
0 6 b 8 A H t I 8 t I ~ b l i l  
HHGTHTYT 
AABPHbIX 

H c c n e A o a a i n i l  

D.  Blaschke l, T .  Towmasjan =, 6. Kampfer3 

PREDICTING STABLE QUARK CORES 

IN NEUTRON STARS FROM A UNIFIED DESCRIPTION 

OF QUARK-HADRON MATTER 

i Submitted t o  " f i ~ e p ~ a f i  Q M ~ M K ~ "  
I 

I 
lSekt ion  Physik, Wi lhe lm-P ieck-Un ivers i ta t ,  

! 
I 

Rostock, GDR 

I 20n leave  o f  absence from Yerevan S t a t e  U n i v e r s i t y ,  
Yerevan, USSR 

I 
3Permanent address: Z e n t r a l i n s t i t u t  f u r  Kernforschung, 
Rossendorf, GDR 



1. Introduction 

Already shortly after the invention of the notion of quarks, the ques- 

tion has been investigated whether the dense neutron star interior may 

serve as a place where the phase transition from ordinary hadron matter 

to quark matter in bulk can occur (see [I] for refs.). Using a two- 

phase description with bag model type equation of state for the quark 

phase, and advanced nuclear matter approaches for the hadron phase, 

most of the previous authors come to the conclusion, that in stable 

neutron stars the critical density for the deconfinement transition is 

not reached [2]. Moreover, even if the neutron star is capable of pro- 

ducing a quark core [3], the stability of the resulting object has to 

be carefully examined [4]. This central issue is often neglected, as 

well as the possible occurrence of stable stellar objects with quark 

cores beyond the stable neutron star peak [5] is mostly overlooked in 

discussing this topic. 

The recent observation of an extremely short-pulsed radiation from 

a possible neutron star born in SN 1987A [6] has renewed the interest 

in massive quark cores in neutron stars, since only highly compact ob- 

jects can fulfill the requirements of possessing large enough mass and 

rotate with subluminal surface velocity. 

Here we present an investigation of the above mentioned topic by 

employing an improved equation of state. While previous authors rely on 

different parameterizations for the quark and the hadron statas 3f 

strongly interacting matter, we use here for the first time an equation 

of state for neutron star matter on the quark level of description, 

where the nucleons are viewed as three- quark bound states. The basic 

ingredient of the present approach is the treatment of the many-quark 

system with confinement interaction, which can be accomplished by ge- 

neralizing the string flip approach by Lenz et al. [7] to an arbitrary 

number of quark sorts and by applying the cluster-Hartree-Fock approach 1 

I 

[ a ]  within the framework of thermodynamic Greens functions. Details of 
the resulting approach can be found in ref. [9], where especially the 

deconfinement transition in isospin-symmetric matter is considered. 

2. The cluster-Hartree-Fock approach 

The starting point of our consideration is a cluster decomposition for 

the density which is successfully applied in the cases of particle 

clustering and phase transitions in nuclear matter (see, e-g., [lo] for 
- 
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a review) and which can be used for a many-quark system as well. In 

what follows we consider non-strange matter with quasi-free quarks and 

their respective color-neutral nucleonic bound-states n = udd and p = 

uud. (The strange matter problematic deserves a separate investiga- 

tion.) Allowing for isospin asymmetry the density of up quarks can be 

written as 

+ R-' 1 1 fn(~Ovnp f I*vnp(123)~2 
123 VnP 

For the density of down quarks the same formula applies with the re- 

placements u o d and n o p. In eq. (1) the eigenvalues and antisymme- 

trized wavefunctions of the neutron (proton) are denoted by EvnP (EVpP) 

and qVnP (qVpP), respectively, where P is the total momentum and vn 

(vp) stands for the internal quantum number. The label numbers 1,2,3 

stand for momentum, spin and isospin of the particles 1,2,3. The dis- 

tribution function for quasi-free quarks 

fq(E) = [l + exp((E - uq)/T)l-' 
and for three-quark clusters 

f (E) = [l + exp((E - 2uu - ud)/T1-l, 
fn(E) = [l + exp((E - 2ud - uu)/~1-', 

are determined by the temperature and the quark chemical potentials LL 
q' 

q = u,d. 

According to eq. (1) the quarks and the nucleons are described as 

quasi-particles which obey an energy shift due to the influence of the 

surrounding matter. For quarks the Hartree shift AH is determined in an 

adiabatic approximation from the potential energy of a quark configura- 

tion, where only nearest neighbors are allowed to interact in order to 

avoid the unphysical color van der Waals forces (for details cf. [9]). 

3. Effects of the Pauli blocking 

The Pauli blocking shift APaU", which is only ~perative for the clus 

ters, is due to the fact that the occupation of phase space will pre- 

vent the formation of bound states at high densities as a consequence 

of the Pauli exclusion principle. The always positive contribution to 

the nucleon energy on the quark level of description serves as an ex- 

planation of the hard-core NN interaction potential [9,111. Since the 

available phase space volume depends very sensitively on the isospin 

content, measured e.g., by the proton fraction x = Z / A = pp / (pn + 
pp), of the nuclear matter, the Pauli shift is responsible for the sym- 

metry energy, thus being of special interest for the consideration of 

the deconfinement transition in neutron stars. 

In order to investigate this subject let us consider the T = 0 li- 

mit of eq. (1). The Pauli blocking then is obtained by evaluating the 

correct antisymmetrization of the six-quark wave functions with respect 

to one- and two-quark exchanges between the three-quark wavefunctions 

of the nucleons. Evaluation up to second order in the range parameter b 

of the three-quark wave packets, taken as Gaussians, yields 

17 - l 2  bvv, b2 (p2 + P~(V')~)P,(V')~I, (4) 

where the coefficients avv, and bvv, are obtained from a calculation of 

the matrix elements of one- and two-quark exchange operators with re- 

spect to the spin/flavor/color degrees of freedom. For neutron matter 

(v' = n?, n4) one gets avv, = - 1 and bvv, = , 4 9 whereas for symmetric 

nuclear matter avv, = -1 and bVV, = 31. 

The Fermi momenta of the nucleons depend on the total baryon den- 

sity p and on the proton fraction x. In the limiting cases of (i) neu- 

tron matter (x = 0, T = 2) and (ii) symmetric nuclear matter (x = 0.5, 

T = 4) the Fermi momenta are directly connected with the nucleon den- 

sities via 

Pp = x P, P " =  (1-x) P- (6) 

Inserting in eq. (4) one arrives at a density dependent Pauli blocking 

shift for the respective nucleon densities (see also [11,13]) 

1054 ~:~~"(p,x=0.5) = 5 (~r/%)-l [ -1.5n2 p + b2 (1.5nZ p)5/3~. 

These shifts show a strong repulsive behavior, even at subnuclear den- 

sities. To obtain the saturation property of symmetric nuclear matter 

one has to introduce mesonic degrees of freedom which is on the quark 

level not yet achieved. So we are forced to introduce the one-pion ex- 

change [14] by hand, by adding the Hartree energy of the one-pion ex- 

change potential [15] which contributes as a self-energy shift to the 

one-particle energy in eq.(l) via E" * EO 
Vn,pP Vn,pP + E ~ ~ ~ ~ ,  

EoPep = - 471 fn2 p A-2, 
( 8 )  

where fn = 93 MeV is the pion decay constant and A-' = 1.41 fm is the 

Compton wavelength for nucleons. 
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Now we are in the position to calculate the specific energy per 

baryon which, at T = 0, coincides with the density of the Helmholz free 

energy and can be obtained from eq.(l) by inverting p(u) and using 

E(P.x) = P-' 1 J:'~P' ul (PI ,x) cl (XI 
I = n ,  p 

(9) 

where c = x, c = (1-x). The evaluation of such a formula for arbi- 

trary values of x, x = O...l, is quite lengthy. Here WB want to illus- 

trate the result by considering the symmetry energy Es defined as 

where 

are the energies per particle for neutron matter and symmetric nuclear 

matter with the parameters al = 1.0 b/m + 6.28 fn2/,X2, 8, = 53.4 b3/m, 

a2 = 1:51 b/m + 6.28 fn2/,X2, 8, = 31.9 b3/m (M = 939 MeV and m = 350 

MeV denote the nucleon and the constituent quark masses, respectively). 

The range parameter of the Gaussian wave function is chosen as b = 0.59 

fm [12]. 

To include the effect of P equilibrium with electrons in charge 

neutral neutron star matter we insert again eq. (5) in (4) without spe- 

cifying the value of x but instead using the relations 

in order to evaluate eq. (4) with respect to the asymmetry ratio 

(1-2~)'. Finally we arrive at a familiar approximation for the specific 

energy of neutron-rich matter (cf., e.g., [16,17]) 

E(p,x) = E(p,x=0.5) + Es(p) (1 - 2~)'. (13) 

where the nuclear symmetry energy is obtained only in terms of the pa- 

rameters of the underlying quark model 

1 3 2 2/3 b p 1. (I4) Es(p) = (in p) + (ad%)-' [%'p + 2 (1.5n~)"~ 5'3 
In this way, the present approach can be used to predict properties of 

bulk nuclear matter by employing a quark potential model which is capa- 

ble of reproducing the known nuclear structure effects and NN scatter- 

ing data as well (see, e.g., [Ill). 

In 8 equilibrium the proton fraction becomes, of course, density 
dependent in order to fulfill the requirement of charge neutrality for 

the nucleon - electron system. In, particular, with 

Fig.1. The proton concentration 

(top) and the symmetry energy Es 

(lower part) as function of the 

baryon density (a- present work 

relying on Pauli blocking effects; 

b- o model calculations 

of ref. [la]). 

P [ f m-'I 

EtOt(P,x) = E(P,x) + Ee,(P,x) 

the function x(p) is determined by 

(aEtot/aX) p=,onst = 0. 

With Eel(p,x) = (3/4) x ~ / ~  p413 (371')"~ this leads to 

xV3/(l - ZX) = 4Es(p) (3n2 P)'1/3. 
(17) 

The function x(p) is shown in fig.1 together with the symmetry energy. 

Especially, when comparing with the o model calculation of ref. [la] 

which is displayed for comparison, the close correlation between sym- 

metry energy and proton fraction can be seen. Note that a value of x n 

1/3 at densities slightly above the nuclear saturation density po is 

favorable to obtain supernova explosions in modeling the stellar col- 

lapse [la]. 

4.  The deconfinement transition 

At high densities the above made assumption of neglecting the quasi- 

free quark contribution in eq.(l) is no longer valid. At densities 3 - 
5 po a phase of deconfined (i.e., quasi-free) quarks is expected to oc- 

cur being the QCD analogous of the Mott tiansition in plasma physics 

. (see [a.gI). 
The free energy of the quasi-free quark phase, corresponding to 

the quadratic confinement potential [lZ], has been evaluated in ref.[9] 



'Fig.2. The energy per particle E/A for quark matter and 8-stable 

neutron matter as function of the baryon density. The 

double-tangent construction is indicated and the resul- 

ting coexistence region, as well. 

for isospin-symmetric matter. It can be used in the present calculation 

for 8-stable quark matter since an isospin dependence enters only via 

the different fillings of the up/down quark Ferm.i seas, which result in 

negligible effects for the free energy in the phase transition region 

[131- 
The quark - hadron phase transition is obtained from a double-tan- 

gent construction for the free energy (see fig,2), and a coexistence 

region of quark and 8-stable neutron-rich matter is obtained for 2.3. 5 

p/po 5 3 .l. Whereas in symmetric nuclear matter, at T = 0, the phase 

border is not reached until 4...5 p, [ 9 ] ,  in asymmetric matter the 

phase transition is predicted at about twice nuclear saturation den- 

sity, so that probably inside neutron stars, where these densities are 

reached, the deconfinement transition can take place. 

5 .  Stable neutron stars with quark cores 

We have integrated the Tolman-Oppenheimer-Volkoff equations [19] with 

the equation of state for the pressure 

P(p,T=O) = p2 (af (p,T=O)/ap) (18) 

(for details cf. [13,15]). One important result of the calculations is 

the mass of the neutron stars as a function of the central density 

which is displayed in fig.3. The resulting maximum mass can be compared 

with astronomical observations of neutron star masses which point to a 

lower limit of the maximum mass of Mmax E 1.85 Mo [20]. In fig.3 One 

observes that the effect of the phase transition lowers the maximum 

mass. We obtain for neutron stars with quark cores a maximum mass of 
2 . 2 .  MQ. The above mentioned problem of stability has been analyzed, 

and it is found that the presented calculations predict stable neutron 

Stars with radii of about 15 km and with quark cores with typical radii 

in the order of 3 km. These values are compatible with the pulse fre- 
quency observed from a possible compact remnant in SN 1987A [ 6 ]  in that 

sense that the surface does not rotate with supraluminal velocity. 

Fig.3. The nelltron star mass as function of the central density 

(a- without deconfinement; b- allowing for deconfinement). 

Otherwise, as can be seen in fig. 3, the quark-core neutron star 

- peak is rather small, and its persistence may depend on small correc- 

tion effects not included in the present investigations. At present we 

are refining our approach along the fol~owing lines: 

(i) inclusion of strangeness degrees of freedom, 

(ii) fully selfconsistent solution of the set of thermodynamic equa- 

tions in order to discuss the phase diagram in the full thermody::.mical 

parameter space spanned by up, down and strange flavor degrees of free- 

dom, 

(iii) checking the sensitivity of the results obtained for different 

parameterizations of the interquark potential model. 

6. Summary 

In summary we extend a unified potential model description, wherein the 

hadron phase and the quark phase are considered on an equal footing, to 

isospin asymmetric matter. Particular emphasis is devoted to the hadron 

equation of state. Our approach predicts stable neutron stars with 

quark cores being compatible with both the observed neutron star masses 

and the constraints on the neutron star radii by the possibly observed 

pulsar frequency. 
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O I I H C ~ I B ~ ~ T C H  @ a 3 0 ~ &  nepexog KBapKki - aApOHb1 B HGepHOM 
Be4eCTBe npa ~ y n e ~ o f i  TeMnepaType B n o ~ e ~ q w a n b ~ o f i  Mogena c  
nOMO4bIO KnacTepHoro nogxoga X a p ~ p a - O O K ~ .  H ~ C X H M ~ ~ M O C T ~  a 
3HeprkiH aCFiMMeTpHFi HgepHOfi MaTepHPi 06ycnoane~br IIpFiHqIlIIOM 

naynu ,4nH HYKnOHHblX COCTaBJIHH)U&fX. O ~ J - I ~ C T  b COCYDJeCTBOBaHIIR 
K B ~ ~ K - H ~ ~ ~ T ~ O H H O ~ O  BeueCTBa IIepeKpblBaeT 3HaseHkiH 2,3-3 ,1  po. 
~ Y T ~ M  wHTerpsposaHuH y p a ~ ~ e ~ G  T o n ~ a ~ a - O n n e ~ r e f i ~ e p a - B o m -  
Ba IIOnyseHa C ~ a 6 ~ n b H a H  BeTBb H ~ ~ ~ T P O H H O ~ ~  3Be3.4bI C MaKCFi-- 
ManbHofi ~ a C c 0 f i  2.20 a pagkiyCOM K B ~ ~ K O B O ~ ~  CepGqeBFiHbI OKO- 

no  3  K M .  

Blaschke D . ,  Towmasjan T . ,  K&pfer B .  E2-89-65 1 
P r e d i c t i n g  S t a b l e  Quark Cores i n  Neutron 
S t a r s  from a  U n i f i e d  D e s c r i p t i o n  
o f  Quark-Hadron M a t t e r  

The quark-hadron phase  t r a n s i t i o n  i n  i sosp in -asymmet r i c  
n u c l e a r  m a t t e r  a t  z e r o  t e m p e r a t u r e  i s  d e s c r i b e d  w i t h i n  a  
p o t e n t i a l  model u s i n g  a  c lus te r -Har t ree -Fock  approach .  
S t i f f n e s s  and asymnetry energy  o f  t h e  n u c l e a r  m a t t e r  a r e  
caused by t h e  P a u l i  e x c l u s i o n  p r i n c i p l e  f o r  t h e  nuc leon  
c o n s t i t u e n t s  . The c o e x i s t e n c e  r e g i o n  of  quark  - neu t  ron 
m a t t e r  covers  t h e  range 2 ,3-3 , l  p o .  A s t a b l e  n e u t r o n  s t a r  
b ranch ,  w i t h  maximum mass of  2 .20  M and w i t h  quark  c o r e  
r a d i i  o f  abou t  3  km, i s  o b t a i n e d  by i n t e g r a t i o n  of  t h e  
Tolman-Oppenheimer-Volkoff e q u a t i o n s .  

The i n v e s t i g a t i o n  h a s  been performed a t  t h e  Labora to ry  
of  T h e o r e t i c a l  P h y s i c s ,  JINR. I 
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