very general polynomials and 
include a large class of well-known polynomials. Thus, fixing 
the parameters of the weight function a = = - 112 we get the 
well-known Chebyshev polynomials and with w (x) = (1 - x)a-0.5 
we come to the Gegenbauer polynomials C t  (x). 

The expansion in the Jacobi polynomials eeB(x) was firstly 
applied for the QCD-analysis of nonsinglet structure functions 
in /39' and the singlet ones in /LO/ and /'u/. 

One of the main properties of the expansion in the Jacobi 
polynomials is the presence of the weight function waB(x) that 
can accumulate the part of the x-dependence of the SF. Those 
weight functions that define the Jacobi polynomials, i.e., 

appear to be very useful in the analysis of hadronic structure 
functions because they, first, are similar in from to the 
distribution of the valence quarks in a nucleon and, second, 
they allow us to take into account the boundary conditions 
for the hadronic SF, i.e. vanishing at x + 1. 

But as it is known from the parton model, the photon SF 
has an opposite tendency: it increases as x + 1. For this re- 
ason it will be useful to consider a more general class of 
polynomials for which the weight function can be of a more ge- 
neral form than (3.7). 

4. GENERALIZED ORTHOGONAL POLYNOMIALS DEFINED 
BY THE WEIGHT FUNCTION OF ARBITRARY FORM 

The generalization of the Jacobi polynomials considered 
in the interval x€[ a,bl is defined by the weight function 
w(x,a) w(x,lal , a, ..... an I) that obeys the following condi- 
t ions : 

1) the w(~.a)z~(~.Ia~.a 2...an 1) are positive in the in- 
terval x€[a,bI ; 

2) the values of the moments of the weight function 

are finite. 
According to the theory of the classical polynomials, the 

set of the orthogonal polynomials P: (XI, considered in the 
interval fa,bl, is defined unambiguously by the form of the 
weight function (that satisfied conditions 1) and 2)) with 
which they are orthogonal to each other in the interval 

b 
a f w(x.a) . Pk (x) . P: (x) dx= 8k,n. (4.2) 

a 

These polynomials are explicitly represented through the 
moments of the weight function h n  according to the following 
formulae (in what follows we shall omit the indices a = 
= lal , ... a n  I 

1 box - h, P (x) =--. 0 * PI ( x )  = -  

I h,-, h k  . . . .  . . .  h 2 k -  1 

1 x x2 . . .  xk 
where A k  is the following determinant: 



The expansion of the function f ( x )  into the generalized poly- 
nomials has the form, analogous to (3.4): 

SS 

f ( x ) = w ( x , a ) '  c k ( a ) .  ~ k Q ( x )  $ 

k =  0 
(4.6) 

11 

where for the coefficients C k ( a ) ,  using (4.2), we find 

The substitution of (4.3) into (4.7) allows us, in analogy 
with (3.5), to express the coefficient C k ( a )  through a finite 
sum of the moments M(n) of the expanded function M(n) = 

1 n-2 
= J d x .  x  f  ( x )  : 
0 

b k k 
Ck ( a )  = J d x . f ( x ) .  I: X(n+2)  - 2  k A n ( a )  = S ~ k , ( a )  M ( n + 2 )  . (4.8) 

n=O n -0 

As a result, we come to the expansion of f ( x )  into generalized 
polynomials 

This formula in a particular case of w  ( x , a )  = w ( x , f a  . . a  1) 
becomes the expansion into Jacobi polynomials. In what fof- 
lows we shell use for practical reasons the QCD-analysis of 
the finite part of the series (4.10) 
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where the right-hand side of formula (4.10) for f,, ( x )  

on NMAxin the case of expansion of 
the aston model function f lPM ( x )  = 
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stands, i.e., the reconstruction of the function f ( x )  with the 
help 0f.a finite series of its expansion in generalized po- 
lynomials P: ( x )  with the coefficients of this expansion ex- 
pressed through the moments M(n) of the function f ( x )  itself. 

Figure 2 shows the behaviour of IgA,, as a function of 

Let us now study some par- 
ticular applications of formu- 
lae (3.4) and (4.10). Here we 
shall consider some test func- 
tions that are characteristic 

- 

- n~~~ 
NMaxwhen the function f  lPM(x) = I  [ x 2 +  ( 1  - I )  2~ (that enters 
the parton function (2.8)) is expanded in three different ty- 
pes of polynomials. These polynomials are defined by three 
different weight functions: First, by the weight function, 
equal to the expanded function, i.e. w l ( x )  = x . [ x 2 + ( 1  - x ) ~ ]  
which allows us to estimate the precision level provided by 
the computer itself; second, by the weight function w 2 ( x )  = 
- - x'On5 . ( 1  -x)-Os5 that defines the Chebyshev polynomials 
for which the convergence theorem for the series in these PO- 
lynomials is proved; and third, by Jacoby polynonlials e;B(x) . 
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It can be seen by comparing the presented curves that in 
the case of the expansion of fpM(x) in Chebyshev polynomials 
this convergence with the growth of NMAX (guaranteed mathe- 
matically) is more slow in practice than that one for Jacobi 
polynomials defined by the weight function w a 8  (x) with ar- 
bitrary parameters a, /3 (found to be, a = 0.99, /3 = 5.10-~). 
At the same time the curve of NUAX dependence of A N  for the 
case of ~ ( x , ~ ) = w ~ ( x )  tells us that the computer error that 
is accumulated with enlarging of NMAXcancels at large NMAX 
the advantage of such an ideal weight function as compared 
with Jacoby polynomials. 

Below, the dependence onNYAX of the accuracy of the re- 
construction of different functions used in the QCD-analysis 
of F~~ (x,Q2) will be shown. This reconstruction is performed 
with different types of polynomials defined by different 
weight functions. In Fig. 3 this dependence is shown for the 
complete parton function /15.16/ 

at g2 = 10 Gev2 and A P M =  0.2 GeV. The same is shown in Fig.4 
for the approximate solution of the Altarelli-Parisi equation 

Fig. 4. The dependence of 
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with the s e t s  of orthogonal poly- 
nomials defined bv 3 d i f ferent  
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at fa2 = 20 Gev2, Q; = 5 Gev2 and A = 0.2 GeV. 
From figs. 2, 3 and 4 it is seen that a high precision of 

the reconstruction can be achieved with a limited number of 
terms of the expansion in these polynomials if, first, the 
corresponding weight function would be luckily found or, se- 
cond,the Jacobi polynomials would be used-It is also seen that 
the dependence of the precision of the reconstruction on the 
form of the weight function diminishes with the growth of NMAx 
which agrees with the general theory (see also /lo/ ) . 

In fig. 5 there is presented, on the background of experi- 
mrntal oints 12/, the behaviour of the photon structure func- 
tion ~-'.F~~(X,Q~) (as a function of X- and €J2-variables) re- 
constructed from its moments (2.10) by using expansions (3.6) 
and (4.10) at NMAX = 7  and fixed value of A =0.2 GeV. 

The full line corresponds to the part of the structure 
function that stems from the asymptotical part of the point- 
like contribution, i.e. (2.18). The dashed and dashed-dotted 
curves correspond to the contribution of the complete point- 
like function, i.e., to the sum of ex ressions (2.12) at 

2 8 2 
N ~ A x  

=7, at different Qo : Q: -3 GeV and fa: - 5  GeV . 
Q ': 

for the photon structure function found in/12/ (Y = l n  -)  
A 
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Fig. 5 .  Theoretical curves for 11. 4 ( x .Q?  ( for  fixed h 200 MeV) shown 
on the background of the experimental points ' '. a $ F l l  dine corresponds 
to, the asymptotics of the point-l ike part of 1 /a F x .  Q ) that stems from 
F aaym f n , p22(2. 18).  b) Dashed and dashed-dottea l ines  show the behaviour 
of I/a F p  ( x ,  Q ) corresponding t o  the point-l ike part of the f u l l  solution 
(2  12) (the f i e s t  term i n  (2.12))  for  different choices of = 3  G ~ V ~  and 
Q# = 5 GeV,2respectively. c )  Dotted l ine  shows the behaviyr  of 
/ a  ( Q def .  by f u l l  solution (2.12) with q'Y (I, Po = 2 GeVa) 

Y 2 
= 0 . 1  xO.O1 ( 1 - x ) 0 - 7 4  

2 *9_ 
( l + x )  ; q ( x . Q O  = 2 GeV ) - 3 . 3  x2" ( l - ~ ) ~ ' ~ ~ .  

Y a q ( Q  - 2  G e V  ) = 0 .8  ( I - X ) ~ . ' ~  
2' 

and fixed value of Ae0.22  G ~ v ~ ( x , ~ .  
= 1.05).  

These curves are obtained in the.reconstruction with the 
help of Jacobi polynomials with the parameters a = -0.95; 

=-0.96 and N y A X =  7 .  It should be mentioned that the depen- 
dence of F'z(x,Q ) on the parameters of the weight function is 
very weak. The structure function varies with their varying in 
the limit less than one per cent, which is quite enough at the 
present level of precision of the existing data on F'iY (to be 
better called the uncertaint instead of precision). 

In the samefig.5 for illustration of the work of the propo- 
sed method, we show by the dotted line the structure functi- 
on obtained by the reconstruction with formulae (3.6) and 
(4.11) with N M A X = 7  and the complete expression for the mo- 
ment (2.21), i.e., containing the nonzero hadronic part with 
q:(n,Q2 ) A 0. 

The moments q;(n,Qg") have been chosen as in/''/ in the form 
of the following integrals of quark and gluon distributions 
at Q: = 3  G ~ v ~ :  

where the function (i = NS, S , G) 

is defined by 4 free parameters A t .  

CONCLUSION 

From the review given in the present paper we see that the 
photon structure function (x,€I2) for which QCD, due to the 
presence of the point-like part, predicts a specific growth 
with €I2 is a very interesting object for the experimental 
study. Though the present data, in principle on the qualitati- 
ve level, support this QCD prediction, nevertheless, they 
have such large errors and uncertainties (for example, in the 
position of experimental points on the x-axis (see fig. 5) 
that it is too early to speek about any qualitative check of 
QCD with these data. Especially, it is right because to have 
a possibility of speaking definitely about the value of ex- 
tracted A ,  one has to use the second order QCD formulae 
which have a doubtful practical meaning with the present level 
of precision of experimental data. That is why new measure- 
ments of the photon structure function F~~(X,Q~) , especially 
at large Q2, avaliable at LEP, would be of great importance 
for the QCD development. 

In the present paper we have proposed a new method of QCD- 
analysis of the photon structure function based on the method 
used previously in QCD-analysis of lepton-hadron structure 
functions li0/, and particularly,. of BCDMS data /ll/. This me- 
thod allows US t~ extract the values of A and of parameters 
of quark and gluon distributions with a high accuracy. 






